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Abstract

This dissertation describeédaster/Slave Speculative Parallelizati@SSP), a novel execution para-
digm to improve the execution rate of sequential programs by parallelizing them speculatively for execu-
tion on a multiprocessor. In MSSP, one processor—ttaster—executes arapproximatecopy of the
program to compute values the program’s execution is expected to compute. The master’s results are then
checked by thalaveprocessors by comparing them to the results computed by the original program. This
validation is parallelized by cutting the program’s execution into tasks. Each slave uses its predicted inputs
(as computed by the master) to validate the input predictions of the next task, inductively validating the
whole execution.

Approximate code, because it has no correctness requirements—in essence it is a software value pre-
dictor—can be optimized more effectively than traditionally generated code. It is free to sacrifice correct-
ness in the uncommon case in order to maximize performance in the common case. In addition to
introducing the notion of approximate code, this dissertation describes a prototype implementation of a
program distiller that uses profile information to automatically generate approximate code. The distiller
first applies unsafe transformations to remove uncommon case behaviors that are preventing optimization;
second, it applies traditional safe optimizations to exploit the newly created opportunities.

The mechanisms necessary for a MSSP execution and an example implementation based on a chip
multiprocessor are also described. These mechanisms buffer the master’s predictions and make them avail-
able to the slaves, capture the input and output values for each slave task, and verify and commit the slave
tasks to give the appearance of a sequential execution. A hardware implementation of these mechanisms
require only a modest amount of resources (likely less than 5% area) beyond a next-generation chip multi-
processor.

This dissertation includes a simulation-based evaluation of the example MSSP implementation. Per-
formance results show that MSSP achieves speedups up to 1.75 (harmonic mean 1.25) for the SPEC2000
integer benchmarks. Performance is currently limited by the effectiveness of code approximation, which
can likely be significantly improved.
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Chapter 1

Introduction

The exponential growth of processor performance has enabled single-processor computers to achieve
execution rates in the billions of operations per second and multiprocessor computers capable of hundreds
of billions or even trillions of operations per second. Despite these achievements, there remains a desire to
have even faster computers that will enable additional software functionality and achieve these perfor-
mance levels in smaller, cheaper form factors that consume less power.

Advances in semiconductor technology continues to provide the raw materials for continued perfor-
mance growth, providing larger chips capable of holding more and faster transistors. There remains a chal-
lenge though, in how to utilize these resources in a manner that improves performance. Extrapolation of
previously used techniques.§, naively increasing superscalar width) does not “scale up” efficiently due
to clock cycle constraints [57] and true dependences—nboth control and data—in programs, especially non-
numeric programs. Benefitting fully from larger transistor budgets necessitates the development of new
execution paradigms to enhance and exploit parallelism. In this dissertation, | propose one such paradigm,
Master/Slave Speculative Parallelization (MSSP).

1.1 Constraints Guiding the Development of the Execution Paradigm

Before describing the MSSP paradigm in detalil, it is illuminating to discuss the constraints, both phys-
ical and social, that | perceived would affect the adoption of a new execution paradigm. These constraints
shaped the development of the MSSP paradigm. Five constraints—wire delay, programmer productivity,
infrastructure transparency, minimal verification complexity, and flexibility—are described in the follow-
ing paragraphs.

Wire delay: As clock frequencies increase, the distance a signal can travel in a single cycle decreases.
With slow global communication, de-centralized microarchitectures consisting of many loosely-coupled
regions are desirable. Designing such architectures can be difficult because partitioning programs so they
can be efficiently mapped onto such hardware is a challenging, open problem. Control and data depen-
dences between operations necessitates enforcing some ordering constraints on the operations and facilitat-
ing communication between them.

Thesis: A new execution paradigm should provide an efficient means of partitioning programs for map-
ping onto decentralized microarchitectures.
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Programmer Productivity: In the early days of computing, computers were so few in number and so
expensive that it was appropriate for programmers to hand optimize code to achieve the most benefit from
a limited resource. Declining component costs have made computers ubiquitous and cheap, making pro-
grammers the limiting resource. Modern computer designers cannot rely on programmers to hand optimize
their code—including techniques like manual parallelization—except in performance critical domains
(e.g, database server applications). Most programmers are likely to program in a way that maximizes their
productivity by using high-level languages and methodologies that favor clarity, verifiability, reusability,
and maintainability over performance.

Thesis: A new execution paradigm should handle compiled code well and be tolerant of the manner a
computation is expressed. In the limit, the intrinsic complexity of computation should determine execution
time, not the manner in which it is expressed.

Infrastructure Transparency: Widespread adoption of any technology is slowed if its deployment
requires outside entities to change. For processor design teams, such outside entities include compiler ven-
dors, operating system vendors, programmers, and library writers. Requiring changes in the compiler or
that programmers change their methodology can take a long time and can be risky. It is much preferable if
technology can be introduced in such a manner that it is transparent to the existing infrastructure.

Thesis: A new execution paradigm should be language agnostic, require few, if any, changes to the
compiler or operating system, and, therefore, handle legacy code.

Minimal Verification Complexity: Much of the cost/effort/time in the development of a modern micro-
processor is dedicated to verification. As such, it is desirable to develop micro-architectural technigues that
reduce verification complexity or at worst increase it minimally.

Thesis: A new execution paradigm should minimize any additional verification complexity.

Flexibility: The above constraints have expounded on the importance aéquoiting changes to com-

piler infrastructure or programmer behavior, but it is desirable that if beneficial changes are made they can
be exploited. For example, if code is manually parallelized or hand assembled to expose a lot of explicit
parallelism, the machine can provide the necessary resources. Thus it is desirable for the micro-architec-
ture to be largely composed of general purpose execution resources (processors, functional units, caches,
etc.) rather than special-purpose widgets that will be idle when an alternative execution paradigm is used.

Thesis: A new execution paradigm should require a minimum of special purpose widgets.

In the next subsection, | briefly overview the proposed execution paradigm and how it addresses these
perceived constraints.

1.2 Overview of Master/Slave Speculative Parallelism

This dissertation describes the Master/Slave Speculative Parallelization (MSSP) paradigm. This para-
digm enables the automatic parallelization of sequential programs, including legacy binaries. This parallel-
ization is effected by dedicating one processor to be the “midsteimo orchestrates the parallel execution
by (1) instructing each “slave” processor where.( at what program counter value) to begin executing
and (2) providing each slave processor with the set of live-in values needed to execute the assigned seg-
ment (or “task”) of the program.

