Adaptation of Reference Library and Structured Sparse Representations for Spectroscopic Imaging

Jack Xin

Department of Mathematics University of California, Irvine

Collaborators and Acknowledgements

- Ernie Esser, Mathematics, UC Irvine
- Yifei Lou, Mathematics, UC Irvine
- Penghang Yin, Mathematics, UC Irvine
- Partially supported by NSF
- Thanks to B. Finlayson-Pitts and L. Wingen (Atmospheric Chemistry, UC Irvine)
- Thanks to J. Stutz (Atmospheric Chemistry, UCLA).

Outline

- Demixing problems in spectroscopic imaging when uncertainties exist in reference spectra.
- Sparse representation with group structured (adaptive) basis, limitations of l_1 .
- Group sparsity, l_1/l_2 regularization, geometric and analytical properties.
- Optimization algorithms based on l_1/l_2 , l_1-l_2 penalties.
- Applications to differential optical absorption spectroscopy (DOAS) and hyperspectral imaging (HSI).

Introduction

• Demixing data b with given reference spectra (columns of full rank matrix A):

$$x = \operatorname{argmin}_{x \ge 0} \|Ax - b\|^2$$

a nonnegative least squares problem. Uniqueness under sparsity for the under-determined case if columns of A are incoherent enough (Candes, Tao et al 2005; Bruckstein et al 2008). Greedy and L_1 methods (Tibshinani 96, Donohu et al. 98, Tropp 04, Osher et al 08, among others).

• Due to measurement error (e.g. wave length misalignment in DOAS), columns of A contain uncertainty. Multiple reference spectra correspond to the same material, measured under different conditions. No clear which one is optimal to use for mixture data b.

Introduction

- Putting all reference spectra to form *A* leads to coherence of columns.
- Model uncertainty by enlarging dictionary: including translations and scaled versions of each standard dictionary element (Lou, Bertozzi, Soatto 2011).
- Goal: Select one vector from each group (1 intra-sparsity), minimal number of groups (inter-sparsity).
- Optimization with sparsity promoting penalties $(I_1/I_2, I_1 I_2)$, comparing with I_1 and greedy I_0 method. The ratio norm I_1/I_2 has been used in nonnegative matrix factorization (Hoyer 2002), blind deconvolution and deblurring (Fergus et al; J. Cai, Z. Shen et al; 2011-2012).

• Let $p \in (0,1]$ and two distinct dense b^1 , $b^2 \in R^n$ $(n \ge 2)$ so that $b = b^1 + b^2$ is also dense; $a = \|(b^1, b^2)\|_p$, $A = [b^1, b^2, a I_n, a I_n]$, $I_n = n \times n$ identity matrix. Consider Ax = b, $x \in R^{2+2n}$, sparse solutions and their p-norms are:

$$egin{aligned} x_s &= [1,1,0,\cdots,0]', \quad sp = 2, \quad \|x_s\|_p = 2^{1/p}, \ x'_* &= [0,1,b^1/a,0]', \quad x''_* &= [1,0,0,b^2/a]', \quad sp \geq 3, \ x_* &= [0,0,b^1/a,b^2/a]', \quad sp \geq 4. \ \|x'_*\|_p &= (1+\|b^1\|_p^p/a^p)^{1/p} \in (1,2^{1/p}), \ \|x''_*\|_p &= (1+\|b^2\|_p^p/a^p)^{1/p} \in (1,2^{1/p}), \ \|x_*''\|_p &= \|(b^1,b^2)\|_p/a = 1. \end{aligned}$$

- x_s cannot be recovered by minimizing I_p norm st. Ax = b. At least three solutions exist with less sparsity and smaller I_p norm than $||x_s||_p$.
- The I_1/I_2 ratio norm for nonnegative x:

$$||x||_1/||x||_2 = \mathbf{1} \cdot x/||x||_2 = ||\mathbf{1}||_2 \cos \angle (\mathbf{1}, x).$$

Minimization moves x towards coordinate planes, helping sparsity.

