
ORIGINAL ARTICLE

A structural approach to the non-blocking supervisory
control of discrete-event systems

Lei Feng & Kai Cai & W. M. Wonham

Received: 27 November 2007 /Accepted: 29 April 2008
Springer-Verlag London Limited 2008

Abstract Many practical and important systemic properties
of manufacturing systems, like deadlock freeness, liveness,
and reversibility, can be formulated as the non-blocking
property of discrete-event systems. It can be difficult,
however, to verify non-blocking or design a supervisor to
guarantee non-blocking control because of state size explo-
sion in the concurrency model. In this paper, we present
sufficient conditions for the computation of (small) model
abstractions that preserve the non-blocking property. As a
consequence, hierarchical and decentralized control structures
can be flexibly integrated, and the proposed approach can
synthesize maximally permissive and non-blocking control
with reduced computational effort. The solution is a group of
decentralized supervisors that transparently displays control
logic and admits relatively simple implementation.

Keywords Supervisory control . Discrete-event systems .

Non-blocking control

1 Introduction

At a management and logistical level, many industrial
systems evolve according to the ‘random’ occurrence of
predefined events rather than, or in addition to, the ‘tick’ of
a clock. From this perspective, several discrete-event system
(DES) formalisms have emerged [1]. Among them, super-
visory control theory (SCT), established by Ramadge and
Wonham [2, 3] in the 1980s, is a formal framework for the
control synthesis of DES. Application domains include
manufacturing systems [4, 5], robotics [6], vehicular traffic
[7], logistics [8], computer systems [9], and communication
networks [10, 11]. Problems that SCT can address include
dynamic resource allocation, the coordination of individual
control tasks subject to priorities and hard real-time dead-
lines, the prevention of system blocking and, within these
constraints, maximally permissive system behavior. In these
applications, SCT can systematically synthesize supervisory
controllers that prevent a DES from executing undesirable
behavior by disabling certain events in its dynamic
structure.

Of practical importance for a DES, like a manufacturing
system, is the non-blocking property, namely that the
system can always reach some target state from any state
in its reachable set. Common requirements of manufactur-
ing systems, like deadlock freeness and reversibility, are
instances of the non-blocking property. Owing to compu-
tational complexity, these properties are often difficult to
guarantee or verify. Generally, all possible states of the
system must be examined, while the number of states is
exponential in the number of the components included in
the system, a phenomenon called state explosion. To deal
with such complexity, much research effort has been
dedicated to the efficient computational design of non-
blocking supervisory control [12–18].

Int J Adv Manuf Technol
DOI 10.1007/s00170-008-1555-9

L. Feng (*)
Embedded Control Systems Research Group,
Department of Machine Design,
KTH-Royal Institute of Technology,
Brinellv. 83,
100 44 Stockholm, Sweden
e-mail: leifeng@md.kth.se

K. Cai (*) :W. M. Wonham (*)
Systems Control Group,
Department of Electrical and Computer Engineering,
University of Toronto,
Toronto M5S 3G4 ON, Canada

K. Cai
e-mail: caikai@control.utoronto.ca

W. M. Wonham
e-mail: wonham@control.utoronto.ca

While these results can be effective in favorable circum-
stances, they all point to the conjecture that universal
algorithms of complexity polynomial in the number of
component DES of the plant model are unlikely to be found
for non-blocking supervisory control. This view is sup-
ported by results showing that the time complexity for the
non-blocking control problem is NP-complete [19, 20]. In
light of this discovery, we need to take the modest approach
of seeking tractable methods for various subclasses of DES
that enjoy special structure.

Manufacturing systems often display ‘product’ structure
consisting of a group of independent autonomous plant
components subject to multiple control specifications. For
example, the latter may embody sharing of limited
resources, or precedence constraints on operations. Product
structure has supported advances in decentralized supervi-
sory control [12, 14, 18, 21–23] and hierarchical model
abstraction [24–27]. In addition, recent investigations [15,
28, 29] have demonstrated that DES with product structure
can be efficiently represented by compact binary decision
diagrams (BDD), allowing synthesis of non-blocking
control of systems with state sizes beyond 1020.

Building on these results, we have proposed a unified
approach to the computationally efficient supervisor design
of DES with product structure [30–34]. Two types of
models play a role: graph models, which display the
interaction and control flow among plant components and
specifications, and automaton models for system dynamics.
Graph models are used to simplify the control problem
through qualitative reasoning, allowing the automaton
models to support explicit control synthesis. We reduce
the complexity of automaton computations by means of
suitable control architecture and model abstraction. Com-
pared to other methods that also do not use the BDD data
structure, our approach (when it succeeds) always achieves
optimal and non-blocking control, and generally consumes
smaller computational resources. This paper will demon-
strate the power of the approach through the detailed
control design for a production cell.

Note that the approach is especially designed for DES
with product structure, where decomposition and modular-
ity may be easily realized. If a system does not have
product structure, either it would be difficult to use the
approach, or the reduction in computational complexity
might be small. Moreover, because the non-blocking
supervisory control problem is NP-complete, our approach,
like all others, will eventually suffer the state explosion
problem when the system is very large and complex.

While the cited approaches and our own are based on
finite state automaton models, there is significant research
on control design based on Petri nets (PN) [35, 36].
Possible advantages of PN are compact state representation
by integer vectors, and graphical display of the intercon-

nection relationship among system components, supporting
qualitative reasoning based on net structure.

On the other hand, non-blocking control design based on
PN is generally as complex as the automaton-based
approaches; and worse, optimal supervisors need not
always be representable as PN [37]. A supervisor is said
to be optimal (or maximally permissive) for a given plant
with its control specification, if the controlled behavior of
the plant is larger (under set inclusion) than that of any
other solution for the same pair. Uzam and Wonham [38]
have proposed a hybrid approach to optimal and non-
blocking automaton supervisors for uncontrolled PN plant
models. The two types of models are coupled to complete
the feedback loop. Thus, in one way or another, the
approach described in the present paper is not restricted to
problems modeled only using automata.

Resource allocation graph [39, 40] is another viable
approach for the deadlock avoidance of flexible manufac-
turing systems. Compared to the former two, its limitation
is that all plant components are simplified as resources and
do not have internal behaviors. Moreover, non-blocking
property is stronger than deadlock-freeness. While resource
allocation graph is not suitable for our more general
supervisory control problem formalized in Sect. 2, they
motivate us to analyze system interconnection structure
with digraph models [31, 32].

In the sequel, Sect. 2 reviews the preliminaries of SCT.
Section 3 introduces a scheme for applying our structural
approach to the supervisory control synthesis of product
DES, and the theoretical basis of the approach. Sections 4
and 5 describe the production cell example and its DES
models. The overall system structure is presented in Sect. 6,
while Sects. 7–10 elaborate on the detailed design.
Section 11 states the conclusion.

2 Supervisory control theory

As supervisory control theory (SCT) is well established, we
refer the reader for background to standard textbooks like [41]
and [42]. This section reviews only the most basic concepts
and notation relevant to this paper. SCT is directly based on
regular languages and finite state automata. Let Σ be a finite
set of events. The empty string of length 0 is denoted ε and
the set of all finite strings over Σ including ε denoted Σ*.
For two strings s, t∈Σ*, we write s≤t if s is a prefix of t,
namely, t=su for some u∈Σ*. Given a regular language L⊆Σ*,
the languageL :¼ sjs � t for some t 2 Lf g is its prefix-closure.

A unique advantage of SCT is the separation of the
concept of plant (open-loop dynamics) from the feedback
control so that traditional control theoretic notions such as
controllability, observability, modularity, decentralized and
hierarchical control, can be exploited. In applications, the

Int J Adv Manuf Technol

plant is modeled as an automaton (G). The event set in G is
its alphabet (Σ). The desirable behavior of the controlled
system is determined by a control specification, also modeled
as an automaton (E). Both the plant G and the control
specification E may be the synchronous product (concurrent
composition) of many smaller modular components.