1. The use of the word “master” comes from the definition “a device or mechanism that controls the operation of another” and not from the con-
notation of a master copy from which other copies are meadeghonograph records).
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The master processor—to which | will refer simply as the master—performs its duties by executing
what | call a distilled program. The distilled program is an “approximate” version of the original sequential
program that has been augmented with directives for managing the slave processors. The distilled pro-
gram’s approximate nature allows it to execute more quickly than the original program, but it may occa-
sionally diverge from a correct execution. By coupling the master’s execution of the distilled program with
the slaves’ execution of the original program, MSSP can potentially achieve the superior performance of
the distilled program with the correctness of the original program.

| briefly overview the MSSP paradigm in Figure 1.1. Four processors are showr?0yis éllocated
to be the master processor, and the rE4t P2, andP?3) are slaves that begin the example idle. By execut-
ing the distilled program, the master processor performs many of the register and memory writes that the
original program would, but these writes are not committed. Instead, these writes are used to create a pre-
dicted checkpoint of program state to be used by the slave processors and are held in a special “check-
point” buffer. At task boundaries in the distilled program there are fork instructions that signal the master
to spawn a new task in the original program on a free processor and to provide it access to the buffered
checkpoint values. At the annotatidrin the figure, the master processor spawask B onto processor
P2. P2 begins executing the task after some latency due to the inter-processor communi)af@con-
tinues executingd) the distilled program segment that correspondgatsk B, which | refer to asTask B’.

As the slaveTask B executes, it will read values that it did not write (live-in values) and perform writes
of its own (live-out values). If a corresponding checkpoint value is available, it is used for the live-in value;
otherwise the value is read from current visible (architected) state. As the task is speculative—it is using

PO P1 P2 P3 Architected
State

FOR

Execute Task
Task B

() Task C
£ c -
|_

\ Verity
@ - TS = — .. Commit State _
ive-j - — _
/\/ NS, spec. storeg ™
(:) Verify

Squashed Commit State

liveZins; Spec. stores™ — — —

Y Task C S
-

Figure 1.1:Master processor distributes checkpoints to slaviédse master—executing the distilled program on
processor PO—assigns tasks to slave processors, providing them with predicted live-in values in the form of check-
points. The live-in values are verified when the previous task retires. Misspeculations, due to incorrect checkpoints,
cause the master to be restarted with the correct arcrjitected state.

___ b @ Misspeculation
Detected

-
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predicted live-in values—its live-out values cannot be immediately committed. Instead its live-in and live-
out values are recorded in live-in and live-out buffers and associated with the task. When the task is com-
plete @), P2 sends its live-in and live-out values to the authority on architected state. If the recorded live-in
values exactly correspond to architected state, then the task has been verified and can be committed, and
architected state can be updat&dwith the task’s live-out values.

If one of the recorded live-in values differs from the corresponding value in the architectestate (
because the master wrote an incorrect vaR)g this mismatch will be detected during verification. On
detection of the misspeculatiof)( the master is squashed, as are all other in-flight tasks. At this time, the
master is restarted & (7), using the current architected state. In parallel, non-speculative execution of
the corresponding task in the original progrdamask C) begins 8).

1.3 Contributions of this Dissertation

In this dissertation, | focus on three topics: the Master/Slave Speculative Parallelization paradigm, the
abstract concept of approximate code, and distilled programs, the specific form of approximate code used
in MSSP. In addition, with regards to the constraints discussed in Section 1.1, | demonstrate that the MSSP
paradigm has the following characteristics:

1. By parallelizing the program into tasks and predicting their live-in values, MSSP effectively creates
independent units of work—generally consisting of hundreds of dynamic instructions—that can be
mapped onto a distributed micro-architectuesg( a chip multi-processor). If live-in predictions are
accurate, the MSSP paradigm can be very tolerant of communication latency.

2. In approximating a program, the distilled program is free to re-express computation in a manner that
facilitates fast execution. Because the distilled program need not be correct in all circumstances, it is
sufficient to find an expression that is correct for the “common case”, potentially enabling more aggres-
sive optimizations.

3. No compiler maodifications are required and legacy binaries can be supported. All information needed to
construct the distilled program can be derived from the original program’s static image and profile
information. Thus, transparent implementations that perform the distillation at run time are feasible.

4. The program distiller, the mechanism that constructs the distilled program, need not be verified. The un-
modified original program is executed (by the slaves) and remains the authority for correct execution.
All results computed by the distilled program are predictions, untrusted by the machine until verified
against architected state. Thus, any bugs in the distiller translate into mispredictions, which could
reduce performance but will not affect correctness.

5. The MSSP paradigm can be implemented as an extension to a chip multiprocessor (CMP). By imple-
menting the distiller in software, the required MSSP-specific hardware mechanisms are modest. For
example, about 4kB of storage is required at each processor (3% of the size of the caches on a processor
with 64kB instruction and data caches) and around 24kB of storage at the L2 (or a little more than 1%
of a 2MB L2 cache). These modest hardware requirements can also limit the incremental verification
complexity beyond the CMP designs already present in industry. Furthermore, it allows processor ven-
dors to produce a single chip that efficiently handles sequential programs (using MSSP) and parallel
programs (using CMP).

In order to justify and explore the implications of the above statements, this dissertation describes the
Master/Slave Speculative Parallelization paradigm. Specifically, in this dissertation, | make the following
contributions:

1. I define and describe the Master/Slave Speculative Parallelization paradigm, comparing it to previously
proposed execution paradigms.
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2. | demonstrate the opportunity for approximating programs, discussing a prototype implementation of a
program distiller.

3. | describe the necessary mechanisms for the MSSP paradigm and outline a possible implementation.

4. | characterize the distilled programs generated by my prototype program distiller and empirically evalu-
ate the performance of an implementation MSSP.

1.4 Organization of the Dissertation

The organization of this dissertation corresponds directly to the above contributions, where each topic
is the focus of a separate chapter (Chapters 2 through 5). | conclude in Chapter 6 by describing some les-
sons learned during this work, the correctness requirements of the implementations, and outline some
unanswered questions to guide future work.



Chapter 2

The Master/Slave Speculative Parallelization Paradigm

In this chapter, | define and present the Master/Slave Speculative Parallelization (MSSP) paradigm. As
this is a paradigm for automatic parallelization of sequential programs, | begin the chapter (in Section 2.1)
with a description of programs and program parallelization in general. In Section 2.2, | present the MSSP
paradigm and introduce the concept of approximate code, including definitions and examples of each.
Lastly, in Section 2.3, | compare and contrast the MSSP paradigm to previously proposed execution para-
digms.

2.1 Programs and Parallelization

This section begins with a brief description of the components that make up programs—operations and
inter-operation dependences—and introducesieeution dependence grafftDG), a tool for visualiz-
ing the important dependences. In Section 2.1.2, | demonstrate how parallelizing programs involves parti-
tioning EDG'’s into tasks. In general, such a partitioning results in dependences that cross task boundaries;
in Section 2.1.3, | describe the three ways that such dependences can be dealt with. Section 2.1.4 closes
this section with a discussion of two mechanisms for verification if these dependences are handled specula-
tively.