• However, minimizing l_1/l_2 does not give the sparsest solution in general.

Ratio norms are:

$$||x_{s}||_{1}/||x_{s}||_{2} = \sqrt{2},$$

$$||x'_{*}||_{1}/||x'_{*}||_{2} = ||(a, b^{1})||_{1}/||(a, b^{1})||_{2},$$

$$||x''_{*}||_{1}/||x''_{*}||_{2} = ||(a, b^{2})||_{1}/||(a, b^{2})||_{2},$$

$$||x_{*}||_{1}/||x_{*}||_{2} = ||(b^{1}, b^{2})||_{1}/||(b^{1}, b^{2})||_{2}.$$

We want $||x'_*||_1/||x'_*||_2 > \sqrt{2}$ or:

$$(2\|b^{1}\|_{1} + \|b^{2}\|_{1})/((\|b^{1}\|_{1} + \|b^{2}\|_{1})^{2} + \|b^{1}\|_{2}^{2})^{1/2} > \sqrt{2},$$

$$(2\|b^{1}\|_{1} + \|b^{2}\|_{1})^{2} > 2(\|b^{1}\|_{1}^{2} + \|b^{2}\|_{1}^{2} + 2\|b^{1}\|_{1}\|b^{2}\|_{1} + \|b^{1}\|_{2}^{2}),$$

$$2\|b^{1}\|_{1}^{2} > \|b^{2}\|_{1}^{2} + 2\|b^{1}\|_{2}^{2}.$$

• Likewise $||x_*''||_1/||x_*''||_2 > \sqrt{2}$ requires:

$$2\|b^2\|_1^2 > \|b^1\|_1^2 + 2\|b^2\|_2^2.$$

The above inequalities reduce to: $||b^i||_1 > \sqrt{2}||b^i||_2$, i = 1, 2, if the first two columns of A satisfy $||b^1||_1 = ||b^2||_1$, $b^1 \neq b^2$.

• Kashin-Garnaev-Gluskin inequality: there exist a set S of [n/2]-dimensional subspaces of \mathbb{R}^n with probability at least $1 - \exp\{-c_0 n\}$, such that for any $b^i \in S$ (i = 1, 2), $b^i \neq 0$:

$$||b^i||_1/||b^i||_2 \ge c_1\sqrt{n}/\sqrt{1+\log 2},$$

where c_0 and c_1 are positive constants independent of n. If n > 1an absolute constant, x_s has the smallest ratio norm among the 4 solutions, ruling out the counter example to l_1 minimization.

• Minimizing the ratio norm does not always give the sparsest solution. First, for any $y \in \mathbb{R}^n$

$$Ker(A) = span\{[1, 0, -b^1/a, 0]', [0, 1, -b^2/a, 0]', [0, 0, -y, y]'\}.$$

Let

$$x^* = x_s + [1, 0, -b^1/a, 0]' - [0, 1, -b^2/a, 0]' = [2, 0, (b^2 - b^1)/a, 0]'.$$

$$||x^*||_1/||x^*||_2 \le \frac{2+||b^2-b^1||_1/a}{2} < ||x_s||_1/||x_s||_2 = \sqrt{2},$$

if

$$||b^2 - b^1||_1/a < 2\sqrt{2} - 2 \approx 0.828.$$

• Not stringent, as $||b^2 - b^1||_1/a \le (||b^2||_1 + ||b^1||_1)/a = 1$.

- In summary, $x^* = [2, 0, (b^2 b^1)/a, 0]'$ is a less sparse solution than $x_s = [1, 1, 0, \cdots, 0]'$ with smaller ratio of l_1/l_2 norm (if $b^1 b^2$ is small enough). Minimization of l_1/l_2 does not yield x_s .
- On the other hand, x^* contains a large peak (height 2), and many smaller peaks $((b^1 b^2)/a)$ if $b^1 \approx b^2$, resembling a perturbation of 1-sparse solution $[2, 0, \cdots, 0]'$ when $b^1 = b^2$.
- (Continuity) The minimizer of l_1/l_2 goes from exact 1-sparse structure when $b^1=b^2$ to an approximate 1-sparse structure when $b^1\approx b^2$.
- (Discreteness) the l_0 minimizer x_s experiences a jump from [2, 0, 0, 0]' to [1, 1, 0, 0]'.

