Principles of Programming

Section 7: Miscellaneous Operations

EM Personal Study Program

® 1961 hv International Buciness Machines Cornoration

T RIp——r

‘Section 7: Miscellaneous Operations

7.1 Editing and Format Design

Many business applications of computers require that reports be
printed. These include such things as checks and earnings statements,
sales summaries, bills to customers, deduction registers, inventory sum-
maries, etc. In the printing of most such reports, it is necessary to spend
a fair amount of effort in planning for ease of readability. This area
includes a number of activities such as: planning the proper spacing
of the information on the report; numbering of pages; printing of
headings; proper placement of total lines; insertion of dollar signs,
commas and decimal points; suppression of unwanted zeros in the high-
order positions of numbers. This planning of the format and appear-
ance of reports can take a considerable amount of time, and it can also
easily happen that a sizable fraction of an entire program is taken up
with editing results for printing.

In this subsection we shall consider the horizontal placement of in-
formation within a line. In the next subsection, on carriage control, we
shall discuss the vertical positioning of the lines on a page.

The fundamental consideration in planning the spacing of informa-
tion on a line is that sufficient space must be allotted to contain the
largest quantity that can ever be printed, along with at least a few addi-
tional spaces to make the reading easier. Some printing fields are of
constant length; a Social Security number, for instance, always has
nine digits and is almost always printed with two hyphens. Many other
fields are of variable length, such as a man’s name or almost any dollar
amount. The first step in planning, therefore, is to determine the maxi-
mum size of each field to be printed.

Next we decide the sequence of information across the line. Some-
times this is specified in advance; other times it is left to the program-
mer to decide. Usually a fairly logical scheme will suggest itself. For
instance, if a sales summary is to be printed, it would be uncommon to
begin the line with anything but the product number. Sometimes the
arrangement of information on a line—and perhaps even the spacing—
is predetermined by the use to which the report will be put. For in-
stance, W-2 forms for withholding summaries are usually available in
preprinted form; the program designer must put the information in
the spaces allowed. This touches on the whole broad area of forms
design, which is somewhat outside the scope of this book.

1

f———

Next, we consider any editing that is to be done on each field as it is
printed. Most dollar amounts are printed with a decimal point, com-
mas and a dollar sign, for instance, Naturally, these punctuation marks
must be included in planning the amount of space required for each
field. Very commonly leading zeros at the beginning of the number are
deleted in printing.

The computer techniques by which the fields are printed with punc- - .

tuation marks and by which zeros are suppressed depend naturally on
the instructions available in the particular computer. As we have seen,
there are several specialized instructions available in the 1401 that
greatly simplify editing. The Maye_Characters and Suppress Zeros
instruction makes a simple matter of deleting the leading 7eros, 1T that
is all that is required. The Move Characters and kdit instruction, as
we have seen, greatly simplifies the insertion of punctuation symbols
and, in fact, is able to do a good deal more. It may be worth while to
review the basic functions of this instruction before pointing out one
or two additional features of it.

The Move Characters and Edit instruction requires that an edit con-

trol word be placed in the output storage area before the data is edited.
This edit word will contain any punctuation marks that are to be in-
serted in the field. When the instruction is executed, characters from
the A-field are moved to the B-field, working from right to left, except
that characters in the B-field other than zero and blank are not dis-
turbed. This means ordinarily that dollar signs, commas and decimal
points are left unchanged in the B-field. However, almost any other
character may be put into the edit word and will also be left unchanged.
An exception is the ampersand, which, if present in the edit word, will
be replaced by a blank and the blank not disturbed by the movement of
characters from the A-field. This makes it possible to insert blank
spaces in the edited field—for example, between a dollar amount and
the letters CR (for “credit™).

If suppression of leading zeros is desired, a zero should be inserted
in the control word. After the A-field has been transferred to the B-field,
leading zeros will be deleted down to and including the original posi-
tion of the zero. The point of this qualification on the position of the
zero is that there is usually a limit to the amount of zero suppression
desired. For instance, if we have set up the program to print amounts
in dollars and cents, we ordinarily want amounts under one dollar to
be printed in the forgn XX. The limit is indicated to the machine by
the position of the rightmost zero in the control word. The zero sup-
pression part of the editing operation also replaces with blanks any
commas to the left of the first significant digit in the field.

The editing operation can be used to do something else. In planning
output formats it is always necessary to decide what is to be done with

W' These are most commonly printed with a minus sign;

J—)

2

they can also be indicated by the letters CR. The question arises: If the
field to be printed can be either positive or negative, how do we handle
the decision as to whether or not to print the minus sign (or the credit
symbol) ? The Move Characters and Edit instruction makes provision
for this problem. To describe its action we must define the body of the
control word and the status portion of the control word. The body is the
part beginning with the rightmost blank or zero and continuing left-
ward to the character at which the A-field word mark is sensed. The
remaining portion of the control field is referred to as the status por-
tion. The handling of negative amounts is as follows: We insert the
minus sign or the characters CR, whichever is desired, in the status
portion of the control word. The Edit instruction automatically deter-
mines whether the number in the A-field is positive or negative, If it is
negative the minus sign (or the CR) is left in the field; if the data field
is positive, the symbols are blanked out.

For an example of the use of these features, consider the printing of
a line of an accounts receivable register. Shown below are the informa-
tion that must be printed, the symbol assigned to each field in the pro-
gram of Figure 1, and the maximum number of characters in each

field.