A group of supervisory controllers (supervisors) closes
the loop of a controlled DES and forces the plant to respect
the control specifications. The controllers act only to
disable certain events that are originally able to occur in
the plant, thus preventing them from occurring. The control
logic of a supervisory controller is derived from the event
disablement list at each state. In practice, we may assume
that some events in the alphabet can never, or need not be
disabled. Such events are called uncontrollable, while those
preventable by a supervisory controller are called control-
lable. Hence, the alphabet Σ is partitioned into two disjoint
subsets, controllable events (Σc) and uncontrollable events
(Σuc), such that Σ ¼ Σc[

�
Σuc.

To synthesize a satisfactory supervisor, SCT provides a
formal method for theoretically tackling the typical super-
visory control problem:

Given a plant G over alphabet Σ with its partition Σ ¼
Σc[

�
Σuc and control specifications modeled as E, find a

maximally permissive supervisor S such that the controlled
system S/G is non-blocking and always meets the control
specifications.

To formalize partial observation, we partition Σ as
observable event set Σo and unobservable event set Σuo,
namely, Σ ¼ Σo[

�
Σuo. We define the natural projection

P : Σ* ! Σ�
o

according to

PðsÞ ¼ s; s 2 Σo

"; s =2 Σo

(

P "ð Þ ¼ ", and P(sσ)=P(s)P(σ) for all s∈Σ* and σ∈Σ.
The effect of P on a string s∈Σ* is just to erase the events
in s that are unobservable and retain the observable ones in
the previous order.

3 Application scheme of the new approach

This section briefly outlines our approach to design, starting
from a given DES control problem with product structure.

Step 1. Obtain decentralized supervisors for individual
specifications. Because a specification often
involves only a small number of plant compo-
nents, the decentralized supervisor for the speci-
fication is synthesized based on its ‘local’ plant
[12], namely the synchronous product of just

those plant components that share joint events
with the specification. Such a supervisor may
often be found by inspection.

Step 2. Partition the plant components and decentralized
supervisors into modular subsystems according to
their interaction dependencies. Control-flow net
(CFN) [31, 33] and process communication graph
(PCG) [28] are two effective tools for capturing
the interaction dependencies and selecting sub-
systems appropriately. If each subsystem contains
only a few plant components and decentralized
supervisors, or admits simple control logic, we
can find its optimal and non-blocking control by
qualitative reasoning assisted by only modest
computation [32]. We have formalized some
effective heuristics for this step, and they will be
implemented in software in the future. Presently,
this step is performed by designer’s inspection.

For illustration, consider the system in Fig. 1,
which includes four plant components Gi i ¼ð
1; � � � ; 4Þ, and several specifications not displayed.
Suppose Step 2 organizes the system into three
subsystems Si(i=1, 2, 3), enclosed by three dashed
ovals as shown.

Step 3. Ensure the non-blocking property within each
subsystem. After Step 2, each subsystem should
contain only a small number of components, or
can be described by a simple control-flow net. We
can hence find its optimal and non-blocking
supervisor with only modest computation. At this
stage, if we already know at Step 2 that these
subsystems are mutually nonconflicting, then the
supervisor design process terminates; otherwise,
continue to Step 4.

Step 4. Design the model abstraction of each subsystem
using natural observers [43, 44]. Abstraction
introduces hierarchy into system structure, as it
reports only the events shared with other sub-
systems and conceals the rest. The fewer the
reported events, the greater state reduction will be

G1 G2 G3 G4

AS 1 AS 2 AS 3

S1 S2
S3

AH 1 AH 2

H 1 H 2

Level 1

Level 2

Level 3

Fig. 1 Control architecture

Int J Adv Manuf Technol

achieved. The abstractions of the three subsystems
in Fig. 1 are ASi(i=1, 2, 3) displayed at Level 2.

Step 5. Organize these model abstractions into groups
according to their interconnections. In simple cases,
all the model abstractions will belong to just one
group. For each group, check whether the included
model abstractions are nonconflicting and, if not,
design a coordinator to resolve the conflict. The basis
for this step (see [33, 34]), which is the main theo-
retical contribution of the proposed approach, will
only be reviewed informally in the present paper.

In Fig. 1, we organize abstractions AS1 and AS2
into group H1, and AS3 alone into group H2. The
two groups at Level 2 are marked by dashed
squares. Under this setup, we need only study the
interaction between AS1 and AS2 in H1.

Step 6. Repeat Steps 4 and 5 by regarding the model
abstractions as higher-level plant components and
the groups of model abstractions as the subsys-
tems, until there is only one group in Step 5. The
result is a hierarchy of decentralized supervisors
and coordinators. In Fig. 1, since there are two
groups of model abstractions at Level 2, we
continue by finding model abstractions for H1

and H2. This produces AH1 and AH2 at Level 3.
Evidently we can place the two abstractions into
one group and complete the control design.

It is possible to devise a similar supervisor design
method using bottom-up hierarchical model abstraction, but
then the challenge is to guarantee that the decentralized
supervisors and coordinators so obtained are indeed optimal
and non-blocking. The key to this objective is the proper
selection of observable events at Step 4. To this end, we
have found sufficient conditions [30, 33] on the observable
event set of each controlled subsystem. They are the main
contribution of our approach. To the best of our knowledge,
these conditions are arguably the first computationally
efficient ones that systematically guarantee both optimal
and non-blocking properties of supervisory control of DES.

Suppose there are n non-blocking subsystems at Step 4,
each having alphabet Σi i ¼ 1; � � � ; nð Þ. Stated simply, the
observable event set Σo � [n

i¼1Σi selected in model
abstraction must satisfy three conditions [30, 33]:

1. Shared observability: all events common to two or
more components must be observable, i.e.,

8i; j 2 1; � � � ; nf gð Þi 6¼ j) Σi \Σj � Σo

This condition ensures the compositionality of model
abstraction.

2. Natural observer property: let Li � Σ�
i be the marked

language of subsystem i ¼ 1; � � � ; nð Þ. The natural

projection Pi : Σ
�
i ! Σi \Σoð Þ� is a natural observer if

8t 2 Pi Lið Þð Þ 8s 2 Li
� �

Pi sð Þ � t)
9u 2 Σ�

i

� �
su 2 Li;Pi suð Þ ¼ t

The set Σo must be large enough so that what we expect
(t) in the abstracted model (P(Li)) is surely realizable (su)
in the original subsystem (Li). This is important for non-
blocking control.

3. Output control consistency (OCC): for every string s 2
Li of the form

s ¼ s1 � � � sk or s ¼ s0s1 � � � sk ; k � 1

where s′ terminates with an observable event in
Σo; s j 2 Σi �Σo j ¼ 1; � � � ; k � 1ð Þ and sk 2 Σo, it
must be true that

sk 2 Σuc) 8j 2 1; � � � ; kf gð Þs j 2 Σuc

According to this requirement, if an uncontrollable
event is observable, all its immediately preceding
controllable events must be observable as well. This
property enables us to make the right control decision
to prevent the uncontrollable event from occurring in
the abstracted model. The condition ensures the
maximal permissiveness of control design.

For details about the three sufficient conditions, see [30,
31, 33, 34]. The conditions will be illustrated for the
production cell example below, and can be established by
software tools [43, 45]. With these tools designers may
follow the steps in the example to solve their own
supervisory control problems. The tool we use is XPTCT
[45].

4 Production cell

This section describes a production cell [15, 46] that will be
used to exemplify the proposed approach. Overall cell
operation should be clear from Fig. 2.

The cell is made up of seven components: stock, feed
belt, elevating rotary table, robot, press, deposit belt, and
crane. Each executes its own actions asynchronously and
independently, apart from the synchronization needed for
cooperation and safety. The cell processes workpieces,
called ‘blanks’, as follows:

1. The stock inputs blanks to the system on the feed belt.
2. The feed belt forwards a blank to the elevating rotary table.
3. The table lifts and rotates the blank to the position

where arm1 of the robot picks it up.
4 Arm1 retracts/extends its length while the robot rotates to

the press, so that arm1 can transfer the blank to the press.
5. The blank is forged by the press.
6. The forged blank is picked up by arm2 of the robot.

Int J Adv Manuf Technol

7. Arm2 retracts/extends its length while the robot rotates
to the deposit belt, so that arm2 can transfer the forged
blank to the deposit belt.