- Discrete character of l_0 makes it subtle to recover the least l_0 solution by minimizing l_1/l_2 .
- If we view b^1 and b^2 as dictionary members in a group, minimizing l_1/l_2 selects only one of them (intra sparsity).
- Similarly, if we view corresponding columns (1st and (n+1)-th, 2nd and (n+2)-th, etc) of $[\alpha I_n \ \alpha I_n]$ as vectors in a group (of 2 elements), then x^* selects one member out of each group.
- Minimizing l_1/l_2 has the tendency of removing redundencies or preferring intra-sparsity in a coherent and over-determined dictionary. L1 minimization does not do as well in terms of intra-sparsity, using all group elements except for knocking out the b^1 , b^2 group.

Exact Recovery of I_1/I_2

• For $x \ge 0 \in \mathbb{R}^n$, let $S = \{i : x_i > 0\}$, $Z = \{i : x_i = 0\}$, sparsity of x is $|S| = ||x||_0 = k > 0$. Define **uniformity** of x:

$$U(x) = \frac{\min_{i \in S} x_i}{\max_{i \in S} x_i} \le 1$$

$$U(x) = 1$$
, if $k = 1$.

• Consider the following two problems:

$$P_0: \min ||x||_0, s.t. Ax = Ax_0$$

$$P_1: \min ||x||_1/||x||_2, \ s.t. \ Ax = Ax_0$$

Exact Recovery of l_1/l_2

Theorem

Let $x_0 \ge 0 \in \mathbb{R}^n$, $||x_0||_0 = k$, the unique solution to P_0 . If

$$U(x) > \max\{\frac{\sqrt{\|x\|_0} - \sqrt{\|x\|_0 - k}}{\sqrt{\|x\|_0} + \sqrt{\|x\|_0 - k}}, 1/2\}$$

for all $x \neq x_0$ satisfying $Ax = Ax_0$, then x_0 uniquely solves P_1 . In particular, if any feasible solution x is a binary vector with entries 0 or 1, then the above inequality holds b.c. U(x) = 1. Clearly, P_0 and P_1 are equivalent if all x are binary, since $\|x\|_1/\|x\|_2 = \sqrt{\|x\|_0}$.

Exact Recovery of I_1/I_2

• If $U = U(x) \ge 1/2$,

$$\frac{2\sqrt{U}}{1+U}\sqrt{\|x\|_0} \le \frac{\|x\|_1}{\|x\|_2}$$

• The lower bound condition on U without 1/2 gives:

$$\sqrt{k} < \frac{2\sqrt{U}}{1+U}\sqrt{\|x\|_0}$$

Combining:

$$\frac{\|x_0\|_1}{\|x_0\|_2} \le \sqrt{k} < \frac{2\sqrt{U}}{1+U}\sqrt{\|x\|_0} \le \frac{\|x\|_1}{\|x\|_2}$$

Variational Models for Group Sparsity

Let the dictionary A have I_2 normalized columns, consist of M groups, each with m_j elements. Write $A = [A_1 \cdots A_M]$ and $x = [x_1 \cdots x_M]^T$, each $x_j \in \mathbb{R}^{m_j}$, $N = \sum_{j=1}^M m_j$. The general non-negative least squares problem with sparsity constraints

$$\min_{x \ge 0} F(x) := \frac{1}{2} ||Ax - b||^2 + R(x), \tag{1}$$

where

$$R(x) = \sum_{j=1}^{M} \gamma_j R_j(x_j) + \gamma_0 R_0(x).$$
 (2)

Functions R_j represent intra group sparsity penalties applied to each group of coefficients x_j , j=1,...,M, and R_0 is the inter group sparsity penalty applied to x.