Maximum Number

Field Symbol of Characters
Customer Number CUSTNO 5
Customer Name CUSTNA - = 25
Invoice Number INVNO o 5
State STATE 2
District DIST 2
Invoice Month MONTH 2
Invoice Day DAY 2
Invoice Amount AMOUNT 6

The customer name is alphabetic and is to be printed exactly as it
appears in storage. All the other fields except the dollar amount are to
be printed with simple zero suppression. The date is to be printed in
two columns to separate the month and the day. The invoice amount is
to be printed with the dollar sign, comma and decimal point. Tt must
also be printed with a CR if the amount is negative. (This would, of
course, indicate an “invoice” sent out to show a credit from an over-
payment.) The CR is to be printed one position to the right of the
amount—that is, with one blank between the pennies and the C.

In the absence of a predetermined format or an existing form that
must be used, we are free to make our own decision as to the order in
which these data fields should be printed on the line, as well as their

spacing. It seems reasonable to begin the line with either the customer
number or the customer name, and to group the customer name, num-
ber and location at the left of the line. The invoice number, date and
amount could reasonably be printed in that order toward the right side
of the line, Let us agree rather arbitrarily to print the customer name
first. Now, considering the editing symbols that will be inserted in the
invoice amount, and allowing, say, three spaces between fields, and
assuming that we begin printing with print position 1, we arrive at the
following assignments for the fields on the report shown below:

Field Position
Customer Name 1-25
Customer Number 29-33
State 37.38
District 42.43
Invoice Number 47-51
Month 55-56
Day 58-59
Amount 63-74

The program segment required to set up the printing line once the
data is in the symbolic location shown is presented in Figure 1. For
simplicity in studying the principles of editing, the addresses are shown
in absolute. We understand that in ordinary practice these should be
symbolic.

Notice that the edit control word is shown with an ampersand, which
will cause the edited field to contain a blank space at that position. The
credit symbol is shown as the characters CR; these will be deleted by
the execution of the instruction if the amount is positive (as it, of
course, will be in most cases). The zero in the edit control word indi-
cates the rightmost limit of zero suppression. The comma will be
deleted if the amount is less than a thousand dollars. If zero suppression
does occur, there will be blanks between the dollar sign and the first
digit of the amount. (An optional feature on the 1401 called expanded
print edit would make it possible to move this dollar sign so that it
would be immediately to the left of the first significant digit.)

Review Questions
1. What does the zero in an edit control word do?

2. Name some of the considerations in deciding on the
placement of information in a printed line.

. Jof L
12

7%
| W W U VU S
T R
NN
1)
b
L
L
L
Ll
e

PR N ST YO T |

COMMENTS

Identification «_+ 1« 1 o

N
PR S S

" Page No.

T T

P SR W N U ST S S
L

P ST S SO S S Y SR WA S S

RS S S ST S
U S U W

PR S S S S
TR SR S N
PR S S W W W |
RN TN W S S |
PR SR

Loty

CIR,

(8 OPERAND

T

,\
ADDRESS

ka1

0., , .8

Coding Sheet

28

Date
2

CHAR.
ADJ.
0.3

+
23

(A) OPERAND

H

E
]
7
&
£
g
g
a
3
&
0
—
o
<
—

AOORESS
ND

L
X
L

N V

slcus TN

1817

M Cls|s T ATE,
BE
simenNT
E[AMBUNT

wlcus TNA

AIED I T WO

[l
L
1
L
[]
i
1
L
¢
I
1

1

i
s

M.C

OPERATION

M,C
M.C
M
MC
Lc

1314

"

LABEL
"
N

el g 1
"

PR IV
PR
N

Lo
U T S

4
7

counT

£303

2,0

Program

LINE

L,eli2[ED T T w.olo.Clwlx,

0.8, 0
0,90
1, 7.0
2,0,

Figure 1. Program illustrating editing operations.

7.2 Printer Carriage Control SN
Control of the vertical spacings of lines on a report is necessary for a
variety of reasons. Sometimes a heading line must be printed at the top
of a page and separated from the body lines by one or two lines of
space. Often a preprinted form requires that the printing appear in
specified positions on the form, making it necessary to space the paper
to these positions before printing. Sometimes there is a variable amount
of information to be printed on each page, followed perhaps by a total
line, after which the form must be spaced to the top of the next page.
This might happen, for instance, if all the purchasMer
have to be listed starting on a new page, followed by a total line. After
this, of course, the information for the next customer should start at the
top of a new page.

Control of the spacing of the output document is accomplished by a
combination of programmed signals to the printer carriage and a con-
trol tape in the carriage itself. The control tape is prepared for each
application, or each group of similar applications, with holes in proper
positions to indicate where carriage spacing is to stop once it is started.
The tape-reading mechanism is shown in Figures 2 and 3. The mech-
anism is seen to be in some ways analogous to a card-reading system.
That is, brushes are kept from making contact with an electrically
charged roller except where holes appear in the loop of paper tape.

PCarriage
Tape Idler

Figure 2. Tape-reading mechanism of the tape-controlled carriage in the 1403 Printer.

Figure 3. Carriage tape brushes.