2.1.1 Programs as Operations and Dependences

This dissertation is concerned with the automatic parallelization of programs written with a sequential
execution paradigm in mind. These programs consist of operations that name (either explicitly or implic-
itly) the storage location of their source and destination operands. Inter-operation communication is per-
formed by matching up the producer of the value at a given storage location to the consumer of that
location and results in a dependence between the two operations.

In this work, | concern myself with two classes of inter-operation dependences: true data dependences
and control dependences. Anti- and output dependences can be easily alleviated by renaming storage loca-
tions and in-order retirement, respectively, so they need not be a concern.

True data dependences ensure that storage locations named by source operand contain the correct val-
ues at the time an operation is executed. For the purposes of describing parallelization paradigms, depen-
dences through registers and memory are effectively equivalent, so | will not make this distinction.
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Figure 2.1:Examples of register, memory, and control dependences on four classes of instrud@#ns. arith-
metic, (b) load, (c) store, and (d) control.

Control dependences determine which operations are executed and, as a result, which data depen-
dences are realized. For simplicity, | will model control dependences as data dependences by adding
implicit reads and writes to the program counter (PC) for each instruction. This introduces a serial data
dependence from each instruction to the next. Note that, in general, this over-constrains the inter-operation
dependences, but results in little loss of generality for the discussion of program parallelization to follow.
Figure 2.1 shows example operations and their dependences.

Different executions (dynamic instances) of the same (static) instruction can potentially have different
dependences due to different paths through the computation or values computed upon. For a given execu-
tion of a program, | can create a graph of the dependences that were realized. This Execution Dependence
Graph (EDG) is an execution trace augmented with arcs indicating the inter-operation dependences; an
example EDG snippet is shown in Figure ZThe EDG contains the set of dependences that need to
have been observed to have correctly performed the program’s executioithe EDG differs from a
control-flow graph (CFG) and a data-flow graph (DFG) in that it is concerned with ditidiappen on a
particular execution, not whabuld happen on across all possible executions.

2.1.2 Parallelizing Programs: Partitioning into Tasks

Although there are many levels at which parallelism can be exploitey (ord, instruction, thread),
in this dissertation | focus on thread-level parallelism (TLP). Techniques to exploit word-level parallelism
(WLP) and instruction-level parallelism (ILP) have been actively researched and these forms of parallelism
are being effectively exploited in existing processors (by SIMD instruction set extensions and superscalar/
VLIW architectures, respectively). TLP, on the other hand, is not being exploited in most programs due to
the high cost of manual parallelization, so there is significant untapped performance potential. Further-
more, because TLP exploits parallelism at a larger granularity than WLP or ILP techniques, performance
benefits of exploiting TLP will likely complement performance achieved through those techniques.

To achieve a thread-level parallel execution for a computation, | will partition ittaksthat can be
performed in parallel by independent processors. In this work, the program is partitioned into tasks by
specifyingtask boundariesvith static annotations to the program, much like what was done in Multiscalar
[72, 81]1. The tasks that result from these task boundaries depend on the control flow path the program fol-
lows. Figure 2.3 shows a control flow graph (CFG) of a computation with a set of task boundaries and the
set of possible tasks that could arise from the execution of the computation.

Task Boundary:a point in the static program, generally associated with the static instructions
that it precedes, that terminates a task when it is encountered during execution(Definition 1)

Task: a continuous sequence of operations in the program’s execution bounded at each end by a
task boundary annotation in the static program, with no task boundary annotations in the task’s
interior. (Definition 2)

1. The difference between this definition and the one used for Multiscalar task selection [72, 81] is that there is no constraint that the tasks have a
single entry.
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Figure 2.2:Example Execution Dependence Graph (ED@) code snippet frorbzip2 , and (b) the associatke
EDG (control dependences are not shown for clarity).

Generally, the program’s execution requires the execution of a large number of dynamic tasks, but only
a small number of them are flight (i.e., actively being executed) at any one time. As shown in Figure 2.4,
a program’s execution can be divided into 3 segments: 1) “the past”: a segment consisting entirely of com-
pleted tasks starting at the beginning of the execution, 2) “the present”: a segment of in-flig%taasll&)
“the future” a segment consisting of un-initiated tasks and ending at the program’s completion. I'll refer to
the second (middle) segment as thek windowbecause it effectively moves like an instruction window
down the execution.

In partitioning a program into tasks, | am making horizontal cuts through the EDG, effectively select-
ing a set of dependency edges to becamber-task dependencelswill refer to the set of inter-task depen-
dences whose consumers belong to a given task as liatnig to the task; a task’s live-in values are those
that it reads before writing. An example that classifies dependences is shown in Figure 2.5. | will refer to
the state of all variables at a task boundary akeckpointa checkpoint from the immediately proceeding
task boundary is sufficient to satisfy all live-in dependences of a task.

2. Strictly speaking itis possible to have completed and un-initiated tasks in the “present” segment. More exactly this segment spans from the first
in-flight or un-initiated task to the last in-flight or completed task.
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Figure 2.3:Control flow graph with task boundaries (a), and resulting potential tasks (b).

Completed Tasks

Task Completion Wave Frort—um

In-flight Tasks
Task Initiation Wave Front—

Un-initiated Tasks

Figure 2.4:The program’s execution can be divided into three regiofiy. a continuous span of completed tasks
starting at the program’s beginning, (2) a short span of in-flight tasks, and (3) a continuous span of un-initiated tasks.

While intra-task dependences can be handled by any number of existing micro-architectural tech-
niques, the set of live-in dependences is the responsibility of the parallelization paradigm. The set of writes
(to registers or memory) that are not overwritten within the task form the set of live-out values.

2.1.3 Handling Inter-Task Dependences

Before an operation with an inter-task dependence can be executed, the dependence must be satisfied.
In the case of a true data dependence, this means the operand value must be supplied. In the case of a con-
trol dependence, the starting PC for a task must be supplied to identify which operation to perform. In both
cases, a value must be provided to the consuming operation.

Before discussing the means of providing these values, it is important to describe one attribute of
dependences: length. Thengthof a dependence is the number of dynamic instructions executed between
the producing operation and the consuming operation in an in-order execution of the program. Like tasks,
dependence length is a purely dynamic phenomenon, a characteristic of a pair of dynamic instructions that
communicate. The length of a dependence—specifically its length relative to the size of the task window—
may affect the cost of satisfying the dependence. Therefore, | make the following definitions:
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Figure 2.5:Example partition of EDG with annotated dependenc&enerally, the live-in set is a small fractior o
the inter-task dependences crossing a task.

long dependencea dependence with a length exceeding the task window size(Definition 3)
shortdependencedependence with alengthlessthan or equal to the task windowsitteition 4)

Although this characteristic is defined with respect to a dynamic dependence, it is quite stable (across
instances of the same static instruction) and predictable; the stability of very short dependences has previ-
ously been demonstrated [51]. Accurate predictions of dependence length can be exploited to select an
appropriate mechanism for satisfying the dependence.