8. The deposit belt forwards the blank to an end station,
where a test unit checks if the forging was successful.

9. If the blank passes the test, it will be output from the
system; otherwise, it is picked up by the crane and
moved to the feed belt for another forging.

From the above description, one can identify problems the
system may encounter, including underflow/overflow of
buffers, collision between robot arms and table/press, and
deadlock due to `choking’ of the loop by which the crane
feeds back blanks that tested faulty. In the next section, we
examine the detailed behavior of each component, and
establish the constraints needed on component activities.

Ma and Wonham have solved this problem using the
state tree structure (STS) [15], but did not elaborate on the
control logic of the solution; the logic is presented in binary
decision diagrams (BDD) which may not be transparent for
the average designer. Moreover, the component models in
[15] do not always clearly separate plant from specification,
as is normal practice in control theory. Thus in SCT, plant
components typically behave independently and concur-
rently, except when interacting and collaborating with other
components in accordance with specification. Our proposed
approach to the production cell follows this principle more
uniformly and, we think, exhibits the control logic more
transparently. While our system models for the production
cell differ somewhat from those in [15], they do, however,
lead to the same system behavior.

5 System modeling

This section describes the plant and specification models of
both individual components and the overall system.

5.1 Stock

The stock adds blanks to the cell by placing them on the
feed belt. It generates only one controllable event:
blank_add, as explained in Table 1 and shown in Fig. 31.

5.2 Crane

The crane picks up a faulty blank from the deposit belt
(event Cr_mOn) and transfers it back to the feed belt. As
the deposit belt is assumed to be lower than the feed belt,
the crane has to traverse vertically (Cr_U, Cr_66, Cr_SVf)
as well as horizontally (Cr_2FB, Cr_FB, and Cr_SHf). On
reaching the feed belt, the crane deposits the blank
(Cr_mOff), then returns to the deposit belt by the reverse
path (Cr_2DB, Cr_DB, Cr_SHf, Cr_D, Cr_95, Cr_SVf).
These crane events are listed in Table 2. We model the
crane as the two automata in Fig. 4. Automaton Cr_V
describes the vertical activity of the crane and automaton
Cr_H the horizontal activity. To represent the complete
behavior of the crane in one automaton model, we compute
the synchronous product Cr :¼ Cr VkCr H. The compu-
tation can be carried out by command sync of XPTCT [45]
software.

5.3 Feed belt

The feed belt transfers blanks to the elevating rotary table.
Once loaded with a blank, the feed belt moves (FB_F) it
toward the table. Sensor1 at the end of the belt will switch
to ‘on’ (FB_s1On) when it detects the blank’s arrival. The
blank will be placed on the table (FB_tau) if the table is
ready to accept it; otherwise the feed belt must stop (FB_Sf)
until the table becomes available. Sensor1 switches to ‘off’
(FB_s1Off) when the blank leaves. These events are listed
in Table 3 and the corresponding state transitions shown in
Fig. 5.

The feed belt must synchronize with the stock and the
crane to feed in blanks, subject to the following two
specifications:

& The feed belt can hold at most two blanks to prevent
collision. This specification is enforced by automaton
FB1 in Fig. 6.

1 In transition diagrams, by convention, we mark controllable events
with a tick on the corresponding arrows.

INPUT

OUTPUT

deposit belt

elevating
rotary table

press
robot

arm2

arm1

feed belt

sensor1

test unit

crane

stock

sensor2

Fig. 2 System structure of production cell

Table 1 Event in stock

Event Controllable Description

blank_add Y Put a blank on feed belt

Int J Adv Manuf Technol

& If there is already one blank on the feed belt, then
before it reaches the end of the belt and activates
sensor1 (FB_s1On), a new blank is prohibited from
being loaded, again to avoid collision. This is enforced
by automaton FB2 in Fig. 6.

FB1 is the model of a buffer with capacity 2, whose
content is incremented by events Cr_mOff, blank_add, and
decremented by event FB_s1Off. Likewise FB2 is the
model of a buffer with capacity 1, incremented by events
Cr_mOff, blank_add, and decremented by event FB_s1On.
In fact many control specifications amount to just the
synchronous product of buffers.

FB1 and FB2 prescribe the interaction among plant
models Cr, Stock, FB, as in the diagram2, Fig. 7. Here a
block stands for a plant component and an oval for a
control specification. An edge connects a block and an oval
if and only if the corresponding plant component and
control specification share a common event. If the spec-
ification model is a buffer and the common event increases
its content, then an arrow enters the specification, namely,
the plant component at the tail of the arrow feeds the
buffer. If the common event decreases the buffer’s con-
tent, then an arrow leaves the specification, namely, the
plant component at the head of the arrow unloads the
buffer. For illustration, Stock shares event blank_add with
FB1, FB2 and this event increases the contents of both
buffers as in Fig. 6.

5.4 Elevating rotary table

The table receives blanks from the feed belt and provides
them to arm1 of the robot. Since the feed belt is located
lower than arm1, the table, upon receiving a blank from the
feed belt, must move up (Ta_U, Ta_T, Ta_STf) and turn to
an appropriate angle (Ta_R, Ta_50, Ta_S50f) for arm1 to
pick up the blank. After this, the table moves down (Ta_D,
Ta_B, Ta_SBf) and returns to the position for receiving new
blanks from the feed belt (Ta_L, Ta_0, Ta_S0f). The event
list for the table is presented in Table 4 and the models are
in Fig. 8.

The control specification for the table serves to coordi-
nate the actions of the table, the feed belt, and arm1 of the
robot, as shown in Fig. 9. By Ta1, the feed belt cannot
transfer a blank to the table (FB_s1Off) until the table is at

the bottom position (Ta_SBf). Only after the occurrence of
FB_s1Off is the table allowed to move up (Ta_U). By Ta2,
arm1 cannot pick up the blank from the table (A1_mOn)
until the table stops at the top position (Ta_STf). Only after
the occurrence of A1_mOn can the table move down
(Ta_D). Similarly, Ta3, Ta4 serve to synchronize the
rotating actions of the table with events of the feed belt
and arm1.

Figure 10 is the interconnection diagram showing the
relationship among the table, the feed belt, and arm1 of the
robot. The interpretation of the blocks, ovals, and edges in
the diagram is the same as in Fig. 7. Since none of the four
models is a buffer, there is no arrow in this diagram.

5.5 Press

The press forges blanks; it has three main positions:
bottom, middle, and top. The press is loaded by arm1 at
the middle position, unloaded by arm2 at the bottom, and
forges the blank at the top. The press ascends from bottom
to middle (Pr_UB, Pr_MU, Pr_SMf) and, after being
loaded by arm1, continues to top (Pr_UM, Pr_T, Pr_STf),
where it forges a blank. Upon finishing, the press descends
to the bottom (Pr_D, Pr_MD, Pr_B, Pr_SBf) and prepares
to unload. Table 5 lists the events of the press and Fig. 11
shows its plant model.

2 With further assumptions on plant and specification models, the
diagram is called a control-flow net [31, 33].

blank_add

Fig. 3 Plant model of stock

Cr _mOn Cr _66 Cr _SVf

Cr _DCr _95
Cr _SVf

Cr _2FB Cr _FB Cr _SHf

Cr _2DBCr _DB
Cr _SHf

Cr_V

Cr_H

Cr _U

Cr _mOff

Cr _mOn

Cr _mOff

Fig. 4 Plant model of crane

Table 2 Events in crane

Event Controllable Description

Cr_mOn Y Pick up one blank
Cr_mOff Y Put down one blank
Cr_U Y Move up
Cr_66 N Height matches fb
Cr_D Y Move down
Cr_95 N Height matches db
Cr_SVf N Stop vertical move
Cr_2FB Y Move to fb
Cr_FB N Reach fb
Cr_2DB Y Move to db
Cr_DB N Reach db
Cr_SHf N Stop horizontal move

Int J Adv Manuf Technol

The press synchronizes with arm1 and arm2 of the robot.
Arm1 may place one blank on the press (A1_mOff) only if
the press is at the middle position (Pr_SMf). Before loading
is completed, the press may not move up (Pr_UM). This
specification is realized by automaton Pr1 in Fig. 12.
Moreover, arm2 may pick up a blank from the press
(A2_mOn) only if the press is at the bottom position, and
the press must not move up before a pickup (Pr_UB). Pr2
in Fig. 12 enforces this specification.