A control tape has twelve columns of positions indicated by vertical
lines. These positions are called channels, Holes can be punched in each
channel throughout the length of the tape, which is ordinarily the same
length as one complete page. A maximum of 132 lines can be used to
control a form, although for convenience the tape blanks are slightly
longer. Horizontal lines are spaced six to the inch, the entire length of
the tape, which corresponds to the height of one line of printing. If the
form has fewer than 132 lines (most do), then the tape can be cut off
at the desired length. Round holes in the center of the tape are provided
for the pin feed drive that advances the tape in synchronism with the
movement of a printed form through the carriage. The effect is exactly
the same as if the control holes were punched along the edge of each
form.

At any point in a program where it is desired to cause skipping of
the form to a new printing position, a signal can be given using the
Control Carriage instruction. The d.character of this instruction speci-

. fies which channel of the tape is to stop skipping, as shown in the sum-

mary box, For example, if a skip to channel 6 is called for, the paper
will start moving and will stop only when a hole in channel 6 is de-
tected. Depending on the purpose of the form control operation, there

7

may be only one hole in a channel or several holes, and, of course, there
may be unused channels. The Control Carriage instruction may also be
used to cause the spacing of one, two or three lines not under control
of the control tape. This function is also shown in the summary below:

Control Carriage

FORMAT Mnemonic Op Code d-character
cC F x
FUNCTION This instruction causes the carriage to move, as

specified by the d-character. A digit causes an im-
mediate skip to a specified channel in the carriage
tape. An alphabetic character with a 12 zone causes
a skip to a specified channel after the next line is
printed. An alphabetic character with an 11 zone
causes an immediate space. A zero-zone character
causes a space after the next line is printed. The
table shows the function of the d-character. If the
carriage is in motion when a Control Carriage in-
struction is given, the program stops until the car-
riage comes to rest. At this point, the new carriage
action is initiated, and then the program advances
to the next instruction in storage.

d Immediate skip to d Skip after print to

1 Channel1 &t A Channel 1
2 Channel2 v B Channel 2
3 Channel 3 C _Channel 3
4 Channel 4 D Channel 4
5 Channel 5 E Channel 5
6 Channel 6 F Channel 6
7 Channel 7 G Channel 7
8 Channel 8 H Channel 8
9 Channel 9 I Channel 9
0 Channel 10 ? Channel 10
Channel 11 . Channel 11
@ Channel 12 u Channel 12
d Immediate space d After print-space
J 1 space / 1 space
K 2 spaces S 2 spaces
L 3 spaces T 3 spaces
8

WORD MARKS Not affected.
TIMING T = 0115 (L; + 1) ms plus remaining form-move-

ment time, if carriage is moving when this instruc-
tion is given. The form-movement time is deter-
. mined by the number of spaces the form moves. Al-
" low 20 ms for the first space, plus 5 ms for each
additional space.

It is essential in using the two types of spacing (not skipping) to
realize that there is normally one space after printing. If an immediate
space is used, there will be as many lines spaced over as are called for
by the d-character. If a J is written, one line will be spaced, etc. After
spacing, the line is printed and then the paper is spaced one line as
normally. When spacing after printing is called for by writing a slash,
S or T, the number of spaces prescribed will be the total number of
spaces after printing including the one that normally occurs. Thus, a
Control Carriage instruction with a d-character of slash has no net

. effect. A d-character of S will call for one additional space and a

d-character of T will call for two additional spaces. Finally, it must be
realized that whereas the immediate skip and the immediate space
cause the requested action to take place as a result of this instruction,
the skip after printing and the space after printing become effective
only after the next line is printed. An after-print skip or space would
have no effect if another line were never printed.

If the carriage is already in motion when a Control Carriage instruc-
tion is accessed, the program waits until the carriage comes to rest. At
this time the new carriage action is initiated and then the program
advances to the next sequential instruction.

The Control Carriage instruction as we have described it is a two-
character instruction. It is also possible, however, to write an I-address,
in which case the instruction is called Control Carriage and Branch.

After carrying out the prescribed carriage action, the next instruction

is taken from the location specified by the I-address.

One of the commonest and at the same time simplest forms of opera-
tion is skipping to a new page when one page has been printed, perhaps
after first printing a total line. There are two rather different ways to
sense the end of a page. One way is to set up a program counter to
count the number of lines already printed. When this counter reaches
the number of lines in a complete page of the particular report, a Con-
trol Carriage instruction can be executed. (Although there is no logical
necessity for doing so, the skipping to the top of a new page is most
commonly controlled by a punch in channel 1.)

The other way is to put a punch in channel 9 or 12 in a position cor-
responding to the last printing position on thEﬁé—g’&TIHetection of a
hole in either of these channels turns on a corresponding indicator,

which stays on until a hole in another channel is sensed. This makes it
possible to print lines without counting them and detect the end of the
page by detecting the proper punch in the carriage control tape. This
has the advantage of not requiring a program counter, which can some-
times be inconvenient,

Whichever method of end-of-page detection is used, we often set up
the signal so that it indicates only the end of printing in the body of the
page. A typical page format consists of a heading line, a certain maxi-
mum number of body lines and a total or summary line. The signal that
the end of the page is about to be reached is needed when the last body
line has been printed. We then commonly skip a line before printing
the total, and then go on to the next page. The presence of two addi-
tional lines after the last body line must, of course, be taken into
account in setting up the constant against which the line counter is
tested or in punching the hole in channel 9 or 12 of the carriage control
tape.

Review Questions

1. State precisely what action is caused by the instruction
CC 0800 S
2. What would you do if a form were so short that the cor-
responding length of carriage control tape was not long
enough to go around the tape-reading mechanism?