Below, | describe three ways to satisfy dependences: (1) reading the value from architected storage, (2)
inter-task communication and (3) value prediction. The first mechanism is appropriate for long depen-
dences; the other two are for short dependences. Figure 2.6 diagrams these three mechanisms.

As tasks commit instructions, they update user-visible state, also knoanctatected stateFor long
dependences we can be assured that the producing operation has been committed—by definition it belongs
to a completed task—and that no in-flight operation is updating the storage location associated with the
dependence. As a result, there is a single, unambiguous value for the name and it should be stored in the
architected state. Thus, these dependences can be satisfied trivially by reading the value from the archi-
tected state.



11

a) Architected b) Architected c) Architected value
State State State pred.
X: valugy X: value X: value y X: val
task N task N+1 task N task N+1 task N task N+
use X - Use X use X
def X= def X

Figure 2.6: Three techniques for satisfying dependencés. reading values from architected state, (b) communi-
cating values from producing task, (c) predicting value with value predictor.

For short dependences, the task that produces the value will be in flight simultaneously with the task
that consumes the value. A natural way to handle such a dependence is to have the producing task commu-
nicate the value to the consuming tasks. Generally this approach requires a synchronization mechanism, as
we cannot assume that an instruction that produces a value will have completed execution before the con-
suming operation is considered for execution. The synchronization mechanism must identify the producing
instruction and stall the consumer until that instruction has completed.

Alternatively, we can satisfy the dependence by predicting the communicated value [22, 45]. In this
case, the value will not be provided from the producing task, but from a separate entity, the value predictor.

If a value can be predicted effectively, using value prediction can result in better inter-processor com-
munication patterns than inter-task communication. Figure 2.7 illustrates this point with a simple example
involving a sequence of tasks with a single communicated value. In a traditional speculative parallelization
paradigm this dependence is communicated from task to task, exposing the latency of inter-processor com-
munication between each task. In MSSP, these live-in values are produced by a centralized value predictor.
Because it is centralized, no inter-processor communication is required between executions of the incre-
ment operation that generate the communicated value. As a result, the required inter-processor communi-
cation for multiple tasks can be overlapped.

2.1.4 Verification of Speculatively Satisfied Dependences

Up to this point | have made no distinction between traditional and speculative parallelization tech-
niques. Traditional parallelization techniques ensure correctness by proving that all operations that poten-
tially have inter-task dependences that are shorter than the task window get the correct value, generally by
using synchronization. Because correctness is ensured statically by construction, no run-time verification
is required in these systems.

The requirements necessary to automatically construct parallel programs that could be proven correct
have effectively prevented traditional parallelization of all but a few specific classes of programs. Specula-
tive parallelization, where the process of getting the required values can be speculative, enables a broader
class of programs to be parallelized. This speculation relaxes the correctness guarantees required from the
compiler and substitutes run-time checks to ensure correctness. State updates need to be buffered specula-
tively so they can be discarded if run-time checks detect a dependency violation. There are two approaches
that can be used for verification: (1) verifying dependences and (2) verifying values.

Verifying dependences requires tracking the souiree the producing operation or architected storage
location) from which a value was retrieved and verifying that this source was in fact the correct source.
This verification is generally composed of two parts: 1) selecting what appears to be the right value when
the consuming operation executes, and 2) watching all writes to ensure that a more appropriate value does
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Figure 2.7: Alternatives for short dependences in speculative parallel architectuféss figure shows an illustra-

tive example, where the only inter-task dependence is due to a register-allocated counter that is incremented by each
task. Live-ins can be supplied from previous in-flight tasks (a), or task live-in values can be value predicted (b). With
inter-task communication, the inter-processor communication latencies are serialized (c), but with value prediction
from a centralized value predictor, the latencies can be overlapped (d).

not become available. More specifically, these requirements are: 1) ensuring this source provided the most
up to dateite., latest in program order) visible €., earlier in program order than the consuming operation)

value bound to the desired name at the time the consumer was executed, and 2) ensuring that between the
consumer’s execution and retirement no operation modifies the value at the desired name and is both visi-
ble to the consumer and more up to date than the source. Typically, the first requirement is verified by con-
struction {.e., only the most up-to-date visible value can be provided) and the second by snooping the
stream of state updates. Clearly this approach does not work if value prediction is used, as the original
dependence is ignored.

The alternative approach is to verify the value directly, ensuring that the value that was used is the
same as the one held in the named storage location at retirement time. Such a verification can be accom-
plished in two ways: (1) effectively re-execute all instructions at retirement, and (2) verify task live-in val-
ues. Re-execution, used in DMT[2], is certainly sufficient for verification, but may be over-kill. If intra-
task communication and computation can be assumed to be reliable, then it is sufficient to verify task live-
in values. This approach involves recording the names and values of the data items a task has used before
defining. When the previous task is complete, the current (architected) values associated with those names
can be compared to the stored value.

By comparing values directly, any means for generating values (including prediction) can be sup-
ported. In addition, comparing values does not signal a misspeculation if the right value was used for the
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wrong reason. Research [43, 55, 78] has shown that many writes are “silent,” they write a value into a stor-
age location already containing that value. Dependence-based verification mechanisms would signal a
misprediction if the storage location was read before the execution of a silent write that was earlier in pro-
gram order, while value-based ones recognize that the correct value was read.

In effect, our verification and commitment is “reuse” of a block of instructions in the instruction reuse
[71] sense. Said another way, the computation is being memoized [8]. The inputs and outputs of a task are
packaged up, and if the input values match, then the output values can be committed to architected state.

2.2 Master/Slave Speculative Parallelization and Distilled Programs

With the background and vocabulary in place, | am prepared to discuss the MSSP paradigm. | describe
first (in Section 2.2.1) a broader class of execution paradigms called checkpoint speculative parallelization
paradigms. Second (in Section 2.2.2), | describe the concept of approximate code and a specific form of
approximate code that | call distilled programs that the MSSP paradigm uses to predict checkpoint values.
Then, in Section 2.2.3, | present the MSSP paradigm itself and describe the mechanisms that it requires.
Finally, | present examples of how a program fragment is approximated and how the MSSP paradigm exe-
cutes the program fragment, in Sections 2.2.5 and 2.2.6.

