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R —
Outline

@ Demixing problems in spectroscopic imaging when uncertainties
exist in reference spectra.

e Sparse representation with group structured (adaptive) basis,
limitations of /.

o Group sparsity, /1 /h regularization, geometric and analytical
properties.

o Optimization algorithms based on 4 /h, h — h penalties.

o Applications to differential optical absorption spectroscopy
(DOAS) and hyperspectral imaging (HSI).
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R —
Introduction

o Demixing data b with given reference spectra (columns of full
rank matrix A):

x = argmin, ¢ ||Ax — bl|?

a nonnegative least squares problem. Uniqueness under sparsity
for the under-determined case if columns of A are incoherent
enough (Candes, Tao et al 2005; Bruckstein et al 2008). Greedy
and L; methods (Tibshinani 96, Donohu et al. 98, Tropp 04,
Osher et al 08, among others).

o Due to measurement error (e.g. wave length misalignment in
DOAS), columns of A contain uncertainty. Multiple reference
spectra correspond to the same material, measured under
different conditions. No clear which one is optimal to use for
mixture data b.
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R —
Introduction

o Putting all reference spectra to form A leads to coherence of
columns.

o Model uncertainty by enlarging dictionary: including translations
and scaled versions of each standard dictionary element (Lou,
Bertozzi, Soatto 2011).

o Goal: Select one vector from each group (1 intra-sparsity),
minimal number of groups (inter-sparsity).

e Optimization with sparsity promoting penalties (h/h, h — k),
comparing with / and greedy ly method. The ratio norm /;/h
has been used in nonnegative matrix factorization (Hoyer 2002),
blind deconvolution and deblurring (Fergus et al; J. Cai, Z. Shen
et al; 2011-2012).
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Example of Coherent Dictionary and Sparsity

o Let p € (0,1] and two distinct dense b, b*> € R" (n > 2) so that
b = b' + b* is also dense; a = ||(b, b?)||,, A=[b',b% al,, al,],
I, = n x n identity matrix. Consider Ax = b, x € R?*2" sparse
solutions and their p-norms are:

Xs = [17 1707 e 70]/7 Sp = 27 HXSHP = 21/P’
=[0,1, bl/a, 0, x’=1[1,0,0,b%/a], sp >3,
= [0,0, b*/a, b?/a]’, sp > 4.

[ ||,, (1+ [IbH15/aP) P € (1,2Y/7),
Ix!Mlp = (1+ |6]|5/a7) /P € (1,2Y/7),
%1, = [I(b", b)llp/a = 1.
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Example of Coherent Dictionary and Sparsity

e xs; cannot be recovered by minimizing /, norm st. Ax = b. At
least three solutions exist with less sparsity and smaller /, norm
than [|xs]| .

e The h/h ratio norm for nonnegative x:
[Ixl/[Ixll2 = 1 - x/l[x[l2 = [|1]|2 cos £(1, x).
Minimization moves x towards coordinate planes, helping sparsity.

e However, minimizing /; /I, does not give the sparsest solution in
general.
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-
Example of Coherent Dictionary and Sparsity

Ratio norms are:

Ixsllz/llxsll = v2,
Ixcll/lIxcll2 = ll(a, 6912/l (3, 62,
12/ 12 = 11(a, 6%)l12/ 1l (2, 6%)l2,
Ixll/lIxell = [I(6%, 52)l11/[I1(6", 6) -
We want [[x[|1/[[x.]|2 > v/2 or:
(216 12+ [16%12)/(CB I+ 16%112)% + (161 13) /% > V2,

QlI6M L+ 1B]1)* > 2(16M1F + 167]1F + 2[16* 2[5l + [[6Y13),
201611 > 16715 + 2116 3-
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o Likewise ||x”||1/||x|l2 > V/2 requires:
216%15 > 1613 + 211673

The above inequalities reduce to: ||b'||y > v/2||bi||l2, i=1,2, if
the first two columns of A satisfy ||b||; = ||b?||1, b* # b

o Kashin-Garnaev-Gluskin inequality: there exist a set S of
[n/2]-dimensional subspaces of R" with probability at least
1 — exp{—con}, such that for any b’ € S (i = 1,2), b’ # 0:

16°]1/116']l2 > c1v/n/+/1 + log 2,

where ¢y and ¢; are positive constants independent of n. If n >
an absolute constant, xs has the smallest ratio norm among the 4
solutions, ruling out the counter example to /; minimization.
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@ Minimizing the ratio norm does not always give the sparsest
solution. First, for any y € R"”

Ker(A) = span{[1,0, —b'/a,0]’,[0,1, —b*/a,0]',[0,0, —y, y]'}.