7.3 Input and Output Timing

The discussion so far has said little about the timing of reading or
punching a card or printing a line. The maximum speeds have been
given, but these are hardly the whole story—in the 1401 or in any
other computer, We must be concerned also with a number of other
questions:

1. If the maximum speed cannot be obtained, does the speed drop
to some lower figure in a large jump?

2. For what portion of the total reading or writing cycle is the com-
puter waiting on the input-output operation and unable to do process-
ing? Conversely, for what portions of the total cycle is it possible for
the computer to be carrying out processing?

3. At what point during the cycle for one operation is it necessary
to give the impulse to start another one if the device is to operate at
maximum speed ?

Questions of this general sort must be considered in planning the
programming of input and output operations in any computer. How-
ever, the features of individual machines vary so greatly that it is hard

10

Y-

to make generalizations about all machines. Therefore, we turn to a
detailed consideration of the 1401 as generally indicative, although not
everything we shall say applies exactly in the same form to other
machines.

Card reading in the 1BM 1402 is carried out at a maximum speed of
800 cards per minute. This works out to 75 ms for the reading of one
card. The 75 ms are divided into three portions, as shown in Figure 4.
The read start time of 21 ms is the interval between the starting of the
cycle and the time when information actually begins to move into core
storage. It is spent in moving the card from the hopper to the point
where the 9 row is under the brushes and information starts to be trans-
ferred into storage. The card-reading time of 44 ms is taken up with
the reading of the twelve rows on the card and the transfer of the in-
formation into storage. The remaining 10 ms of processing time may
be used for processing the information on this card, and still maintain
the reading of cards at maximum speed. If the instruction to read
the next card is executed before the 10 ms processing time is completed,
cards will read at full 800-per-minute speed; if the processing time
exceeds 10 ms, then the card-reading speed drops in one single jump to
400 cards per minute. -

This jump is caused by the fact that there is only one point in the
cycle of the card reader at which an impulse to start the card-reading
operation can be obeyed.* If the impulse comes before the end of
processing time, it will be obeyed—that is, another card will be read,
without any delay. If the impulse comes after the end of processing
time, the mechanism will wait for another complete cycle to elapse
before obeying the impulse. This means that there is no steady card-
reading speed between 800 per minute and 400 per minute. It can
happen, however, in some cases that the following card will be read
with no delay and in other cases that there will be a delay of one or
more cycles between the reading of successive cards. In such a case the
average card-reading speed may be some intermediate figure.

It is important to realize that the computer is completely idle during
read start time and card-reading time. Stated otherwise: When a Read
a Card instruction is executed, the next instruction is not executed until
card-reading time for that instruction has been completed—that is, a
minimum of 65 ms later. We say that the computer is interlocked dur-
ing the read start time and the card-reading time. (A special feature
called read release is available for the 1401 to make the read start time
available for processing.)

*An optional feature called Early Card Read provides three starting points, there-
by speeding up card reading considerably in some applications.

1

CARD READING

800 CARDS PER MINUTE (Assume that operation code ““1” was given during previous cycle)

,[

:=1'|Omj 3

44 ms

Card Reading

75 ms

21 ms
Read Start Time

Processing
Time

The Read Start Time may be used as Process Time
if the “Read Release’ Option is employed.

Figure 4. Timing diagram for card reading with the 1402 Card Read Punch,

CARD PUNCHING

250 CARDS PER MINUTE (Assume that operation code /4" was given during previous cycle)

j

22 ms
Processing

le

181
Punching

240 ms

o)<

37 ms
Punch Start Time

|

Time

The Punch Start Time may be used as Process Time

if the “Punch Release’’ Option is employed.

Figure 5. Timing diagram for card punching with the 1402 Card Read Punch,

i

Card punching is carried out at a maximum rate of 250 cards per
minute, which works out to 240 ms per card. This cycle is divided into
three parts also, as shown in Figure 5. The punch start time of 37 ms
is the interval between the start of the card motion and the beginning
of actual punching. The punching time of 181 ms begins with the
12 row. The 22 ms remaining is available for processing.

The computer is interlocked during punch start time and punching.
(If a special feature called punch release is installed, punch start time
is available for processing.). To maintain full card-punching speed of
250 per minute, the instruction to punch the following card must be
executed before the end of processing time. However, in the case of
punching, there are four points during the cycle, occurring at 60-ms
intervals, at which an impulse to start punching can be obeyed. There-
fore, if the instruction to punch another card is given shortly after the
end of the part of the cycle shown as processing time, the punching
speed will not be slowed down to half of the maximum. Instead, the
following card will take 300 ms——that is, the normal 240 ms plus the
60 ms during which the computer will wait until another punch impulse
can be accepted. Thus the “penalty” for not getting the instruction to
punch another card executed during processing time, is not as heavy
with punching as it is with reading.

Printing is carried out at 2 maximum of 600 lines per minute, which
is 100 ms per line. The cycle is divided into two basic parts, with an-
other part of the total operation overlapping one of these, as shown in
Figure 6. The printing time is 84 ms; during this period the computer
is interlocked. The remaining 16 ms are available for processing; if
the next print instruction can be given during this processing time,
printing will be carried out at full speed. As we have seen before, print-
ing is always followed by a single line space, unless a Control Carriage
instruction has been executed to specify otherwise. The normal single
spacing takes 20 ms, which completely overlaps processing time. It is
important to note that any skipping which may have been specified,
either immediate or after-print, does not overlap any of the processing
time. On the other hand, the computer is not interlocked during the
skips unless the skip instruction happens to be executed when the
carriage is already in motion, in which case the computer is interlocked
only until the previous movement is completed.