Note that unlike all other automata in the paper, the
marker state of Pr2 is not the initial state, because when the
robot and its arms are at their initial states, as will be shown
in Fig. 17 shortly, Pr2 must reach the marker state in
Fig. 12. If we allow the occurrence of event A2_mOn, arm2
needs a further sequence of actions to reach its marker state,
and these actions require precise collaboration with arm1,
the rotary base, the press, and the rotary table, so that they
cannot all reach the marker states simultaneously. There-
fore, if the marker state of Pr2 were set to be its initial state,
non-blocking control could not be realized.

The interconnection between the two arms and the press
is shown in Fig. 13. Automata A1, A2 in the diagram will
be displayed later in Fig. 17.

5.6 Deposit belt

The deposit belt transfers blanks (DB_F) loaded from arm2
of the robot to the other end, where Sensor2 will switch to
‘on’ (DB_s2On) if it detects the arrival of a blank, and ‘off’
(DB_s2Off) to indicate the blank is being checked by the
test unit (DB_Sf). If the blank passes the check (DB_yes),
then it will be output from the system (FB_tau); otherwise
(DB_no) it will be picked up by the crane. Table 6 lists the
events of the deposit belt and Fig. 14 presents the plant
model.

Event DB_Ff is the only controllable event of DB. Note
the difference between events DB_Ff and DB_tau, whose
counterpart is FB_tau for the feed belt. Event DB_Ff
represents a command to move the deposit belt. After the
occurrence of this event, the deposit belt keeps on moving
until event DB_Sf occurs. By contrast, event DB_tau
represents a momentary moving command, so that the
deposit belt will stop just long enough to deposit a blank at
the end.

Three specifications constrain the activity of the deposit
belt. First, the deposit belt should hold at most two blanks
at the same time in order to prevent collision. By DB1 in
Fig. 15, it is a buffer of capacity 2. Second, if there is
already one blank on the deposit belt, then a new one
cannot be loaded until the first reaches the other end of the
belt and is detected by sensor2. Its model is DB2 in Fig. 15
and is a buffer of capacity 1. Third, if a blank fails the
check, then it must be taken up by the crane rather than left
in the system. Its model is DB3 in Fig. 15 and is also a
buffer of capacity 1. The interconnection diagram for DB is
Fig. 16, where automaton A2 is the plant model of arm2, to
be introduced in the next section.

5.7 Robot

The robot consists of a rotary base and two orthogonal
arms. Each arm can extend and retract, and can load or
unload a blank by turning its magnet on or off. Arm1
transfers blanks from the table to the press and arm2 from
the press to the deposit belt. Table 7 lists the events of the
robot. The operational cycle of the rotary base is as follows.
Initially it stays at 50°, then rotates left to 35° (Ro_L,
Ro_35, Ro_S35), −90° (Ro_L, Ro_−90, Ro_S−90). The
base then switches direction and rotates right, returning to
50° (Ro_R, Ro_50, Ro_S50) in one step. Automaton Ro in
Fig. 17 models the rotary base.

Synchronizing with the rotary base at its initial length,
arm1 picks up a blank from the table (A1_mOn), then either

Cr_mOff
blank_add

Cr_mOff
blank_add

FB_s1OffFB_s1Off
FB1

Cr_mOff
blank_add

FB_s1On
FB2

Fig. 6 Specification model of feed belt

Table 3 Events in feed belt

Event Controllable Description

FB_F Y Move forward
FB_Sf N Stop
FB_tau Y Move forward one step
FB_s1On N Sensor1 is on
FB_s1Off N Sensor1 is off

FB _s1On FB _Sf

FB _tau

FB _s1Off

FB _Sf

FB _F

FB _F

FB

Fig. 5 Plant model of feed belt

Stock

Cr

FB

FB1

FB2

Fig. 7 Interconnection diagram of feed belt

Int J Adv Manuf Technol

extends directly to 65 (A1_F, A1_S65), or first retracts to 37
(A1_B, A1_37, A1_S37), to avoid collision, and then
extends to 65. After placing the blank on the press
(A1_mOff), it retracts to 52 (A1_B, A1_52, A1_S52) for
the next operational cycle. Automaton A1 in Fig. 17 models
arm1.

Initially arm2 has length 0, as shown by automaton A2
in Fig. 17. To start a cycle, it extends to 80 (A2_F, A2_80,
A2_S80) and picks up a forged blank from the press
(A2_mOn). Then it retracts to 57 (A2_B, A2_57, A2_S57)
and places the blank on the deposit belt (A2_mOff). Two
possible actions may follow. It either first retracts to 0
(A2_B, A2_0, A2_S0), to avoid collision, and then extends
to 80 or directly extends to 80. The (unrestricted) system
behavior of the robot is the synchronous product of the
rotary base, arm1 and arm2.

The rotary base and the two arms must cooperate in the
following ways.

& Arm1 may pick up a blank from the table only when the
base is at 50°, as enforced by R1 in Fig. 18.

& Arm2 may pick up a forged blank from the press only at
35°, except for the first time that the robot reaches 35°.
This is because initially there is no blank at the press.
The specification is enforced by R2 in Fig. 18.

& The robot may turn left only after either arm picks up a
blank, as enforced by R3 in Fig. 18.

& Arm1 and arm2 may place a blank on the press or the
deposit belt, respectively, only when the base is at −90°;
and only after both loading actions are completed can
the robot turn right. This is realized by R4, R5 in
Fig. 18. Similar to R2, arm2 does nothing when the
robot first reaches −90°.

Figure 19 shows the interconnection relationship among
the base and two arms.

5.8 Additional specifications for collision avoidance

This section formalizes three mutual exclusion restrictions
to avoid collision, namely, certain states of related plant
models cannot be occupied simultaneously. The first
specification is to prevent collision between arm1 and the
press, which could happen when arm1 is longer than 37, the
robot is at −90°, and the press is at the top position. A1P in
Fig. 20 enforces this specification. Since the two transitions
pointing to the right have the identical event labels, we only
show the event label once to avoid clutter. The two
transitions pointing leftwards are labeled the same way.
According to plant model A1 in Fig. 17, arm1 has length 52
at its initial and marker state. Therefore, the initial and
marker state of A1P is the state in the middle, meaning
events Ro_−90, Pr_T cannot both happen before arm1
retracts to safe length (A1_37).

The second specification is to prevent collision between
arm2 and the press, which could occur when arm2 has
length greater than 0, the robot is at 35°, and the press is not
at the bottom position. A2P in Fig. 20 enforces this
specification. Similar to A1P, transitions with the same
directions share the same labels. Referring to the plant
models of the robot in Fig. 17 and the press in Fig. 11, we
set the leftmost state to be the initial and marker state.

Ta _U Ta _STf

Ta _D
Ta _B

Ta _SBf

Ta _50 Ta _S50f

Ta _L
Ta _0

Ta _S0f

Ta_V

Ta_H

Ta _T

Ta _R

Fig. 8 Plant model of elevating rotary table

Table 4 Events in elevating rotary table

Event Controllable Description

Ta_U Y Move up
Ta_T N Reach top
Ta_STf N Stop at top
Ta_D Y Move down
Ta_B N Reach bottom
Ta_SBf N Stop at bottom
Ta_R Y Turn right
Ta_50 N Reach 50°
Ta_S50f N Stop at 50°
Ta_L Y Turn left
Ta_0 N Reach 0°
Ta_S0f N Stop at 0°

Ta_V

A1FB

Ta1

Ta3

Ta2

Ta4Ta_H

Fig. 10 Interconnection diagram of table

FB _s1Off

Ta _UTa _SBf

Ta1

Ta _STf

A1 _mOnTa _D

Ta2

FB _s1Off

Ta _RTa _S0f

Ta3

Ta _S50f

A1 _mOnTa _L

Ta4

Fig. 9 Specification model of elevating rotary table

Int J Adv Manuf Technol

The last specification is to prevent collision between
arm1 and the table, and is more complex than the previous
two situations, where collision occurs if both the robot and
the press reach dangerous positions together. A collision
between arm1 and the table, however, depends not only on
the positions of the robot and the table but also on whether
arm1 is holding a blank. If arm1 has just picked up a blank
from the table and has not yet retracted, the robot stays at
50°, and the table returns to the top position again with a
blank, then the two blanks touch each other, which is
considered a collision.