Variational Models for Group Sparsity

We choose

$$R_j(x_j) = \gamma_j \frac{\|x_j\|_1}{\|x_j\|_2}, \qquad R_0(x) = \gamma_0 \frac{\|x\|_1}{\|x\|_2}$$

or

$$S_j(x_j) = \gamma_j(\|x_j\|_1 - \|x_j\|_2), \qquad S_0(x) = \gamma_0(\|x\|_1 - \|x\|_2)$$

• For analysis of convergence, $||x_j||_2$ and $||x||_2$ are smoothed near origin, e.g. replacing $||x||_2$ by $\phi(x, \epsilon) + \frac{\epsilon}{2}$,

$$\phi(x,\epsilon) = \inf_{y} \|y\|_{2} + \frac{1}{2\epsilon} \|y - x\|^{2} = \begin{cases} \frac{\|x\|_{2}^{2}}{2\epsilon} & \text{if } \|x\|_{2} \le \epsilon \\ \|x\|_{2} - \frac{\epsilon}{2} & \text{otherwise} \end{cases}$$
(3)

so called Huber function. Alternatively, the approach of adding dummy variables.

Abstract Model, Convex-Concave Splitting

Our model is in the form:

$$\min_{x \in X} F(x) := \frac{1}{2} ||Ax - b||^2 + R(x)$$

where:

- (1) X is a convex set,
- (2) $R(x) \in C^2(X, R)$ and the eigenvalues of $\nabla^2 R(x)$ are bounded on X.
- (3) F is coercive on X: for any $x^0 \in X$, $\{x \in X : F(x) \le F(x^0)\}$ is a bounded set.
- Convex-concave splitting, $F = F^C + F^E$,

$$F^{C}(x) = \frac{1}{2} \|Ax - b\|^{2} + \|x\|_{C}^{2}, \quad F^{E}(x) = R(x) - \|x\|_{C}^{2}$$

for an appropriately chosen positive definite matrix C.

Minimize Upper Bound of Difference

• Quadratic Upper Bound: Let λ_r and λ_R be lower and upper bounds resp. of eigenvalues of $\nabla^2 R(x)$ for $x \in X$.

Theorem

Let C be symmetric positive definite and let λ_c denote the smallest eigenvalue of C. If $\lambda_c \geq \lambda_R - \frac{1}{2}\lambda_r$, then for $x, y \in X$,

$$F(y) - F(x) \le (y - x)^T (\frac{1}{2}A^T A + C)(y - x) + (y - x)^T \nabla F(x).$$

Iterate

$$x^{n+1} = \arg\min_{x \in X} (x - x^n)^T (\frac{1}{2} A^T A + C_n)(x - x^n) + (x - x^n)^T \nabla F(x^n)$$

for C_n chosen to guarantee a sufficient decrease in F.

Convergence

- $F(x^n)$ is non-increasing $\implies x^n$ is bounded.
- Any limit point x^* of the sequence $\{x^n\}$ satisfies $(y-x^*)^T \nabla F(x^*) \ge 0$ for all $y \in X$, implying x^* is a stationary point of F.
- Quadratic programming by Alternative Direction Method of Multipliers (ADMM).

DOAS Data

- DOAS is an imaging technique for studying air pollution. It estimates
 the concentrations of gases in an air mixture by measuring (over a
 range of wavelengths) the reduction in the intensity of light shined
 through it.
- Based on Beer's law, given the mixture absorption data $J(\lambda)$ and reference spectra $\{y_j(\lambda)\}$, estimate fitting coefficients $\{a_j\}$ and the deformations $\{v_j(\lambda)\}$ from the model,

$$J(\lambda) = \sum_{j=1}^{M} a_j y_j (\lambda + v_j(\lambda)) + \eta(\lambda) , \qquad (4)$$

where M = total number of gases, η Gaussian noise.