The printer is able to accept an impulse to print a line at any time.
If the instruction to print the next line can be given before the end of
processing, printing will proceed at full speed. If the instruction to
print the next line cannot be given during processing time, the only
time penalty is the excess over processing time; we do not have to wait
until some specified point in the following cycle. In short, the printing
cycle begins whenever the Write a Line instruction is executed.

13

PRINTING

600 LINES PER MINUTE (Assume that operation code ‘2" was given during previous cycle)

100 ms

16 ms

84 ms
Printing

—]

Movement

20 ms

I Form

14

Figure 6. Timing diagram for printing with the 1403 Printer.

The total time for input and output operations in the 1401 can be
somewhat reduced if it is feasible to use combined operations. The
Write and Read instruction, for instance, combines the functions of
Read a Card and Write a Line. Its mnemonic operation code is WR
and its actual operation code is 3. When this instruction is executed,
the printer takes priority and the print cycle is completed before the
actual card-reading operation takes place. However, the execution of
the instruction is set up so that the signal to start the reader is accepted
before the end of the print cycle. Thus, read start time overlaps the
print cycle, with a reduction in the total time required for the two
operations, This total time is 150 ms, of which the last 21 ms are avail-
able for processing.

The Read and Punch instruction (mnemonic RP and actual 5) com-
bines these two operations with an even more favorable overlap. Here,
the two operations occur simultaneously, with the total time being that
for punching a card, 240 ms. Time available for processing is 22 ms.

Write and Punch (mnemonic WP and actual 6) combines these two
functions. The situation on overlaps is about the same as with Write
and Read: the printer takes priority but the start punch signal is auto-
matically given by the machine before the end of the print operation.
Therefore, the punching begins very shortly after the printing is com-
pleted. The total time for the two output operations is 300 ms, of which
the last 28 ms are available for processing.

The Write, Read and Punch instruction combines all three opera-
tions. The mnemonic code is WRP and the actual code is 7. Here the
printing takes place first, immediately after which reading and punch-
ing occur simultaneously. The total time is 300 ms, with the last 28
ms available for processing.

The effective use of these combined instructions naturally depends
on rather careful planning of the program, to insure that the informa-
tion in the read, punch and print areas is set up in such a way that the
combined operations produce correct results. To take a simple example,
suppose that we are required merely to read a deck of cards and print
the information on each of them. We immediately think of using a
Read and Write combination. However, this can obviously not be done
on the first card, because as we begin there is nothing in the print area
to be printed. Therefore, we start with a Read a Card instruction, After
the information has been moved from the read area to the print area,
possibly with rearrangement of the data fields and editing, the Read
and Write combination can effectively be used to print the information
in the print area and then immediately read another card without
having to wait for the read start time. In every case after setting up the
information in the print area we make a last-card test and, when it is
satisfied, execute only the Write instruction.

15

Review Questions

1. Outline the timing differences between Read, Punch and
Print.

2. Under what conditions can a complete job be done in
just the time required for input and output?

3. How much time does the WRP instruction save over
doing the three operations separately?

7.4 Buffering

"In most business data processing applications there is a relatively large

amount of input and output. The total time required to do the job is
often largely taken up with reading and punching cards, printing re-
ports, and, as we shall see in the next section, reading and writing tapes.
We have seen in the preceding subsection that in the case of the 1401
a relatively small amount of the input and output time is available for
processing. In the absence of the buffering facilities to be discussed
now, this is true in most computers. In fact, in some machines the entire
cycle is unavailable for processing. This can very well mean that the
total time to do the job is the sum of the times required for each of the
individual input and output operations plus the total processing time.
If the processing time is very much less than the input and output time,
or if the processing takes a great deal longer than the input and output,
there is really not much to be saved by trying to overlap the input and
output with processing.

However, it frequently happens that the input and output time is
about the same as the processing time, In such a case, it becomes very
desirable to set up the machine so that processing can continue during
most of the time required for the input and output cycles. To take a spe-
cific instance, consider printing. We would like to be able to move the
/information to be printed from core storage to a small auxiliary storage
(this can be done at electronic speeds) and then continue with normal
processing while the information is moved from the small storage to
the printer at the mechanical speeds of the printing device.

The following is the essence of buffering: On output, information
goes from core storage to the small auxiliary storage, which is called
~the buffer. Since no mechanical operations are required for this trans-
fer between two electronic devices, it can be done at very high speeds.
Then processing may continue while the information is sent out to the
output device at the speeds required of the mechanical device. On
. input, the process is simply reversed. Information is accumulated in
the buffer storage as the input medium is read and, when all the infor-
mation has been assembled, is transferred to core storage at high speed.

16

Some computers have no buffering; others buffer virtually every
input and output operation. The 1401 can be equipped with an optional
special feature called print storage, which puts it in an intermediate
class. Print storage gives us buffering of printing only. However, since
in many applications printing time is a fairly sizable fraction of the
total job time, this can mean a very significant reduction in the time
required to do each job and. therefore, an increase in the data process-
ing capability of the equipment. This is all the more true because print
storage permits virtually all of the print cycle to be used for other
processing, including other input and output operations. Thus, for
instance, it is possible to keep the printer and reader both running at
400 per minute and still have over half of the total job time available
for processing.