This specification should prevent the table from return-
ing to the top position, before the loaded arm1 retracts to a
safe distance or the robot turns away from the table. The
model of this specification is automaton A1T in Fig. 20.
Event Ta_T is disabled at the state at the right side; i.e.,
before the loaded arm1 rotates from 50° to 35°, the table is
not allowed to reach the top. Note that we do not allow the
table to return to the top even if arm1 retracts to the safe
length 37. This is because the loaded arm1 can first retract
to length 37 and then extend to length 65 even though the
robot stays at 50°. During this process, if we allow the table
to return to the top position after arm1 retracts to length 37,
collision will occur when the arm extends again.

6 Interconnection diagram of production cell

Finally, in Fig. 21 we draw the interconnection diagram of
the production cell. This is simply a combination of the

partial diagrams in Figs. 7, 10, 13, 16, and 19, together with
the three specification models in Fig. 20. Since the diagram
is too complex to be reduced by the graphical methods in
[31, 33], we shall find the non-blocking control for this
example using the computational methods based on model
abstractions [30]. The whole net is divided into two
subsystems by the dashed lines in Fig. 21. Subsystem 1
includes plant components DB, Cr, Stock, FB, Ta_V,
Ta_H, and specifications DB3, FB1, FB2, Ta1, Ta3;
subsystem 2 includes plant components A1, A2, Ro, Pr,
and specifications Pr1, Pr2, A1P, A2P, R1, ..., R5. The two
subsystems connect through specifications DB1, DB2,
A1T, Ta2, Ta4. In the following sections, we design
decentralized supervisors for each individual specification
and check to see if these decentralized supervisors result in
conflict. In that case, coordinators will be designed as well.

7 Decentralized supervisors

This section corresponds to Step 1 of the computational
process presented in Sect. 3. We first simplify the plant
model based on the events present in specifications and on
model abstraction principles. For example, according to
Fig. 21, Cr is related to specifications DB1, DB2 via
Cr_mOn, and to FB1, FB2 via Cr_mOff. Other events in
Table 2 are irrelevant to the control synthesis and should be
concealed for model abstraction. By algorithms in [43] and
[41], event set {Cr_mOn, Cr_mOff} defines a natural
observer with OCC property for Cr_V and Cr_H in
Fig. 4. The significance of the natural observer and OCC
were described informally at the end of Sect. 3. By
Proposition 4.5 in [33], the natural projection is also an
observer with OCC property for Cr ¼ Cr VkCr H. Its
abstraction is simply the buffer with size 1 in Fig. 22. This
computation and those that follow were performed with
XPTCT software [45]. In the future we shall use the
abstraction and call it Cr.

Table 5 Events in press

Event Controllable Description

Pr_UB Y Ascend from bottom
Pr_MU N Ascend to middle
Pr_SMf N Stop at middle
Pr_UM Y Ascend from middle
Pr_T N Reach top
Pr_STf N Stop at top
Pr_D Y Descend
Pr_MD N Descend to middle
Pr_B N Reach bottom
Pr_SBf N Stop at bottom

Pr _SMf

A1 _mOffPr _UM

Pr1

Pr _UB

Pr_ SBfA2 _mOn

Pr2

Fig. 12 Specification model of press

Pr_UB Pr_SMf

Pr_UM

Pr_DPr_MD

Pr Pr_MU

Pr_T

Pr_STf

Pr_B

Pr_SBf

Fig. 11 Plant model of press

A1

A2

Pr

Pr1

Pr2

Fig. 13 Interconnection diagram of press

Int J Adv Manuf Technol

Similarly, we simplify the plant models Ta_V, Ta_H to
those in Fig. 23, Pr to that in Fig. 24, and A1, A2 to those
in Fig. 25.

Next, we find decentralized supervisors for the individ-
ual specifications by standard SCT algorithms. In XPTCT
[45], we use command Supcon to find an optimal and non-
blocking supervisor and command Supreduce to reduce it.
The reduced supervisors [47] of most specifications are
simple and shown in Figs. 26, 27, 28, 29, 30, and 31,
except those for DB1, A1P and A2P, which are too
complicated to show here. The control logic of the three
decentralized supervisors, however, is still evident.

The supervisor DB1C for DB1 has seven states. The
result was surprising, because it seems adequate simply to
disable event DB_Ff at the initial state of DB1 in Fig. 14.
On a closer look at the system, however, the correct control
logic turns out to be more subtle. For example, when
A2_mOff occurs once and event DB_Ff occurs, we must
disable event Cr_mOn; otherwise uncontrollable event
DB_tau may occur and underflow will result because of
the uncontrollable transitions between events DB_Ff and
DB_tau.

The supervisors A1PC, A2PC for A1P, A2P have nine
and eight states, respectively. Similar to DB1C, their
complexities are also due to the uncontrollable transitions
directed to the right. For instance, at the initial state of A1P
of Fig. 20, when event Pr_UM occurs, event Ro_−90 must
be preempted by disabling event Ro_L.

8 Subsystem supervision

Step 2 is to decompose the whole system into proper
subsystems according to the interconnection relation. As
shown in Fig. 21, the production cell is divided into two
subsystems. The next step, Step 3, is to check if each of the
two subsystems is non-blocking under the decentralized
supervisors. The controlled behavior of a system is the
synchronous product of all the plant components and the
decentralized supervisors. This computation is realized by
command Sync in XPTCT. We call the model of subsystem
1 SUB1; it has 2,478 states and is non-blocking. The model
of subsystem 2 is SUB2; it has 820 states and unfortunately
is blocking.

We find a coordinator for SUB2 using the Supcon and
Supreduce commands. We use the Supcon command to
eliminate blocking states while preserving controllability.
The result of this command is SUB2Sand has 650 states.
Amazingly, the result of the Supreduce command is
automaton SUB2C with only 3 states3. Its state transition
diagram is shown in Fig. 32.

The only control action of this coordinator is to disable
event A2_F at the initial state. This corresponds to the
following two logic rules.

& While the robot first rotates away from its initial
position 50° to −90°, arm2 must stay put at its initial
state; otherwise, it may result that the robot is at −90°,
the press is at the middle position, and arm2 overhangs
the deposit belt with length 80. This gives rise to
deadlock, as arm2 cannot retract to length 0 because
event A2_mOn cannot occur in the first rotation. The
press cannot return to the bottom position because, by
models Pr in Fig. 24 and Pr1C in Fig. 28, the press
must move up to the top position before it moves down.
Moving up is, however, prohibited by A1PC (see
Fig. 20), as it would cause collision between arm1 and
the press. Finally, to avoid the collision between arm2

Table 6 Events in deposit belt

Event Controllable Description

DB_F Y Move forward
DB_Sf N Stop
DB_tau N Move forward one step
DB_s2On N Sensor2 is on
DB_s2Off N Sensor2 is off
DB_yes N Blank acceptable
DB_no N Blank not acceptable

DB_ s2On DB_ s2Off

DB_tau

DB _no

DB _Sf

DB_ Ff DB_ Sf

DB_ yes
DB

Fig. 14 Plant model of deposit belt

Cr_mOn
DB_tau

Cr_mOn
DB_tau

A2_mOff

DB1

DB_s2Off

DB2

A2_mOff

A2_mOff

DB3

DB_no

Cr_mOn

Fig. 15 Specification model of deposit belt

3 The correctness of a Supreduce result can be independently verified
in XPTCT using other commands [41]: first compute the synchronous
product of the plant and the reduced supervisor, then check if the
result is isormorphic to the Supcon result.