DOAS Data

- Construct a dictionary by deforming each y_j with a set of possible deformations.
- Approximate deformation by linear functions $v_j(\lambda) = p_j\lambda + q_j$, enumerate all possible deformations by choosing p_j, q_j from two pre-determined sets $\{P_1, \cdots, P_K\}$, $\{Q_1, \cdots, Q_L\}$.
- Let A_j be a matrix whose columns are deformations of the jth reference $y_j(\lambda + P_k\lambda + Q_l)$ for $k = 1, \dots, K$ and $l = 1, \dots, L$. Rewrite the model as:

$$J = [A_1, \cdots, A_M] \begin{bmatrix} x_1 \\ \vdots \\ x_M \end{bmatrix} + \eta , \qquad (5)$$

where $x_i \in \mathbb{R}^{KL}$ and $J \in \mathbb{R}^W$.

Dictionary Elements on HONO, NO2, O3

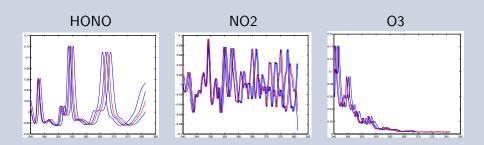


Figure: reference spectrum in red, three deformed spectra are in blue.

Test and Comparison

- Total 441 linearly deformed references in each of the three groups.
- Randomly select one element for each group with random magnitude plus additive zero mean Gaussian noise to synthesize the input data $J(\lambda) \in \mathbb{R}^W$ for W = 1024.
- random mixing magnitudes chosen at different orders with mean values of 1, 0.1, 1.5 for HONO, NO2 and O3 respectively.
- std of noise $\eta=0.05,\,\epsilon_i=0.05$ for all three groups, $\gamma_i=0.1.$

Comparison of Sparse Selection

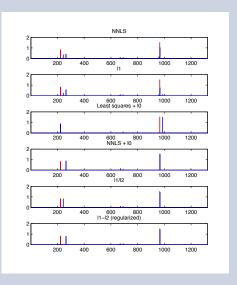
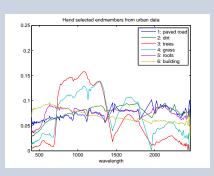
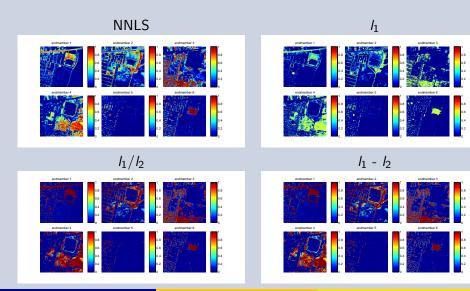


Figure: computed (blue) on top of ground truth (red).

Urban hyperspectral image and dictionary elements



Images of Rows of Abundance Matrix —Fraction Planes



Comparison of Concentration (Abundance)

- l_1 penalty promotes sparse solutions by trying to move coefficient vectors (concentration or abundance values) perpendicular to the positive face of the l_1 ball, shrinking the magnitudes of all elements.
- l_1/l_2 penalty, to some extent l_1 l_2 , promote sparsity by trying to move tangent to the l_2 ball. They are better at preserving the magnitudes of abundances while enforcing a similarly sparse solution. This is reflected in their lower sum of squares errors.
- Fraction nonzero (NNLS, L1, L1/L2, L1-L2) = (0.4752, 0.2683, 0.2645, 0.2677).
- Sum of Sq Error = (1111.2, 19107, 1395.3, 1335.6).

Conclusion and Future Work

- Studied variational method for linear demixing problems where the dictionary contains multiple references for each material and we want to collaboratively choose the best one for each material present.
- Analyzed and used l_1/l_2 and l_1-l_2 penalties to obtain structured sparse solutions to non-negative least squares problems, reformulated as constrained minimization problems with differentiable but non-convex objectives.
- ullet Exact recovery of I_1/I_2 minimization and convergence properties of algorithms.
- Study how to include relative likelihood of candidate references if certain prior information is known, explore alternative sparsity penalties that can be adapted to the data set.