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Outline

Demixing problems in spectroscopic imaging when uncertainties
exist in reference spectra.

Sparse representation with group structured (adaptive) basis,
limitations of l1.

Group sparsity, l1/l2 regularization, geometric and analytical
properties.

Optimization algorithms based on l1/l2, l1 − l2 penalties.

Applications to differential optical absorption spectroscopy
(DOAS) and hyperspectral imaging (HSI).
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Introduction

Demixing data b with given reference spectra (columns of full
rank matrix A):

x = argminx≥0 ‖Ax − b‖2

a nonnegative least squares problem. Uniqueness under sparsity
for the under-determined case if columns of A are incoherent
enough (Candes, Tao et al 2005; Bruckstein et al 2008). Greedy
and L1 methods (Tibshinani 96, Donohu et al. 98, Tropp 04,
Osher et al 08, among others).

Due to measurement error (e.g. wave length misalignment in
DOAS), columns of A contain uncertainty. Multiple reference
spectra correspond to the same material, measured under
different conditions. No clear which one is optimal to use for
mixture data b.
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Introduction

Putting all reference spectra to form A leads to coherence of
columns.

Model uncertainty by enlarging dictionary: including translations
and scaled versions of each standard dictionary element (Lou,
Bertozzi, Soatto 2011).

Goal: Select one vector from each group (1 intra-sparsity),
minimal number of groups (inter-sparsity).

Optimization with sparsity promoting penalties (l1/l2, l1 − l2),
comparing with l1 and greedy l0 method. The ratio norm l1/l2
has been used in nonnegative matrix factorization (Hoyer 2002),
blind deconvolution and deblurring (Fergus et al; J. Cai, Z. Shen
et al; 2011-2012).
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Example of Coherent Dictionary and Sparsity

Let p ∈ (0, 1] and two distinct dense b1, b2 ∈ Rn (n ≥ 2) so that
b = b1 + b2 is also dense; a = ‖(b1, b2)‖p, A = [b1, b2, a In, a In],
In = n × n identity matrix. Consider A x = b, x ∈ R2+2n, sparse
solutions and their p-norms are:

xs = [1, 1, 0, · · · , 0]′, sp = 2, ‖xs‖p = 21/p,

x ′∗ = [0, 1, b1/a, 0]′, x ′′∗ = [1, 0, 0, b2/a]′, sp ≥ 3,

x∗ = [0, 0, b1/a, b2/a]′, sp ≥ 4.

‖x ′∗‖p = (1 + ‖b1‖pp/ap)1/p ∈ (1, 21/p),

‖x ′′∗ ‖p = (1 + ‖b2‖pp/ap)1/p ∈ (1, 21/p),

‖x∗‖p = ‖(b1, b2)‖p/a = 1.
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Example of Coherent Dictionary and Sparsity

xs cannot be recovered by minimizing lp norm st. A x = b. At
least three solutions exist with less sparsity and smaller lp norm
than ‖xs‖p.

The l1/l2 ratio norm for nonnegative x :

‖x‖1/‖x‖2 = 1 · x/‖x‖2 = ‖1‖2 cos∠(1, x).

Minimization moves x towards coordinate planes, helping sparsity.

However, minimizing l1/l2 does not give the sparsest solution in
general.
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Example of Coherent Dictionary and Sparsity

Ratio norms are:
‖xs‖1/‖xs‖2 =

√
2,

‖x ′∗‖1/‖x ′∗‖2 = ‖(a, b1)‖1/‖(a, b1)‖2,

‖x ′′∗ ‖1/‖x
′′
∗ ‖2 = ‖(a, b2)‖1/‖(a, b2)‖2,

‖x∗‖1/‖x∗‖2 = ‖(b1, b2)‖1/‖(b1, b2)‖2.