Let
x* = x+[1,0,—b'/a,0]'—[0,1, —b?/a,0] = [2,0, (b>—b')/a, 0]

2+ ||b> — b1 /a

> < lxsl/lIxll2 = V2,

X/l 2 <

6% — bt||1/a < 2v/2 — 2 ~ 0.828.

o Not stringent, as ||b> — b'{|1/a < (||b?||1 + ||b*]]1)/a = 1.

Adaptive Data Analysis & Sparsity (IPAM) Jan 31, 2013 10 / 29



-
Example of Coherent Dictionary and Sparsity

o In summary, x* = [2,0, (b®> — b')/a,0] is a less sparse solution
than x; = [1,1,0,- - - ,0]" with smaller ratio of /;/h norm (if
b! — b? is small enough). Minimization of /;// does not yield x;.

e On the other hand, x* contains a large peak (height 2), and
many smaller peaks ((b* — b?)/a) if b' ~ b?, resembling a
perturbation of 1-sparse solution [2,0, - ,0]' when b' = b?.

o (Continuity) The minimizer of )/ goes from exact 1-sparse
structure when b' = b? to an approximate 1-sparse structure
when bt ~ b2

o (Discreteness) the Iy minimizer x, experiences a jump from
[2,0,0,0]" to [1,1,0,0]".
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-
Example of Coherent Dictionary and Sparsity

o Discrete character of [y makes it subtle to recover the least [y
solution by minimizing /.

o If we view b' and b? as dictionary members in a group,
minimizing /l selects only one of them (intra sparsity).

o Similarly, if we view corresponding columns (1st and (n + 1)-th,
2nd and (n + 2)-th, etc) of [al, «l,] as vectors in a group (of 2
elements), then x* selects one member out of each group.

o Minimizing I, /l, has the tendency of removing redundencies or
preferring intra-sparsity in a coherent and over-determined
dictionary. L1 minimization does not do as well in terms of
intra-sparsity, using all group elements except for knocking out
the b*, b group.
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|
Exact Recovery of I /h

o Forx>0€eR" let S={i:x; >0},Z={i:x =0}, sparsity
of x is |S| = ||x][o = k > 0.
Define uniformity of x:

Mminjes X;

U(x) = <1

max;cs X;
Ux)=1,if k=1
o Consider the following two problems:
Po:  min|x|lo, s.t. Ax = Axg

Py min||x][1/[|x]l2, s-.t. Ax = Axg
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Exact Recovery of /b

Let X0 Z 0e Rn,

/DT = VI =
U(x
0> maxt et v/IXlo =K

for all x # xq satisfying Ax = Axg, then xo uniquely solves P .
In particular, if any feasible solution x is a binary vector with entries 0
or 1, then the above inequality holds b.c. U(x) = 1. Clearly, Py and

Py are equivalent if all x are binary, since ||x||1/||x|l2 = \/||x|lo-

1/2}
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|
Exact Recovery of I /h
o If U= U(x)>1/2,

VU [ x]]1
—V/Ix]lo <
1+ U [[x]|2

o The lower bound condition on U without 1/2 gives:

2V U
Vk < H—Uv [1x1lo

o Combining:

[0l <Vk<: 2VU 1l

Ix1lo <
[Poll = +U 112
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Variational Models for Group Sparsity

Let the dictionary A have b normalized columns, consist of M groups,
each with m; elements. Write A= [A;---Ay] and x = [x1 - - - xn] ", each

eR™, N = Zjl\i1 m;. The general non-negative least squares problem
with sparsity constraints

: 1 >
min F(x) i= 5}Ax = bl + R(x) &)

where

Z% (%) + Y0 Ro(x). (2)

Functions R; represent intra group sparsity penalties applied to each group
of coefficients x;, j = 1,..., M, and Ry is the inter group sparsity penalty
applied to x.
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Models and Algorithms

Variational Models for Group Sparsity

@ We choose

lIxil1 lIx|11
Ri(x Ro(x
09 = Rl =R

or
Silx) = (Xl = lixill2), So(x) = 20(lix[lr = Ix[l2)

e For analysis of convergence, ||x;||2 and ||x||2 are smoothed near origin
e.g. replacing |[x||2 by ¢(x,€) + 5,

; 1 111 if x|l <e€
b(x,e) = inflyllo+ ol —x2 =4 2 1 k=€
y 2e Ix|l2 — 5 otherwise

so called Huber function. Alternatively, the approach of adding
dummy variables.
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Models and Algorithms

Abstract Model, Convex-Concave Splitting

@ Our model is in the form:

1
in F(x) := =||Ax — b||> + R
iy (x) 2H x — b||I* + R(x)

where:
(1) X is a convex set,

(2) R(x) € C?(X, R) and the eigenvalues of V2R(x) are bounded on
X.