The 1401 print storage feature operates in just the manner de-
scribed for output buffering in general. When the Write a Line instruc-
tion is executed, the information in the print area, positions 201
through 300 (or 201 through 332) is moved to a special nonaddress-
able buffer storage. This transfer requires only 2 ms, and it is only
during these 2 ms that the computer is interlocked from processing.
As soon as the information has been moved to the print storage buffer,
processing can continue for the remaining 98 ms of the print cycle. As
we have noted, it is possible to initiate other input-output operations
during this time. If another Write a Line instruction is given before
the completion of the total 100-ms print cycle, the computer will inter-
lock until the completion of the previous cycle, at which time the next
cycle will begin immediately.

The effective use of buffering requires a certain amount of preplan-
ning of the program organization. For instance, if two Write instruc-
tions are given in sequence, then the execution of the second one will
be interlocked until the first one is completed. Buffering will have saved
nothing on the first instruction. Therefore, whenever possible, we try
to space out the printing operation so that a computer will be inter-
locked as little as possible.

In the 1401, with its capability of buffering only one operation. the
planning requirements are not really severe. Even if the programmer
gives no special thought to buffering, and simply puts his Write instruc-
tions wherever he would put them if the machine did not have print
storage, the feature will save a certain amount of time although it may
not be used to full advantage. In some of the larger computers, how-
ever, where all input and output operations are buflered, the effective
use of the complete computing system requires very extensive program-
ming systems to attempt to keep all of the components of the system in
operation as much of the time as possible. These input and output pack-
ages are prepared by a special programming group and are then utilized
by all other programmers.

17

W

Review Questions

1. Buffering can be described as a way of matching the
speed of electronic storage with the much slower speeds
of input and output devices. How does buffering save
time?

2. Why does buffering not save much of the total percent-
age of job time when processing already takes much
longer than input and output?

7.5 Program Timing

It is frequently necessary to estimate the amount of time that a pro-
gram will require. Obtaining an accurate estimate of this sort requires
a number of pieces of information and careful consideration of a
variety of factors that affect the total time to execute the program,

The basic idea is simply to take the total time required for input and
output, add to this the total time required for the execution of internal
processing instructions, and subtract off the amount of any overlap-
ping of input and output with processing. Doing this requires, first of
all, estimates of the total amount of input and output, together with
timing information on these operations. This much is fairly simple,
provided that the volume estimates are reasonably accurate.

The timing of the internal processing operations is a little more diffi-
cult. The time required to execute each individual instruction is fairly
readily obtained from the programming manuals. This information
has been shown in the instruction summaries throughout this man-
ual, and will be described shortly, This, however, is not the end of
the estimating job. Complexity is added by the fact that most programs
have alternative paths that may be followed for different conditions
existing in the input. Often these paths are not of the same length, so
that the total time must be derived from a weighted average based on
the expected fraction of the time that each of the paths will be followed.
And this must be a weighted average. If the normal path for processing
information on a card takes 40 ms, whereas in special cases, arising
only two percent of the time, the processing takes only 10 ms, then one
gets a very misleading picture of the total time if the average time for
processing one card is taken to be 25 ms. This is one source of com-
plexity.

A second and more serious complication is the fact that processing

-is often partially overlapped with input and output. Related to this

problem are any considerations such as the fact that in the 1401 the
card-reading cycle can begin only at specified times. It can also very
easily happen that the processing for some types of data will be com-
pletely overlapped with input-output, whereas the processing of other

18

data that takes longer will be only partially overlapped. This can lead
to erroneous estimates if the “variable overlapping” is not taken into
account.

For instance, an average processing time may be short enough to
allow complete overlapping, but this sort of “average” is very mislead-
ing. The time “lost” on the longer-than-average processing cases is not
offset by the shorter-than-average cases, because once the processing is
completely overlapped there is no more time to save.

This is not the place to enter into a complete and detailed explana-
tion of how to handle all these considerations, since the subject depends
too strongly on the features of the particular computer being used. We
shall have to be content with the observation that if high accuracy of
time estimates is required, then extreme care must be exercised in mak-
ing the time estimate. Carelessly made time estimates are notoriously
inaccurate,

We may close this very brief consideration of time estimating by
mentioning the 1401 timing formulas given in the summary boxes for
the various instructions.

The timing of the 18M 1401 is described in terms of the time required
for one complete core storage cycle, which is 11.5 ps (microseconds,
or millionths of a second) or 0.0115 ms (milliseconds, or thousandths
of a second). The time required for any internal processing instruction
is always a multiple of this interval of time. The timing formulas are
given in terms of certain characteristics of the instruction under con-
sideration and of the data fields being operated upon. The symbols used
for these variables are shown in Figure 7.