We want ‖x ′∗‖1/‖x ′∗‖2 >
√

2 or:

(2‖b1‖1 + ‖b2‖1)/((‖b1‖1 + ‖b2‖1)2 + ‖b1‖22)1/2 >
√

2,

(2‖b1‖1 + ‖b2‖1)2 > 2(‖b1‖21 + ‖b2‖21 + 2‖b1‖1‖b2‖1 + ‖b1‖22),

2‖b1‖21 > ‖b2‖21 + 2‖b1‖22.
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Likewise ‖x ′′∗ ‖1/‖x ′′∗ ‖2 >
√

2 requires:

2‖b2‖21 > ‖b1‖21 + 2‖b2‖22.

The above inequalities reduce to: ‖bi‖1 >
√

2‖bi‖2, i = 1, 2, if
the first two columns of A satisfy ‖b1‖1 = ‖b2‖1, b1 6= b2.

Kashin-Garnaev-Gluskin inequality: there exist a set S of
[n/2]-dimensional subspaces of Rn with probability at least
1− exp{−c0n}, such that for any bi ∈ S (i = 1, 2), bi 6= 0:

‖bi‖1/‖bi‖2 ≥ c1
√
n/
√

1 + log 2,

where c0 and c1 are positive constants independent of n. If n >
an absolute constant, xs has the smallest ratio norm among the 4
solutions, ruling out the counter example to l1 minimization.
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Minimizing the ratio norm does not always give the sparsest
solution. First, for any y ∈ Rn

Ker(A) = span{[1, 0,−b1/a, 0]′, [0, 1,−b2/a, 0]′, [0, 0,−y , y ]′}.

Let
x∗ = xs+[1, 0,−b1/a, 0]′−[0, 1,−b2/a, 0]′ = [2, 0, (b2−b1)/a, 0]′.

‖x∗‖1/‖x∗‖2 ≤
2 + ‖b2 − b1‖1/a

2
< ‖xs‖1/‖xs‖2 =

√
2,

if
‖b2 − b1‖1/a < 2

√
2− 2 ≈ 0.828.

Not stringent, as ‖b2 − b1‖1/a ≤ (‖b2‖1 + ‖b1‖1)/a = 1.
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Example of Coherent Dictionary and Sparsity

In summary, x∗ = [2, 0, (b2 − b1)/a, 0]′ is a less sparse solution
than xs = [1, 1, 0, · · · , 0]′ with smaller ratio of l1/l2 norm (if
b1 − b2 is small enough). Minimization of l1/l2 does not yield xs .

On the other hand, x∗ contains a large peak (height 2), and
many smaller peaks ((b1 − b2)/a) if b1 ≈ b2, resembling a
perturbation of 1-sparse solution [2, 0, · · · , 0]′ when b1 = b2.

(Continuity) The minimizer of l1/l2 goes from exact 1-sparse
structure when b1 = b2 to an approximate 1-sparse structure
when b1 ≈ b2.

(Discreteness) the l0 minimizer xs experiences a jump from
[2, 0, 0, 0]′ to [1, 1, 0, 0]′.
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Example of Coherent Dictionary and Sparsity

Discrete character of l0 makes it subtle to recover the least l0
solution by minimizing l1/l2.

If we view b1 and b2 as dictionary members in a group,
minimizing l1/l2 selects only one of them (intra sparsity).

Similarly, if we view corresponding columns (1st and (n + 1)-th,
2nd and (n + 2)-th, etc) of [αIn αIn] as vectors in a group (of 2
elements), then x∗ selects one member out of each group.

Minimizing l1/l2 has the tendency of removing redundencies or
preferring intra-sparsity in a coherent and over-determined
dictionary. L1 minimization does not do as well in terms of
intra-sparsity, using all group elements except for knocking out
the b1, b2 group.
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Exact Recovery of l1/l2

For x ≥ 0 ∈ Rn, let S = {i : xi > 0},Z = {i : xi = 0}, sparsity
of x is |S | = ‖x‖0 = k > 0.
Define uniformity of x:

U(x) =
mini∈S xi
maxi∈S xi

≤ 1

U(x) = 1, if k = 1.