Int J Adv Manuf Technol

and the press, the robot cannot turn right because of
A2PC (see Fig. 20).

& The dashed transition A2_F in A2 must always be
disabled; otherwise the deadlock situation mentioned in
rule 1 will arise again. Each time the robot rotates away
from −90° to 50°, the press moves to the bottom
position. The sequence Ro_50.Pr_B is then detected
and SUB2C reaches the state at the right-hand side of
the diagram. In the subsequent rotation, the robot
rotates left to 35° and arm2 extends to pick up a blank
from the press. Then sequence Ro_L.A2_F or A2_F.
Ro_L is detected and SUB2C returns to the initial state.
The robot proceeds to rotate left to −90° via Ro_L. Then

arm2 places a blank on the deposit belt via A2_mOff
and must retract because event A2_F is disabled at the
initial state of SUB2C.

9 Abstractions of the subsystems

This section describes Step 4 to obtain useful model
abstractions of the subsystems. The two subsystems do

Cr

A2

DB

DB3

DB1

DB2

Fig. 16 Interconnection diagram of deposit belt

Table 7 Events in robot

Event Controllable Description

Ro_L Y Robot turns left
Ro_R Y Robot turns right
Ro_35 N Robot reaches 35°
Ro_S35 N Arm2 reaches press
Ro_−90 N Robot reaches –90°
Ro_S−90 N Arm1 reaches press and

arm2 reaches db
Ro_50 N Robot reaches 50°
Ro_S50 N Arm1 reaches table
A1_mOn Y Arm1 picks up a blank
A1_mOff Y Arm1 unloads a blank
A1_B Y Arm1 retracts
A1_F Y Arm1 extends
A1_37 N Arm1 reaches 37
A1_S37 N Arm1 reaches safe extension
A1_65 N Arm1 reaches 65
A1_S65 N Arm1 reaches press
A1_52 N Arm1 reaches 52
A1_S52 N Arm1 reaches table
A2_mOn Y Arm2 picks up a blank
A2_mOff Y Arm2 unloads a blank
A2_B Y Arm2 retracts
A2_F Y Arm2 extends
A2_0 N Arm2 reaches 0
A2_S0 N Arm2 reaches safe extension
A2_80 N Arm2 reaches 80
A2_S80 N Arm2 reaches press
A2_57 N Arm2 reaches 57
A2_S57 N Arm2 reaches db

Ro _L Ro _S-90

Ro _R

Ro _LRo _35

Ro

Ro _-90

Ro _50

Ro _S50

Ro _S35

A1 _F A1 _S65 A1 _mOff

A1 _mOnA1 _37

A1 _65

A1 _B

A1 _S52

A1 _S37

A1 _52

A1 _B

A1

A2 _B A2 _S0 A2 _F

A2 _BA2 _S57

A2 _0

A2 _80

A2 _mOn

A2 _mOff

A2 _S80

A2 _57

A2

A1 _F

A2 _F

Fig. 17 Plant model of robot

Ro _S50

A1 _mOn

R1
A2 _mOn

R2

Ro _S35 Ro _S35

Ro _L

A1 _mOn
A2 _mOn

R3

Ro _S-90

A1 _mOffRo _R

R4

Ro _S-90

A2 _mOffRo _R

R5

Ro _S-90

Ro _R

A1 _mOn Ro _L Ro _L

Fig. 18 Specification model of robot

Int J Adv Manuf Technol

not directly share joint events, but each does with super-
visors DB1C, DB2C, Ta2C, Ta4C, and A1TC, as shown
in Fig. 21. The joint events are listed in Table 8. The last
row in the table shows the common events of the two
subsystems; these must be made observable for further
verification.

To ensure the OCC property, we first add event Ta_R to
the observable event set of SUB1, as it is the immediately
preceding controllable event of Ta_S50f, and add event
Ro_L to the observable event set of SUB2S, as it is the
immediately preceding controllable event of Ro_35.

Next we obtain the observers for the two subsystems.
Using our algorithm in [43] or Chapter 5 of [33], we
enlarge the two observable event sets to

Σ1 ¼
blank add;Cr mOn;Cr mOff ; Ta U ; Ta STf ;
Ta D; Ta R; Ta S50f ; Ta L;DB Ff ;DB Sf ;
DB s2On;DB s2Off ;DB yes;DB no;DB tau

8<
:

9=
;

and

Σ2 ¼ A1 mOn;A2 mOff ;A2 F;Ro L;Ro 35f g
The natural projections defined on these two observable
event sets are indeed observers and OCC.

Using the two natural projections (Project command of
XPTCT), we find the model abstractions of the two
subsystems as PSUB1 of 644 states and PSUB2S of 13
states. Recall that the original state sizes of the two non-

blocking subsystems were 2478 and 650. Thus the
abstractions are quite economical.

10 Overall system coordination

At Step 5, we investigate if the synchronous product of the
two model abstractions is non-blocking. If so, a result in
[30, 33] guarantees that the whole system is non-blocking
under the decentralized supervisors achieved above. Be-
cause the model abstractions are significantly smaller in
state size than the original subsystems, we can check for
system non-blocking with much less computational effort.

We compute the synchronous product of the two model
abstractions and the five connecting supervisors: DB1C,
DB2C, Ta2C, Ta4C, and A1TC. The result is automaton
SYS with 6367 states, and is blocking.

To obtain non-blocking control, we take SYS as plant
and use the Supcon command to find an optimal and non-
blocking control for SYS. The result is a non-blocking
automaton NBSYS of 6250 states. Owing to the large
number of states, it is very time-consuming to simplify
NBSYS by the Supreduce command. Alternatively, we
shall design a coordinator to resolve blocking in SYS by
inspection of the cell’s mode of operation.

We note that the cell contains a loop with material
feedback, of faulty blanks. New blanks enter the cell via
event blank_add and completed blanks leave via event
DB_tau. The model of DB in Fig. 14 shows that the
occurrence of DB_tau or DB_no, returning a faulty blank
for reforging, is uncontrollable. To accommodate such a
blank, there must be at least one empty slot in the cell;
Otherwise, if DB_no occurs, the cell will deadlock4.

The control logic of the coordinator is therefore to
maintain at least one empty slot in the cell. To formalize it,
we calculate the maximal number of blanks that the cell
may hold. By Cr in Fig. 22, the crane can hold one blank;
by model FB1 in Fig. 6, the feed belt can store two blanks;
by Fig. 9, the rotary elevating table can store one blank; by
Fig. 25, arm1 and arm2 can each hold one blank. Although
the press can also hold one blank, it does not contribute to
the cell capacity, because if a blank is in the press, either
arm1 or arm2 must be free. By model DB1 of Fig. 15, the
deposit belt contains at most two blanks. Thus, in total, the
cell capacity is eight.

A1_65, Ro_-90, Pr_ T

A1_37, Ro_50, Pr_MD

Ta_STf

Ro_35

A2_80, Ro_35, Ro_R, Pr_MU

A2_0, Ro_-90, Ro_50, Pr_B

Ro_35
A1P A2P

A1T

Fig. 20 Specifications for collision avoidance

A1 A2

Ro

R3 R2R1

R5R4

Fig. 19 Interconnection diagram of robot

4 This is nothing but an instance of a feedback loop going unstable if
it is “driven too hard”, namely “its gain is too high”. Here “instability”
(deadlock) is the inability of the system to return to its “equilibrium”
(initial) state.

Int J Adv Manuf Technol

The control logic to prevent blocking of the decentral-
ized control is therefore to disable event blank_add when
there are seven blanks in the production cell. It is
implemented by automaton TOTAL in Fig. 33. To test its
correctness, we compute the synchronous product of SYS
and TOTAL, resulting in a non-blocking system with 6,211
states. The model TOTAL, therefore, is a non-blocking but
not optimal coordinator to SYS, as the optimal non-
blocking supervisor NBSYS has 6,250 states.