SYSTEM TIMINGS

Key to abbreviations used in formulas
La = Length of the A-field
Le = Length of the B-field
Lle = Llength of Multiplicand field
| 8% = Length of Instruction
Ly = Llength of Multiplier field
Lg = Length of Quotient field
Le = Length of Divisor field
Ls = Number of significant digits in Divisor (Excludes high-

order 0’s and blanks)
Lwv = Length of A- or B-field, whichever is shorter
Lx = MNumber of characters to be cledred
Ly = Number of characters back to right-most 0" in control field
Lz = Number of 0’s inserted in o field
1/0 = Timing for Input or Output cycle
Fm = Forms movement times. Allow 20 ms for first space, plus 5 ms

for each additional space
Tm = Tape movement times
3 = Number of fields included in an operation

Figure 7. Abbreviations used in instruction timing formulas,

19

For an example of how these formulas are applicd, consider the
equation for the Move Characters to A or B Word Mark, which is:

= .0115 (LI +1 + 2Lw)ms

Looking at Figure 7, we see that L, stands for the length of the instrue-
tion and Ly stands for the length of whichever data field is shorter, A
Move instruction without chaining has seven characters, Suppose that
we are moving a field of 11 characters. The total time is therefore:

O0115(7+ 1+ 2-11)ms = 0.345 ms

We may note in passing how these storage cycles are used. It clearly
takes one cycle to get each instruction character from storage to the
control registers, and one extra to get the operation code of the next
instruction and recognize its word mark. This is the basis of the L; + 1
in the formula.

The movement of each character of the data field takes two storage
cycles: one to get it from the A-field and one to place it in the B-field.
Thus the number of cycles spent in data movement is twice the number
of characters moved, which in turn is the number of characters in the
shorter field, in the MCW instruction.

The formulas for most of the instructions are equally simple. A few
of the more complex instructions have correspondingly complex for-
mulas. Multiplication, for instance, is a fairly long instruction and,
furthermore, depends not only on the length of the field but also on
what the digits in the field are. The formula that is shown is fairly
complex and, at that, gives only an average. However, in most cases the
computation of the time required for the instruction is not at all
difficult.

It will be noted that the input and output instructions show the time
in two parts. One part gives the time required in the central computer,
to which must be added the time taken up in the actual input or output
actions, The time for these latter cannot be given as fixed numbers
because of such variables as the restricted number of points at which a
card-reading or card-punching cycle can begin and the fact that the
effective time of these operations depends on whether the processing
time can be used for processing or whether the program is organized so
that the computer will be interlocked during part of the processing time.
Therefore, as we have noted, the estimation of input and output opera-
tions depends not only on the way the computer is built but also very
strongly on the way the program is organized.

7.6 Subroutines and Utility Programs

A subroutine is a group of instructions that performs some well defined
segment of a data processing operation. Subroutines are of two broad
types and are used for two rather different reasons.

20

One frequent reason for using a subroutine is that someone else has
already written it and it can, therefore, be incorporated in a program
with little effort. For instance, in the basic 1401 there is no multiply
instruction. It is not unduly difficult to program multiplication, but it
takes more effort than a programmer wants to have to expend every
time he needs to multiply. Fortunately, there is no need for him to do
s0: routines are already available for the purpose, All that the program-
mer has to do is to obtain the cards on which the subroutine is punched
and insert them in his program deck before assembly. Knowing that
after assembly his object program will contain the multiply subroutine,
he can write instructions in his program to use the subroutine without
having to spend any time in programming the multiplication,

If multiplication is required only once or twice in a program, it is
satisfactory to insert the subroutine right where it is needed in the pro-
gram, The only extra operations required are those necessary to place
the multiplier and multiplicand in standard locations where the sub-
routine can find them, and to retrieve the product from a standard loca-
tion where the subroutine puts it. Since the subroutine falls right in the
sequence of instruction execution, there is obviously no need to branch
to it. This is the essence of the open subroutine—that is, it is inserted
in the main program where it is needed, and appears in the program
as many times as it is needed.

Suppose, on the other hand, that multiplication is required at a dozen
different places in a program, Now we begin to worry about the storage
space that is wasted by having the same subroutine at a dozen places in
storage. Why not put it in just once, and then branch to it whenever a
multiplication must be performed? Now we have a closed subroutine.
To summarize, a closed subroutine is placed in storage at one place;
whenever the subroutine is needed, the main program branches to it,
and the subroutine branches back to the main program when it is
finished.

This does create one new problem: How does the subroutine know
where to return when it is finished? This question is answered by a
linkage. Before branching to the subroutine, one or two instructions in
the main program store an address that the subroutine can use to com-
pute the address to which it should return when it is finished. In most
computers there is a special instruction that facilitates this storage of
the return address. In the 1401 there is an optional instruction called
Store B Address Register, which, in conjunction with a special aspect
of the 1401 index registers, makes it a simple matter to obtain the
address of the next instruction after a Branch. The first instruction of
the subroutine can store this Branch address at the end of the sub-
routine, No matter where the subroutine was entered from, therefore,
the subroutine will return to the next instruction after that. In the
absence of this special feature, it is not difficult to do essentially the
same thing with standard instructions.

21

We see now the contrast hetween an open subroutine, which is in- -

serted where needed and as many times as needed, and a closed sub-
routine, which is inserted in the program once and to which the main
program branches whenever it is needed. Subroutines are used for two
reasons: to save the trouble of writing routines that are already avail-
able (this applies both to open and closed subroutines) and to save
storage space (this applies only to closed subroutines).

There are available for most computers a group of routines that come
into this area of discussion although they are not set up as subroutines.
Examples are programs to load cards, clear storage, print out specified
areas of storage for help in program checkout, etc. For machines where
the primary input is through punched cards, these are available on
small decks that are readily available at the computer. At least a few
of them will generally find use in virtually every program that is run
on the machine. The name wtility routines is applied to a broad cate-
gory of programs of this type.