Consider the following two problems:

P0 : min ‖x‖0, s.t.Ax = Ax0

P1 : min ‖x‖1/‖x‖2, s.t.Ax = Ax0
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Exact Recovery of l1/l2

Theorem

Let x0 ≥ 0 ∈ Rn, ‖x0‖0 = k, the unique solution to P0. If

U(x) > max{
√
‖x‖0 −

√
‖x‖0 − k√

‖x‖0 +
√
‖x‖0 − k

, 1/2}

for all x 6= x0 satisfying Ax = Ax0, then x0 uniquely solves P1.
In particular, if any feasible solution x is a binary vector with entries 0
or 1, then the above inequality holds b.c. U(x) = 1. Clearly, P0 and

P1 are equivalent if all x are binary, since ‖x‖1/‖x‖2 =
√
‖x‖0.
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Exact Recovery of l1/l2

If U = U(x) ≥ 1/2,

2
√
U

1 + U

√
‖x‖0 ≤

‖x‖1
‖x‖2

The lower bound condition on U without 1/2 gives:

√
k <

2
√
U

1 + U

√
‖x‖0

Combining:

‖x0‖1
‖x0‖2

≤
√
k <

2
√
U

1 + U

√
‖x‖0 ≤

‖x‖1
‖x‖2

Adaptive Data Analysis & Sparsity (IPAM) Jan 31, 2013 15 / 29



Models and Algorithms

Variational Models for Group Sparsity

Let the dictionary A have l2 normalized columns, consist of M groups,
each with mj elements. Write A = [A1 · · ·AM ] and x = [x1 · · · xM ]T , each

xj ∈ Rmj , N =
∑M

j=1 mj . The general non-negative least squares problem
with sparsity constraints

min
x≥0

F (x) :=
1

2
‖Ax − b‖2 + R(x), (1)

where

R(x) =
M∑
j=1

γjRj(xj) + γ0R0(x). (2)

Functions Rj represent intra group sparsity penalties applied to each group
of coefficients xj , j = 1, ...,M, and R0 is the inter group sparsity penalty
applied to x .
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Models and Algorithms

Variational Models for Group Sparsity

We choose

Rj(xj) = γj
‖xj‖1
‖xj‖2

, R0(x) = γ0
‖x‖1
‖x‖2

or

Sj(xj) = γj(‖xj‖1 − ‖xj‖2), S0(x) = γ0(‖x‖1 − ‖x‖2)

For analysis of convergence, ‖xj‖2 and ‖x‖2 are smoothed near origin,
e.g. replacing ‖x‖2 by φ(x , ε) + ε

2 ,

φ(x , ε) = inf
y
‖y‖2 +

1

2ε
‖y − x‖2 =

{
‖x‖22
2ε if ‖x‖2 ≤ ε
‖x‖2 − ε

2 otherwise
(3)

so called Huber function. Alternatively, the approach of adding
dummy variables.
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Models and Algorithms

Abstract Model, Convex-Concave Splitting

Our model is in the form:

min
x∈X

F (x) :=
1

2
‖Ax − b‖2 + R(x)

where:
(1) X is a convex set,
(2) R(x) ∈ C 2(X ,R) and the eigenvalues of ∇2R(x) are bounded on
X .
(3) F is coercive on X : for any x0 ∈ X , {x ∈ X : F (x) ≤ F (x0)} is a
bounded set.

Convex-concave splitting, F = FC + FE ,

FC (x) =
1

2
‖Ax − b‖2 + ‖x‖2C , FE (x) = R(x)− ‖x‖2C

for an appropriately chosen positive definite matrix C .
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Models and Algorithms

Minimize Upper Bound of Difference

Quadratic Upper Bound:
Let λr and λR be lower and upper bounds resp. of eigenvalues of
∇2R(x) for x ∈ X .

Theorem

Let C be symmetric positive definite and let λc denote the smallest
eigenvalue of C . If λc ≥ λR − 1

2λr , then for x , y ∈ X ,

F (y)− F (x) ≤ (y − x)T (
1

2
ATA + C )(y − x) + (y − x)T∇F (x).

Iterate

xn+1 = arg min
x∈X

(x − xn)T (
1

2
ATA + Cn)(x − xn) + (x − xn)T∇F (xn)

for Cn chosen to guarantee a sufficient decrease in F .
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Models and Algorithms

Convergence

F (xn) is non-increasing =⇒ xn is bounded.