2.2.1 Checkpoint Speculative Parallelization Paradigms

I am coining the terntheckpoint speculative parallelizatidaor a class of execution paradigms that
predominantly use value prediction to handle short inter-task dependences. When a new task is initiated
these techniqgues logically construct a checkpoint of state as it is predicted to appear at the beginning of the
task. The task can then satisfy all its live-in dependences by reading values from the checkpoint. If the
checkpoint is constructed before the beginning of the task, no synchronization is required.

Though logically each task has an independent checkpoint, in practice checkpoints of neighboring
tasks are largely similar, suggesting that such replication is unnecessary. In fact, since only a small number
of tasks is in flight at a given time and each task generally writes only a small fraction of all architected
state, most of a checkpoint is the same as architected state. Hence, only diffedéfg)ésofn architected
state need to be stored. Similarly, since the architected state holds the correct value for most storage loca-
tions, it is only the diffs—the values that could potentially have short dependences—that need to be pre-
dicted.

By storing the differences between each checkpoint and the previous one, the logical checkpoint for a
task can be created by overlaying the checkpoint diffs of earlier in-flight tasks on the architected state in
program order (see Figure 2.8). Thus, the logical checkpoint can be created on demand by using multi-ver-
sion memory hardware structures like the ARB [10].

As discussed in Section 2.1.3, checkpoint-based paradigms, because they use value prediction, have
the potential to be tolerant of inter-processor communication latency, but this latency tolerance can only be

a) architected state | |
partial checkpoint N-2 n e Il H B
partial checkpoint N-1
partial checkpoint N [ [ [ | [ |
b) logical checkpoint N+ | N N | N N

Figure 2.8:A live-in checkpoint is assembled from partial checkpoir(®) a partial checkpoint is predicted ifo
values updated by each task, and (b) a checkpoint image for task N+1 is assembled by selecting the most recent copy
of each value from the partial checkpoints and architected state.
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achieved if most of the live-in predictions are correct. Whenever a prediction is incorrect, the execution is
serialized by an inter-processor communication to restart the value predictor with the correct architected
state. In fact, an analytical model described in Section 4.2 predicts speedups increasing super-linearly with
fraction of correct checkpoints. Thus, it is desirable to have near perfect prediction accuracy. Current hard-
ware value predictors do not provide satisfactory prediction accuracy or coverage (or both) and often
require large dedicated hardware structures [11, 30, 42, 45, 44, 67, 78, 82]. As a result, | instead use soft-
ware, executed on a general purpose processor, to generate the necessary value predictions. Previous
research has demonstrated that software can be used for accurate value prediction [18, 52, 64, 65, 66, 85].

2.2.2 Approximating Code and Distilled Programs

The MSSP paradigm predicts checkpoint values by executimlistilled program generated by
approximatingthe original static program. The definition of approximate code is as follows:

Approximate codea distinct executable computation that has a high probability, but no guaran-
tee, of computing a desired subset of the state computed by a given piece of referencefaite.s)

There are two important features of this definition. First, that the approximate code is not guaranteed to
be functionally equivalent to the reference code. Second, the approximate code is distinct from the original
code and therefore can be composed arbitrarily with respect to the reference. These two features, together,
provide significant flexibility in construction of approximate code.

In return for a loss of precision, the approximate code is generally expected to have better execution
characteristics. These better execution characteristics result from the large discrepancy found in many pro-
grams between what the program could do and what the program commonly does. Some examples of this
discrepancy have been demonstrated:

Program paths.Even small programs like SpecInt95 benchmarks have more tffapo2ential acyclic
paths, but less than a thousand paths account for more than 90% of the execution [6].

Size of points-to setsPoints-to sets measured during an execution were 5 times smaller than conservative
sets constructed statically [50].

The discrepancy between the number of potential and common case behaviors results in a similar dis-
crepancy between the set of transformations that can be proven safe and those that are safe in practice.
Since approximate code need not be correct, it can be optimized beyond what traditional code generation
allows by using these additional transformations. Selecting optimizations that both improve performance
and largely compute the desired values correctly is facilitated by knowledge of what behaviors the program
exhibits in practice. A simple way to collect this information is to monitor the program’s execution to
gather profile information.

A somewhat subtle part of the definition is that the approximate code only tries to compute a subset of
the values computed by the reference code. In general, we are not concerned with arriving at the exact
machine state achieved by the reference code but, rather, are focused on particular values of interest. Many
of the values computed by the reference code are intermediate values, and forcing the approximate code to
compute these values over-constrains it.

The MSSP paradigm uses a specific form of approximate code, called a distilled program. The distilled
program is used to predict task live-in values. Thus, the “desired subset of state” computed by the distilled
programs are those variables involved in short inter-task dependences. Long inter-task dependence values
need not be computed by the distilled program because they can be obtained by otheraxpaprad
from the architected state). In addition, the distilled program specifies the task boundaries to that the MSSP
implementation. These two characteristics result in the following definition:
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Distilled Program:a form of approximate code which conveys a division of the original program
intotasksandcomputesthevaluesassociatedwiththeresultingshortinter-taskdeperideiines. 6)

After defining the MSSP paradigm in the next section, | present an example of how distilled programs
are constructed in Section 2.2.5.

2.2.3 Master/Slave Speculative Parallelization

The Master/Slave Speculative Parallelization paradigm is a checkpoint speculative parallelization par-
adigm, but rather than using a hardware value predictor it uses a distilled program to generate value predic-
tions. In fact, this feature is the essence of MSSP, resulting in Definition 7. In this section, | describe the
MSSP paradigm at a high level. An illustrative example of its execution is presented in Section 2.2.6.

Master/Slave Speculative Parallelizatioms checkpoint speculative parallelization architec-
ture that uses approximate code (in the form of a distilled program) to generate checkpoint value
predictions. (Definition 7)

MSSP (unlike other speculative parallelization (SP) paradigms) consists of two executions of the pro-
gram: themaster or leading, execution and tistaveexecution. The two executions use different copies of
the program as they serve different purposes. The master, which is responsible for performance, executes
the highly optimized, but possibly incorrect distilled program. The slave execution, which is responsible
for correctness, executes code much like the code generated by existing compilers. I'll refer to this code as
the original program, because in a transparent implementation of the paradigm this program would be the
original binary generated by an existing compiler.

Both executions use the same architected memory state, but, because the master execution is executing
a potentially flawed program, it is not allowed to update architected state. Only the slave execution is per-
mitted to update architected state. Values created by the master are buffered speculatively and used to facil-
itate the execution of the slave execution.

The two executions run in close succession—the master’s lead is limited by the availability of specula-
tive buffering—so performance will be determined by the slower of the two. To achieve execution through-
put equivalent to the master, additional processors can be allocated to the slave execution. If the distilled
program is capable of outperforming the original program by a factor of N, then perhaps N slave proces-
sors will need to be allocated to “match the impedances” of the two executions.