In the case of the 1401, there are three heavily used utility programs
that illustrate this concept. The clear storage program is a two-card
routine that clears all of storage to blanks, removes all word marks and
then sets a word mark in location 001. Tt is typically placed at the front
of every program loaded into storage to insure that each program
begins with a clean slate. It is therefore unnecessary for each program-
mer to write clear storage instructions at the beginning of his program.
The card loader is also a two-card routine. It will accept cards of the
type produced by the SPS assembly program and load the instructions
or constants punched on them into the specified locations in storage.
The program also sets all word marks required by the instructions or
constants. Finally, the card loader recognizes the card in the object
deck produced by the END eard in the SPS assembly, and branches to
the location in the object program specified by this card.

A complete object program deck is typically organized as follows:

Clear Storage

Card Loader

Object Program Deck

Transition Card (produced from END card)
Data Cards

The loading of the entire program is aceomplished by pushing the
load button on the 1401 console. This button automatically causes a
word mark to be set in 001, the first card to be read into the read stor-
age area, and the instruction at 001 to be executed. The clear storage
routine is set up on its two cards so that these actions will enable it to
get started properly. From this point on, all card reading is initiated

by instructions in the two utility programs and, later, in the object
program. Thus, the clear storage routine loads the card loader program
after having cleared all of storage. The card loader program loads the

22

' object program deck. When the transition card is read, the loader

program causes a branch to the object program, which then reads and
processes data cards.

The last utility program that we will consider is one that prints a
specified area of storage. This is typically used in checking out a new
program when it is desired to see what the storage contents are after
attempting to run it. The programmer punches on a control card the
beginning and ending addresses of the region of storage that he wants
printed. This control card is added at the end of the print storage deck
and the deck loaded. The print storage program then prints out the
contents of the specified storage locations, using an extra printing line
to print I’s underneath the characters in which word marks are set.
The whole operational sequence of punching a control card, loading the
print storage deck and printing out the contents of all of storage can be
done in a matter of a few minutes, giving extremely valuable data for
use in determining whether the program is operating correctly and in
establishing what is wrong with it if it is not.

Exercises

*1. The following fields are in storage:

Field Symbol Length Sample
Date DATE 5 , 05 22 1
, Month Day Year
Account Number - ACCT 7 0078405
State . STATE 4 OREG:
Amount Due DUE 7 0164329
These fields are to be printed as shown in the fcllowing sample:
bb78405 OREG b5 22 1 b1,643.29
1.7 11-14 18-19 21-22 24 28-36

Write a program segment to set up this printing line. The four fields
have word marks in their high-order positions only.

2. The following fields are in storage:
Field Symbol Length Sample

Name withtwo ~ NAME 22 JOHNSONbbbbbbbbbbbbbRB

initials at right

Social Security ~ SS 9 535221583
Number
Amount AMNT 6 86189
These fields are to be printed as shown in the following sample:
RbBbJOHNSONbbbbbbbbbbbbb 535-22-1583 $ 861.89
1-24 28-38 42-49

Write a program segment to set up this printing line. The three fields
have word marks in their high-order positions only.

23

*3. A deck of cards contains, among other things, an account number
in columns 1-5 and a dollar amount in 23-28. The deck is in sequence
on account number, and there are never more than 40 cards having the
same account number. All the cards for one account number are to be
printed on a separate page. The account number should be printed with
zero suppression in positions 1-5, and the amount with a decimal point
and zero suppression in 10-16. When all the cards for one account have
been printed, a line should be skipped and the dollar total for the
account printed with a decimal point and zero suppression in 8-16.

Draw a block diagram and write a program.

4. Two fields from each card in a deck are to be printed. Columns
1-7 contain an account number that is to be printed in positions 1-7 with
zero suppression. Columns 8-14 contain a dollar amount that is to be
printed in positions 11-20 with dollar sign, comma, decimal point, and
zero suppression. A heading is to be printed at the top of each page,
consisting of ACCOUNT in 1-7 and AMOUNT in 13-18. After 40 body
lines, a line is to be skipped and the total of all of the amounts on the
page printed in edited form in 9-20, When the last card is detected,
print the total for the partial page and skip to the top of the next page.
Draw a block diagram and write a program. Use either a line counter
or a page overflow punch in channel 12 to detect the end of each page.

(Hint: Be sure your program doesn’t fall apart if the last page contains

exactly 40 lines.)
5. Compare the total input and output time, and the time available
for processing, for:
a. Reading a card, punching a card, and then printing a line
(without read release, punch release, or print storage).
b. Executing the Write, Read, and Punch instruction (without
read release, punch release, or print storage).
c. Executing the Write, Read, and Punch instruction (without
read and punch release but with print storage).
6. Estimate the time required to execute the program of Figure 2,
Section 3, exclusive of reading and printing.
7. Estimate the time required to execute the program of Figure 1,
Section 4:
a. Once, exclusive of reading and printing,.
b. For 100 cards, including reading and printing (without print
storage).
c. For 100 cards, including reading and printing (with print
storage) .

*8. Estimate the time required to execute the program of Figure 3,
Section 5, for a deck of 10,000 cards, including reading and printing
(without print storage) . Assume five cards per group. (Hint: You might
begin by deciding whether it is worth worrying about the time for
housekeeping, or about the alternative paths in the program—since they
may or may not have any significant effect on total time. An estimate

24

within 5% is pretty good.)

9. Estimate the time required to execute the program of Figure 4,
Section 6, for a deck of 2,000 cards (with print storage). (See hint on
exercise 8.)

25