‖xn+1 − xn‖ −→ 0.

Any limit point x∗ of the sequence {xn} satisfies
(y − x∗)T∇F (x∗) ≥ 0 for all y ∈ X , implying x∗ is a stationary point
of F .

Quadratic programming by Alternative Direction Method of
Multipliers (ADMM).
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Numerical Results

DOAS Data

DOAS is an imaging technique for studying air pollution. It estimates
the concentrations of gases in an air mixture by measuring (over a
range of wavelengths) the reduction in the intensity of light shined
through it.

Based on Beer’s law, given the mixture absorption data J(λ) and
reference spectra {yj(λ)}, estimate fitting coefficients {aj} and the
deformations {vj(λ)} from the model,

J(λ) =
M∑
j=1

ajyj
(
λ+ vj(λ)

)
+ η(λ) , (4)

where M = total number of gases, η Gaussian noise.

Adaptive Data Analysis & Sparsity (IPAM) Jan 31, 2013 21 / 29



Numerical Results

DOAS Data

Construct a dictionary by deforming each yj with a set of possible
deformations.

Approximate deformation by linear functions vj(λ) = pjλ+ qj ,
enumerate all possible deformations by choosing pj , qj from two
pre-determined sets {P1, · · · ,PK}, {Q1, · · · ,QL}.

Let Aj be a matrix whose columns are deformations of the jth
reference yj(λ+ Pkλ+ Ql) for k = 1, · · · ,K and l = 1, · · · , L.
Rewrite the model as:

J = [A1, · · · ,AM ]

 x1
...

xM

+ η , (5)

where xj ∈ RKL and J ∈ RW .
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Numerical Results

Dictionary Elements on HONO, NO2, O3

HONO NO2 O3
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Figure: reference spectrum in red, three deformed spectra are in blue.
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Numerical Results

Test and Comparison

Total 441 linearly deformed references in each of the three groups.

Randomly select one element for each group with random magnitude
plus additive zero mean Gaussian noise to synthesize the input data
J(λ) ∈ RW for W = 1024.

random mixing magnitudes chosen at different orders with mean
values of 1, 0.1, 1.5 for HONO, NO2 and O3 respectively.

std of noise η = 0.05, εj = 0.05 for all three groups, γj = 0.1.
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Numerical Results

Comparison of Sparse Selection
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Figure: computed (blue) on top of ground truth (red).
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Numerical Results

Urban hyperspectral image and dictionary elements
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Numerical Results

Images of Rows of Abundance Matrix —Fraction Planes
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Numerical Results

Comparison of Concentration (Abundance)

l1 penalty promotes sparse solutions by trying to move coefficient
vectors (concentration or abundance values) perpendicular to the
positive face of the l1 ball, shrinking the magnitudes of all elements.

l1/l2 penalty, to some extent l1 - l2, promote sparsity by trying to
move tangent to the l2 ball. They are better at preserving the
magnitudes of abundances while enforcing a similarly sparse solution.
This is reflected in their lower sum of squares errors.

Fraction nonzero (NNLS, L1, L1/L2, L1-L2) = (0.4752, 0.2683,
0.2645, 0.2677).

Sum of Sq Error = (1111.2, 19107, 1395.3, 1335.6).
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Conclusion

Conclusion and Future Work

Studied variational method for linear demixing problems where the
dictionary contains multiple references for each material and we want
to collaboratively choose the best one for each material present.

Analyzed and used l1/l2 and l1 − l2 penalties to obtain structured
sparse solutions to non-negative least squares problems, reformulated
as constrained minimization problems with differentiable but
non-convex objectives.

Exact recovery of l1/l2 minimization and convergence properties of
algorithms.

Study how to include relative likelihood of candidate references if
certain prioir information is known, explore alternative sparsity
penalties that can be adapted to the data set.
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