The parallelization of the slave execution is orchestrated by the master execution. To break the slave
execution into tasks, task boundaries in the original program are selected. At the corresponding locations,
FORKinstructions are inserted into the distilled program. Upon encountering one of Rbé&ddnstruc-
tions, the master execution assigns the next task to an idle slave processor.

The master provides each slave processor with a starting program counter (PC) and predictions for the
live-in values the slave requires. Because the control flow in the two programs roughly corresponds, the
master predicts the slave task’s starting PC by mapping its own program counter (PC) from the distilled
program to a task start PC in the original program. Furthermore, speculativeestgteefister and mem-
ory values) generated by the execution of the distilled program serves as predicted live-in values for the
tasks. This speculative state, along with the architected state, form a checkpoint of sorts of the program’s
state.

As these checkpoint values provided by the master are only predictions, the slave processor must exe-
cute speculatively until its inputs are verified. To permit this verification, the values read for live-in vari-
ables are recorded and buffered. Likewise, all side-effects of slave task exeeugipregister writes and
stores) are buffered in a live-out value buffer. At the end of a task, if its live-in values match the architected
state, the task’s live-outs can be committed. Mechanisms are required to buffer all of the non-architectural
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data (checkpoint, live-in, and live-out values) and to correctly route it between processors. A full descrip-
tion of the required mechanisms, with an example implementation, can be found in Chapter 4.

Because all communication between the master and the slaves is in the form of predictions, which are
verified before the slave updates architected state, there are absolutely no correctness requirements on the
distilled program. This lack of correctness requirements means that the mechanism used to generate the
distilled program need not be verified perfectly, as bugs can only result in performance degradation. This
facilitates constructing the distilled program at run-time, when the most accurate profile information is
likely to be available but verification may be costly in terms of computation or memory resources.

2.2.4 MSSP Exception Model

One important feature of MSSP, is that the paradigm’s functionality is a super-set of the functionality
of the execution paradigm used by the underlying processor cores. For example, if an MSSP execution is
composed of out-of-order superscalar processors, all of the features of traditional out-of-order superscalar
processors are present. This characteristic is exploited for handling exceptions. If an exception occurs, the
execution can revert back to the committed architected state (by squashing all in-flight speculative execu-
tion) and then re-execute the excepting code using the underlying execution paradigm. Thus, MSSP has no
exception model of its own, just a means to revert to a traditional execution to exploit that paradigm’s exe-
cution model. More detail on how exceptions are handled is covered in Section 4.5.6. Next, | demonstrate
distilled program construction.

2.2.5 Distilled Program Construction Example

An intuitive understanding of the potential of approximate code is most easily achieved through an
example. In Figure 2.9, a hot loop nest frget is shown. The corresponding control-flow graph (CFG) is
shown in Figure 2.10a. From the execution frequency annotations on the CFG edges it can be seen that the
inner loop (blocksdB, C, D, andE) is only executed on 0.1% of the interations of the outer loop (blécks
andF). In approximating this code fragment, the inner loop will be removed to optimize the execution of
the outer loop.

for (i=0; i <regset_size; i++) {
{egister REGSET_ELT_TYPE diff = live[i] & ~maxlive[i];

if (diff) {

rqyister int regno;
Br{gxlive[i] |= diff
Cf (regno = 0; diff && regno < REGSET_ELT_BITS; regno++) {
{fr(diff & ((REGSET_ELT_TYPE) 1 << regno)) {
regs_sometimes_live[sometimes_max].offset = i;
regs_sometimes_live[sometimes_max].bit = regno;
DR diff &= ~ ((REGSET_ELT_TYPE) 1 << regno);
sometimes_max++;

Figure 2.9:Example code fragment from SPEC 2000 benchmadc . Loop nest extracted from function
propagate_block , lines 1660-1678. Statements annotated with the control flow block to which they belong;
blocksE andF perform the loop counter increment and test for the inner and outer loops, respectively.
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Figure 2.10:Example task selection and application of root optimizatiofihe control flow graph for this code
example is shown for: (a) the original code, (b) the code after it has been transformed to include a task bounidary, an
(c) after the cold code region has been removed.

Constructing the distilled program consists of a series of steps, shown in Figure 2.11. For this example,
the only profile information needed are the previously mentioned edge frequencies. The internal represen-
tation is constructed by reading the instructions from the program’s memory image. Task selection is
described in detail in Section 3.2. For this example it is sufficient to say that inner loop iterations are too
small (11 dynamic instructions on average), so outer loop iterations are used for tasks, with a task bound-
ary inserted at the loop header. In fact, even outer loop iterations are too small (13 dynamic instructions on
average), so the task boundary is annotated to pack 16 iterations into a task.

When tasks are selected the control flow structure of the internal representation is transformed to
include additional blocks. For each task boundary, three blocks are added: a fork block, a verify block, and
an entry block. The fork block will contain BORKinstruction that signals to the master processor to allo-
cate a slave processor to begin executing at the corresponding verify block. The entry block is used—after
a task misspeculation has occurred—to jump start the master execution using the original program’s state.

Next the program distiller performs a liveness analysis on the original code to determine the set of val-
ues that are live across the fork block. This set of values will need to be preserved even if all of their uses in

. collect profile information

. build internal representation (IR)

. select task boundaries

. perform liveness analysis

. apply (speculative) root optimizations

. apply (non-speculative) supporting optimizations
. layout and generate code

NOoO oA~ WN PP

Figure 2.11:Logical steps in constructing a distilled program.
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live before A: t0 (&liveli]), t3 (&maxlivel[i]), t12 (i)
A
(dI t6, O(t3) #1 load maxliveli]
(dI t2, 0(t0) #2 load live[i]
zapnot 12, 0x3, t11 #3 truncate i to 16b
bis zero, zero, ra #4 regno =0
bis zero, zero, t9 #5 regno =0
bic t2, 16, t2 #6 diff = live[i] & ~maxlive]i]
beq t2, F #7 if (diff)
F:
addl t12, Ox1, t12 #1i++
Ida t0, 4(t0) #2 &livel[i]
Ida t3, 4(t3) #3 &maxliveli]
IdI s3, -10104(gp) #4 load regset_size
cmplt t12, s3, s3 #5 i < regset_size
bne s3, A #6 loop back-edge

Figure 2.12:Distilled program fragment after application of root optimizatiorBranch A7 is unnecessary as
block A has a single successor block. A3-A5 are instructions hoisted out of the inner loop, which are now dead.
Removal of A7 results in A1, A2, and A6 becoming dead. Instruction F4 is loop invariant.

the distilled program are removed, as they may contribute to the live-in set of tasks in the original program
spawned at this task boundary. The relevant live-in values for this example are shown at the top of
Figure 2.12.