This result does suffice for non-blocking control, but we
shall look further into why it is not maximally permissive,
and look for a non-blocking coordinator that is actually
optimal. The secret lies in model DB of the deposit belt in
Fig. 14. After the occurrence of DB_yes, event DB_tau will
occur inevitably and DB_no cannot occur. Consequently, if
there are already seven blanks in the production cell and
then DB_yes occurs, we may still permit a new blank to
enter the cell via blank_add, because an empty slot will
soon be created and no more blanks may enter the cell
before that. This favorable situation is not recognized,
however, by TOTAL.

In this light, we improve coordinator TOTAL to
NTOTAL, as in Fig. 34. The synchronous product of
SYS and NTOTAL is isomorphic to the non-blocking
system NBSYS. Thus we have confirmed that NTOTAL is
an optimal and non-blocking coordinator for the decentral-
ized supervisors of the production cell.

11 Conclusions

We have obtained a maximally permissive and non-
blocking supervisor for the production cell using a
structured supervisor design approach. With the proposed
approach, the design requires smaller computational
resources and can even be realized by the pedagogical
design software XPTCT, which was thought impossible
before. The supervisory control takes the form of a group
of 21 simple decentralized supervisors with state sizes
ranging from 2 to 15, whose control actions can be
readily translated into ‘if ... then ...’ logic rules which are
readily understandable to the designer.

The main contribution of the proposed structural ap-
proach is the sufficient conditions, i.e., natural observer and
OCC, to design proper model abstractions of relatively
complex systems, so that we can flexibly integrate decen-
tralized and hierarchical control architectures. Computation-
al tools have also been provided to check these sufficient
conditions and, if necessary, arrange that they hold.

We do not claim that the proposed approach is
computationally the most efficient possible, as for instance
computational methods based on BDD and State Tree
Structures [15] are more powerful. No doubt bringing in
these methods would be advantageous. We also recognize
that the proposed approach is by no means fully automated,
and probably could not be made to be. Indeed, successful
design will usually call on expert knowledge both of DES
modeling and of the physical system to be controlled.
Nevertheless, our theory and computational tools provide
the designer with strong support: the control logic of the
decentralized supervisors is transparent, and the modular
structure admits easy implementation.

Cr

Stock

FB

FB1

FB2

Ta_V

A1

Ta1

Ta3

Ta2

Ta4Ta_H

A2

Pr

Pr1

Pr2

DB3

DB2

DB DB1

Ro

R4

R1

R3

R5

R2

A1P

A2P

A1T

Subsystem 1 Subsystem 2

Fig. 21 Interconnection dia-
gram of production cell

Cr _mOn

Cr _mOff

Cr
Fig. 22 Simplified plant model
of crane

Int J Adv Manuf Technol

Pr_ UB Pr _SMf

Pr _UM

Pr _DPr _MD

Pr Pr _MU

Pr _T
Pr _B

Pr _SBf

Fig. 24 Simplified plant model of press

A1_F A1_mOff

A1_mOnA1_37

A1_65

A1_B

A1_B

A1

A2 _ B A2 _ F

A2_B

A2 _0

A2_80

A2_mOn

A2_mOff A2

A1_F

A2_F

Fig. 25 Simplified plant models of arms

Cr_mOff
blank_add

FB_s1On

FB2C

Cr_mOff
blank_add

Cr_mOff
blank_add

FB_s1OffFB_s1Off

FB1C

FB_ F

FB
_

s1
O

n

Cr_mOff
blank_add

FB_ F,FB_ s1On
FB_tau

FB_ F,FB_ s1On
FB_tau

FB
_S

f

Cr_mOff
blank_add

FB
_

F

FB_ F
FB_Sf

Fig. 26 Supervisors of FB1, FB2

Ta_U Ta_STf

Ta_DTa_SBf

Ta_S50f

Ta_LTa_S0f

Ta_V Ta_H

Ta_RFig. 23 Simplified plant model
of table

FB_ s1Off

FB _s1OnTa _SBf

Ta1C

Ta _STf

A1 _mOn

Ta _D

Ta2C

FB_ s1Off

Ta _S0f

Ta3C

Ta _S50f

A1 _mOn

Ta _L

Ta4C

Ta _SBfFB_ F,FB_ s1On
FB_tau

FB_ F,Ta _U
Ta _D

Ta _U, Ta _D

FB_ F,FB_ s1On
FB_tau

Ta _S0f FB_ F,Ta _R
Ta _L

FB _s1On

Ta _R, Ta _L

Fig. 27 Supervisors of Ta1 to Ta4

Int J Adv Manuf Technol

Pr _SMf

A1 _mOff

Pr _UM

Pr1C

Pr _UB

Pr_ SBf

A2 _mOn

Pr2C

Fig. 28 Supervisors of Pr1, Pr2

DB _s2Off
DB2C

A2 _mOff

DB3C

DB _no

Cr _mOn

DB_ Ff DB_ Ff

Fig. 29 Supervisors of DB2, DB3

Ro _S50

A1 _mOn

R1C
A2 _mOn

R2C

Ro _S50 Ro _S35

Ro _S-90

A1 _mOff

Ro _R

R4C

Ro _S-90

A2 _mOff
R5C

Ro _S-90
Ro _R

Ro _S50

Ro _R

Ro
_S

50

Ro _L

Ro _L,Ro _S35

Ro _L

A2 _mOn

Ro _L

A1 _mOn
A2 _mOn

R3C

A1 _mOn Ro _L Ro _L

Fig. 30 Supervisors of R1, ..., R5

Ta _STf

Ro _35

Ro _35, Ta _U

A1TC

Fig. 31 Supervisor of A1T

Pr_B, Ro _50

Ro _L, A2 _F

Pr_B

Ro _L, A2 _F

Ro _L

SUB2C

Fig. 32 Coordinator of subsystem 2

blank_add

DB_tau

blank_add0 1 7
......

6

DB_tau

All States Marked

Fig. 33 Coordinator TOTAL of production cell

All States Marked

blank_add

DB _tau

blank_add0 1 7...... 6

bl
an

k_
ad

d

8

DB _yes

14 bl
an

k_
ad

d

DB _tau

DB _yes

DB _tau DB _tau DB _tau

Fig. 34 Optimal coordinator NTOTAL

Table 8 Joint events

SUB1 SUB2S

DB1C Cr_mOn, DB_Ff, DB_Sf, DB_s2Off, DB_no,
DB_tau

A2_mOff

DB2C DB_Ff, DB_s2Off A2_mOff
Ta2C Ta_D, Ta_STf A1_mOn
Ta4C Ta_L, Ta_S50f A1_mOn
A1TC Ta_U, Ta_STf Ro_35

Cr_mOn, Ta_D, Ta_STf, Ta_U, A1_mOn
Ta_L, Ta_S50f, DB_Ff, DB_Sf, A2_mOff
DB_s2Off, DB_no, DB_tau Ro_35

Int J Adv Manuf Technol

References

1. Ho YC (ed) (1992) Discrete event dynamic systems: analyzing
complexity and performance in the modern world. IEEE Press,
New York

2. Ramadge PJ, Wonham WM (1987) Supervisory control of a class
of discrete event systems. SIAM J Control Optim 25(1):635–650

3. Ramadge PJ, Wonham WM (1989) The control of discrete event
systems. Proc IEEE, Special Issue on DES 77(1):81–89

4. Brandin BA, Charbonnier FE (1994) The supervisory control of
the automated manufacturing system of the AIP. In: Proceedings
of the 4th International Conference on Computer Integrated
Manufacturing and Automation Technology, New York, NY, pp
319–324. IEEE Computer Society Press

5. Chandra V, Huang Z, Kumar R (2003) Automated control
synthesis for an assembly line using discrete-event system control
theory. IEEE T Syst Man Cy C 33(2):284–289

6. Ricker S, Sarkar N, Rudie K (1996) A discrete-event system
approach to modeling dexterous manipulation. Robotica 14
(5):515–526

7. Giua A, Seatzu C (2001) Supervisory control of railway networks
with Petri nets. In: Proceedings of the 40th IEEE Conference on
Decision and Control, Orlando, FL, December, 5004–5009

8. Jafari MA, Darabi H, Boucher TO, Amini A (2002) A distributed
discrete event dynamic model for supply chain of business
enterprises. In: Silva M, Giua A, Colom JM (eds) Proceedings
of WODES2002, Zaragoza, Spain, pp 279–285. IEEE Control
Systems Society