(3) F is coercive on X: for any x® € X, {x € X : F(x) < F(x%)} is a
bounded set.

o Convex-concave splitting, F = FC€ + FE,
1
FC(x) = 5 l1Ax = bl + [IxII2, FE(x) = R(x) — lIxlIZ

for an appropriately chosen positive definite matrix C.
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Models and Algorithms

Minimize Upper Bound of Difference

o Quadratic Upper Bound:
Let A, and A\r be lower and upper bounds resp. of eigenvalues of

V2R(x) for x € X.

Let C be symmetric positive definite and let A\, denote the smallest
eigenvalue of C. If A\¢c > Agp — %/\r, then for x,y € X,

F() — FO) < (r =0T GATA+ )y = x) + (v — ) TVF(0).

o [terate

= arg mi)rg(x — X”)T(%ATA + Co)(x — x") 4 (x = x") TV F(x™)
X€

Xn+1
for C, chosen to guarantee a sufficient decrease in F.
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Convergence

(]

F(x") is non-increasing => x" is bounded.

[x"1 — x| — 0.

Any limit point x* of the sequence {x"} satisfies
(y — x*)TVF(x*) > 0 for all y € X, implying x* is a stationary point
of F.

@ Quadratic programming by Alternative Direction Method of
Multipliers (ADMM).
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DOAS Data

@ DOAS is an imaging technique for studying air pollution. It estimates
the concentrations of gases in an air mixture by measuring (over a
range of wavelengths) the reduction in the intensity of light shined
through it.

o Based on Beer's law, given the mixture absorption data J(\) and
reference spectra {y;(\)}, estimate fitting coefficients {a;} and the
deformations {v;(\)} from the model,

M

JO) =D ayi(A+ (V) +0()) (4)

J=1

where M = total number of gases, 1 Gaussian noise.
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DOAS Data

@ Construct a dictionary by deforming each y; with a set of possible

deformations.

o Approximate deformation by linear functions v;(\) = p;A + gj,
enumerate all possible deformations by choosing p;, g; from two
pre-determined sets {P1, -+, Pk}, {Q1, -+, QL}.

@ Let A; be a matrix whose columns are deformations of the jth
reference yj(A + PkA + Q) for k=1,--- ,Kand I =1,--- L.
Rewrite the model as:

X1
J:[Alﬂ"'7AM] +7n,

XM

where x; € Rl and J € RW.
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Dictionary Elements on HONO, NO2, O3

03

Figure: reference spectrum in red, three deformed spectra are in blue.
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Test and Comparison

o Total 441 linearly deformed references in each of the three groups.

@ Randomly select one element for each group with random magnitude
plus additive zero mean Gaussian noise to synthesize the input data
J(\) € RW for W = 1024.

@ random mixing magnitudes chosen at different orders with mean
values of 1, 0.1, 1.5 for HONO, NO2 and O3 respectively.

@ std of noise 7 = 0.05, ¢; = 0.05 for all three groups, v; = 0.1.
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Numerical Results

Comparison of Sparse Selection

NNLS
1l ’
200 400 600 800 1000 1200
il
L1 i
200 400 600 800 1000 1200
Least squares + 10
200 400 600 800 1000 1200
NNLS + 10
200 400 600 800 1000 1200
112
200 400 600 800 1000 1200
11-12 (regularized)
200 400 600 800 1000 1200

Fiiure: comruted (blue) on top of ground truth (red).
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Urban hyperspectral image and dictionary elements

Hand selected endmembers from urban data

—— 1: paved road

500 1000 1500 2000
wavelength
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Numerical Results

Images of Rows of Abundance Matrix —Fraction Planes

h/hk
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Comparison of Concentration (Abundance)

@ /1 penalty promotes sparse solutions by trying to move coefficient
vectors (concentration or abundance values) perpendicular to the
positive face of the /; ball, shrinking the magnitudes of all elements.

e 1/h penalty, to some extent /; - k, promote sparsity by trying to
move tangent to the h ball. They are better at preserving the
magnitudes of abundances while enforcing a similarly sparse solution.
This is reflected in their lower sum of squares errors.

@ Fraction nonzero (NNLS, L1, L1/L2, L1-L2) = (0.4752, 0.2683,
0.2645, 0.2677).

@ Sum of Sq Error = (1111.2, 19107, 1395.3, 1335.6).
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Conclusion and Future Work

o Studied variational method for linear demixing problems where the
dictionary contains multiple references for each material and we want
to collaboratively choose the best one for each material present.

@ Analyzed and used /1/h and l; —  penalties to obtain structured
sparse solutions to non-negative least squares problems, reformulated
as constrained minimization problems with differentiable but
non-convex objectives.

o Exact recovery of /;/lh minimization and convergence properties of
algorithms.

@ Study how to include relative likelihood of candidate references if
certain prioir information is known, explore alternative sparsity
penalties that can be adapted to the data set.
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