After liveness analysis, the next step is to apply root optimizations. These are optimizations that would
be unsafe to apply to traditionally generated code, but are used in approximate code to remove uncommon-
case behaviors that prevent optimization of common-case paths. In this example, the inner loop (labelled
the cold region in Figure 2.10b) is removed from the distilled program. Eliminating this path may result in
task misspeculations when this path is executed by the original program but greatly simplifies the CFG of
the remaining code (Figure 2.10c). Once the inner loop is removed, outer-loop Bl@idF can be uni-
fied with no further loss of precision.

Application of the root optimizations creates new opportunities for traditional safe optimization (what
I call supporting optimizations in this dissertation). The code that remains after the inner loop has been
removed is shown in Figure 2.12. Traditional analysis can detect that both paths from Aiatedd to
block F and that instruction&1-A6 are dead; all of these instructions are removed from the distilled pro-
gram. In addition, instructioR4 is detected to be loop invariant, so it can be hoisted out of the loop.

Moving the instructionF4 to the loop pre-header—blocR is inserted in the CFG as shown in
Figure 2.13—is not without complication. This code motion crosses the incoming edge from the entry
block to blockAF. To compensate for this code motion, a copydfis added to the end of the entry block
to ensure that the value will be computed when transitioning from the original program to the distilled pro-
gram. There are situations—discussed in Section 3.3.2—that require adding compensation code to the ver-
ify block as well.

Block AF is then unrolled by a factor of 16 (a degree equal to number of loop iterations per task).
Since the induction variables are dead on exit from the loop, only the final branch instruction in the
unrolled loop is required, as it subsumes the others. Each of the three induction variable calculations (now
each consisting of 16 copies of an add immediate instruction) can be algebraically simplified to a single
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ENTRY:
from program b
a) Arod ) Idl s3, -10104(gp) # was F4
ENTRY br A
37534 | insts)
5 (1E Y P: (inserted loop pre-header block)
\ Idl s3, -10104(gp) # was F4
37534 Y
\ FORK:
FORK ‘ fork VERIFY
<every> !
(1 inst), !
4 : AF:
, :
[ (20897681 ) 20860147, addl t12, 0x16,t12  #was F1
| .
\ AF (5 insts) Ida t0, 64(t0) # was F2
4 Ida t3, 64(t3) # was F3
VERIFY 37534 cmplt t12, s3, s3 # was F5
(iinst) bne s3, AF # was F6
to program VERIEY:
verify A (in orig program)

Figure 2.13: Distilled version of example code fragmer) the CFG is further transformed to support a loop
header block (H), (b) the instruction contents of each block is shown including the compensation code in the entry
block resulting from the motion of instructidf to the loop header. Note the constants of instructibhsF2, and

F3 have been scaled by 16.

instruction with the original constant scaled by 16. The fork instruction is further annotated to spawn on
every iteration, although each task should still contain 16 iterations of the original program.

The resulting distilled program (shown in Figure 2.13) executes only 6 dynamic instructions per task,
where the original program executes over 200 dynamic instructions per task, on average. In the next sec-
tion, | demonstrate an MSSP execution using this code fragment.

2.2.6 MSSP Execution Example

While the MSSP paradigm consists of a small number of straight-forward activities, an execution can
be rather complex because many of these activities are occurring concurrently. In Figure 2.14, | list the
activities and show the causal relationships between them in a flow chart. The first action performed in an
MSSP execution is the restart, which initiates both the master and a non-speculative slave task. The slave

begin
"first task

1. restart

2. task execution
2a. non-speculative execution
2b. master execution
2c. speculative execution

3. task verification

4. task commit

5. task misspeculation recovery

uniproc. mode

Figure 2.14:Flow chart of MSSP execution.
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task can execute non-speculativelye( like a normal uniprocessor) because all of its live-in values are
available from architected state and therefore need not be verified. This non-speculative task commits its
writes immediately and terminates when it reaches the end of the task.

The master processor, on the other hand, executes task after task in the distilled program (as indicated
by the arc from the master to itself in Figure 2.14). In addition, at every task boundary it creates a specula-
tive slave task. There can be many speculative slave tasks concurrently executing, but there will be at most
a single non-speculative slave task at any time. If no non-speculative task is running, then the oldest specu-
lative slave task can be verified. If incorrect, a task misspeculation has occurred; recovery is performed by
squashing all in-flight tasks and restarting from the most recent architected state. If correct, the task will be
committed. The execution ends when the last task is committed.

MSSP can revert to a traditional uniprocessor execution by allowing a non-speculative task to “spawn”
the next non-speculative task when it has completed (as shown by the dashed arc from non-spec. task to
itself). The slave need not wait until the first task has committed before beginning the next; by simply dis-
abling the task end annotations the slave will execute the program sequentially until they are turned back
on.

To more concretely demonstrate the execution, Figure 2.15 shows an illustrative execution of the code
fragment distilled in the previous sub-section. The execution begins partway through the loop’s execution
with the variablei equal to 48 andometimes_max equal to 11. For simplicity, | will ignore the other
variables. The distilled program is constructed such that the varialsl@lways correctly computed, but
the variablesometimes_max may be incorrect when the original code executes the inner loop, which has
be removed from the distilled program.

The execution commences with the machine quiesced: all processors are idle and all buffers for non-
architected data are empty. The restart process initiates two executions of task #0: a non-speculative slave
one and a master one. While the non-speculative slave is provided with the architected state, the PC for the
master is first mapped (using a lookup table) to find the PC of the corresponding entry into the distilled
program. The master executes the entry code before entering the distilled program proper. Both tasks exe-
cute simultaneously. The slave task executes like a normal uniprocessor, immediately committing its state.
In this example, | assume that the 16 iterations executed by the non-speculative slave all avoid the inner
loop, so its only writes are 16 updates to the variable i, of which only the first and last are shown.

Writes performed by the master, on the other hand, are buffered as checkpoint data and associated with
the master’s current task. In task #0 the master performs a single write (i=64) before encountering a fork
instruction. At a fork instruction, the master increments its task number and notifies the system that the
speculative slave task #1 is ready for execution. This task is allocated to processor P2, which was previ-
ously idle. Rather than the current architected value, P2 is sent the checkpoint value (64) for variable
Since no checkpoint value is available fmmetimes_max , the architected value (11) is sent. The slave
processor begins execution in the verify block of the distilled program—usanifyPC provided by the
master—which ends with a jump into the original program. While executing the original program, the
speculative slave records its live-in values; | will assume that inner loop iterations are executed in both
tasks #1 and #2, so the predictions for both variablasadsometimes_max are recorded and sent to the
live-in buffer.