9. Kozak P, Wonham WM (1996) Design of transaction management
protocols. IEEE T Automat Contr 41(9):1330–1335

10. Feng L, Wonham WM, Thiagarajan PS (2007) Designing
communicating transaction processes by supervisory control
theory. Form Method Syst Des 30(2):117–141

11. Seidl M (2006) Systematic controller design to drive high-load
cell centers. IEEE T Contr Syst T 14(2):216–223

12. de Queiroz MH, Cury JER (2000) Modular supervisory control of
large scale discrete event systems. In: Boel R, Stremersch G (ed)
Discrete event systems: analysis and control. Kluwer, Dordrecht,
pp 103–110

13. Hoffman G, Wong-Toi H (1992) Symbolic synthesis of supervi-
sory controllers. In: Proceedings of ACC, Chicago, IL, pp 2789–
2793

14. Åkesson K, Flordal H, Fabian M (2002) Exploiting modularity for
synthesis and verification of supervisors. In: Proceedings of the
15th IFAC World Congress on Automatic Control, Barcelona,
Spain

15. Ma C, Wonham WM (2005) Nonblocking supervisory control of
state tree structures. In: Thoma M, Morari M (ed) LNCIS 317.
Springer, Berlin Heidelberg New York

16. Schmidt K, Marchand H, Gaudin B (2006) Modular and
decentralized supervisory control of concurrent discrete event
systems using reduced system models. In: Lafortune S, Lin F,
Tilbury D (ed) Proceedings of the 8th WODES, Ann Arbor, MI,
July, pp 149–154

17. Zhang ZH (2001) Smart TCT: an efficient algorithm for
supervisory control design. M.A.Sc thesis, Electrical and Com-
puter Engineering, University of Toronto

18. Hill R, Tilbury D (2006) Modular supervisory control of discrete-
event systems with abstraction and incremental hierarchical
construction. In: Lafortune S, Lin F, Tilbury D (ed) Proceedings
of the 8th WODES, Ann Arbor, MI, July, pp 399–406

19. Gohari P, Wonham WM (2000) On the complexity of supervisory
control design in the RW framework. IEEE T Syst Man Cy B 30
(5):643–652

20. Rohloff K, Lafortune S (2002) On the computational complexity
of the verification of modular discrete-event systems. In:
Proceedings of the 41th CDC, Las Vegas, NV, December, 16–21

21. Lee SH, Wong KC (2002) Structural decentralized control of
concurrent discrete-event systems. Eur J Control 8(5):477–491

22. Schmidt K, Reger J, Moor T (2004) Hierarchical control for
structural decentralized DES. In: Proceedings of the 7th WODES,
Rheims, France, September, pp 289–294

23. Wong KC, Wonham WM (1998) Modular control and coordina-
tion of discrete-event systems. Discrete Event Dyn Syst 8(3):247–
297

24. Leduc RJ, Brandin BA, Lawford M, Wonham WM (2005)
Hierarchical interface-based supervisory control-part I: serial case.
IEEE T Automat Contr 50(9):1322–1335

25. Leduc RJ, Lawford M, Wonham WM (2005) Hierarchical
interface-based supervisory control-part II: parallel case. IEEE T
Automat Contr 50(9):1336–1348

26. Pena P, Cury J, Lafortune S (2006) Testing modularity of local
supervisors: an approach based on abstractions. In: Lafortune S,
Lin F, Tilbury D (ed) Proceedings of the 8th WODES, Ann Arbor,
MI, July, pp 107–112

27. Wong KC, Wonham WM (1996) Hierarchical control of discrete-
event systems. Discrete Event Dyn Syst 6(3):241–273

28. Vahidi A, Fabian M, Lennartson B (2006) Efficient supervisory
synthesis of large systems. Control Eng Pract 14(10):1157–1167

29. Song R, Leduc RJ (2006) Symbolic synthesis and verification of
hierarchical interface-based supervisory control. In: Lafortune S,
Lin F, Tilbury D (ed) Proceedings of the 8th WODES, Ann Arbor,
MI, July, pp 419–426

30. Feng L, Wonham WM (2006) Computationally efficient supervi-
sor design: abstraction and modularity. In: Lafortune S, Lin F,
Tilbury D (ed) Proceedings of the 8th WODES, Ann Arbor, MI,
July, 3–8

31. Feng L, Wonham WM (2006) Computationally efficient supervi-
sor design: control flow decomposition. In: Lafortune S, Lin F,
Tilbury D (ed) Proceedings of the 8th WODES, Ann Arbor, MI,
July, 9–14

32. Feng L, Wonham WM (2007) Nonblocking coordination of
discrete-event systems by control-flow nets. In: Proceedings of
the 46th CDC, New Orleans, LA, December

33. Feng L (2007) Computationally efficient supervisory design for
discrete-event systems, PhD Thesis, Electrical and Computer
Engineering, University of Toronto, 2007, http://www.control.
utoronto.ca/~fenglei

34. Feng L, Wonham WM (2008) Supervisory control architecture for
discrete-event systems. IEEE T Automat Contr (to appear in June
2008)

35. Holloway LE, Krogh BH, Giua A (1997) A survey of Petri net
methods for controlled discrete event systems. Discrete Event Dyn
Syst 7(2):151–190

36. Iordache MV, Antsaklis PJ (2006) Supervision based on place
invariants: a survey. Discrete Event Dyn Syst 16(4):419–557

37. Giua A, DiCesare F, Silva M (1992) Generalized mutual exclusion
constraints on nets with uncontrollable transitions. In: Proceedings
of IEEE International Conference on Systems, Man and Cyber-
netics, Chicago, IL, pp 974–979

38. Uzam M, Wonham WM (2006) A hybrid approach to supervisory
control of discrete event systems coupling RW supervisors to Petri
nets. Int J Adv Manuf Technol 28(7):747–760

Int J Adv Manuf Technol

http://www.control.utoronto.ca/~fenglei
http://www.control.utoronto.ca/~fenglei

39. Fanti MP, Zhou MC (2004) Deadlock control methods in automated
manufacturing systems. IEEE T Syst Man Cy A 34(1):5–22

40. Zajac J (2004) A deadlock handling method for automated
manufacturing systems. Ann CIRP Manuf Tech 53(1):367–370

41. Wonham WM (2007) Supervisory control of discrete-event
systems. ECE Dept, University of Toronto, 2002–2007, http://
www.control.toronto.edu/DES, Updated 2007.07.01

42. Cassandras CG, Lafortune S (1999) Introduction to discrete event
systems. Kluwer, Dordrecht

43. Feng L, Wonham WM (2006) On the computation of natural
observers in discrete-event systems. In: Proceedings of the 45th
IEEE CDC, San Diego, CA, December, pp 428–433

44. Wong KC, Wonham WM (2004) On the computation of
observers in discrete-event systems. Discrete Event Dyn Syst
14(1):55–107

45. XPTCT (2007) Design software for SCT (Version 119, Windows
XP, updated 2007.07.01). ECE Dept, University of Toronto, http://
www.control.toronto.edu/DES

46. Melcher H, Winkelmann K (1998) Controller synthesis for the
‘production cell’ case study. Proceedings of the second workshop
on formal methods in software practice, Clearwater Beach, FL, pp
24–33

47. Su R, Wonham WM (2004) Supervisor reduction for discrete-
event systems. Discrete Event Dyn Syst 14(1):31–53

Int J Adv Manuf Technol

http://www.control.toronto.edu/DES
http://www.control.toronto.edu/DES
http://www.control.toronto.edu/DES
http://www.control.toronto.edu/DES

	A structural approach to the non-blocking supervisory control of discrete-event systems
	Abstract
	Introduction
	Supervisory control theory
	Application scheme of the new approach
	Production cell
	System modeling
	Stock
	Crane
	Feed belt
	Elevating rotary table
	Press
	Deposit belt
	Robot
	Additional specifications for collision avoidance

	Interconnection diagram of production cell
	Decentralized supervisors
	Subsystem supervision
	Abstractions of the subsystems
	Overall system coordination
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