During the slave execution of task #1, the master forks task #2. Because no processor is available,
slave task #2 cannot be immediately assigned to a processor. When the non-speculative task on PO com-
pletes—after its final write to the variable—task #2 is assigned to P0O. Speculative slave task #2 is pro-
vided with the most recent checkpoint value (80)ifand the architected value (11) fasmetimes_max ,
because no checkpoint value exists. Like slave task #1, both of these values are read and recorded as live-in
values.
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PO P1 P2 architected state/verify/commit
idle idle idle arch. state: i=48, SM=11
buffers empty
Restart non-spec slave
(i=48, SM=11) -= sends PC, regs, task #0
master maps PC to entryPC
(executesasa (i=48, SM=11) = sends entryPC, regs, task #0
normal proc.)
writes i=49 » arch state: i=49, SM=11
(immediately (executes
committed) entry code)
writes i=64 » chkpt: i=64 (task #0)
(stored as chkpt)
(continues
committing fork: task #1, » assigns slave task #1 to P2
Spawn state) verifyPC spec. slave
(i=64, SM=11) <-— sends verifyPC, chkpt, task #1
writes i=80 » chkpt: i=80 (task #1)
fork: task #2, vPC » Waits until processor is available
(executes verify
(continues block, jumps to
forking original program)
tasks) reads i=64, SM=11 - live-in: i=64, SM=11 (task #1)
writes i=64 » arch state: i=64, SM=11
(task completes) task #0 chkpt cleared
Spawn spec. slave assigns slave task #2 to PO
(i=80, SM=11) <= sends verifyPC, chkpt, task #2
... jumps to orig...
reads i=80, SM=11 » live-in: i=80, SM=11 (task #2)
writes i=80, SM=13+live-out: i=80, SM=13 (task #1)
Verify (task completes) task #1 is verified, commits state
Commit arch. state: i=80, SM=13
task #1 chkpt, live-in cleared
(spawns
writes i=96, SM=12 new slave) live-out: i=96, SM=12 (task #2)
Verify  (task completes) task #2 fails to verify
(live-in SM) 11 != (arch SM) 13
Recover squash procs, purge buffers
idle/ idle . idle/ (next step: restart)

Figure 2.15:Detailed example MSSP executiohhe code example from Figure 2.9 is executed on 3 processors.
The values of only two variables are displaye@he induction variable of the outer loop, which is correctly update

by the master) andometimes_max (which is abbreviated SM and is incorrectly predicted by the master when the
inner loop is executed by the original program). In this example both speculative slave tasks execute the inner loop,
resulting in a task misspeculation when the second task undergoes verification. In the real execution, this situation is
uncommon as only one iteration out of every thousand execute the inner loop.

At the end of slave task #1, the values foandsometimes_max are 80 and 13, respectively. These
values are recorded in the live-out buffer. Because task #0 has completed, task #1 is the oldest task in the
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system and can be verified against architected state. In this case, the live-in values match the architected
state, and the live-out values for task #1 can be committed. At this point the checkpoint and live-in values
for task #1 can be discarded.

When task #2 completes and requests verification, a task misspeculation is discovered. When the
recorded live-in value fosometimes_max (11) is compared to the architected value (13), the values do
not match. The live-in predictions the master processor provided to slave task #2 implicitly assumed that
task #1 would not modify the variab®metimes_max . Because its live-in values were incorrect, the live-
out values for task #2 are assumed to be incorrect and discarded. To recover from the task misspeculation,
all in-flight tasks are squashed and all non-architected state buffers are purged, returning the system back
to the quiesced state.

2.3 Related Work

My development of the MSSP paradigm was heavily influenced by four main bodies of work: specula-
tive parallelization (SP), leader/follower architectures, speculative compiler optimizations, and dynamic
optimization systems. In the next four sub-sections, | summarize the work in each of these areas, describ-
ing the relationship to the MSSP paradigm.

2.3.1 Speculative Parallelization (SP)

The insight [39] that speculation could overcome the difficulties of traditional automatic paralleliza-
tion has unleashed a large and active body of research. The Multiscalar paradigm [25, 72] has been at the
vanguard of this movement and a major influence on me, due to my involvement in the Kestrel project, a
VLSI feasibility study of a Multiscalar architecture.

In the Multiscalar paradigm, a Multiscalar compiler generates a Multiscalar binary to be executed on a
collection of tightly coupled processing elements. Tasks, annotated in the binary, are spawned in order by a
next task predictor. Two mechanisms are used for inter-task communication: 1) the register ring forwards
register values as directed by annotations in the binary, and 2) the address resolution buffer (ARB) matches
load and store requests using the logical ordering of the tasks.

The ideas in the Multiscalar work have been evolved in many directions. One common attribute of fol-
low-on research was toward compatibility with explicit parallelism architectures like chip-multiprocessors
(CMP) [16, 33, 73], simultaneous multithreading (SMT) [2, 47], and distributed shared memory (DSM)
[15, 74] architectures. Such architectures enable resources to be used flexibly to support whatever form of
parallelism is available, an attribute shared by MSSP.

All of the proposed speculative parallelism architectures have to handle a small set of requirements:
predict the sequence of tasks, handle inter-task communication, buffer speculative state, and detect mis-
speculation. In the paragraphs that follow, | describe the ways in which MSSP differs from other proposals.

The MSSP paradigm predicts task PCs in a similar manner as it does any live-in value, by using the
approximate program. The approximate code explicitly specifies the task start PC by a combination of a
FORKinstruction and &ERIFY instruction (described in detail in Section 3.3). In some respects, this tech-
nique is similar to SP paradigms that include explicit fork instructions that specify the next tagkd?C (

[20, 33, 76]). The difference lies in the fact that in MSSP, it is not the tasks that spawn tasks but the central-
ized master. In this respect, MSSP is similar to the centralized “next task predictor” [34, 72] found in the

Multiscalar paradigm and others [2, 16]; the clear distinction being that in MSSP the prediction is made by
software rather than a hardware mechanism.

MSSP also differs from most SP paradigms because it is a checkpoint SP architecture and therefore
has no mechanism for inter-task value communication. Instead, it relies on value prediction for short inter-
task dependences. Prior research includes some partial checkpoint SP architectures that provide a check-
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point of register state. DMT [2] uses the register state of the forking task (at the time of the fork) as a pre-
diction of the task’s starting register state, relying on cheap incremental recovery to handle the inevitable
misspeculations. Speculative Multithreaded processors [47] go one step further by using stride value pre-
diction for predictable sequences; synchronization is used for unpredictable register values. The stride
value prediction is performed by starting with the previous task’s register state and injecting additional
arithmetic operations into the window to add the stride. Speculative Multithreaded processors (and others
paradigms that use value prediction [16, 56]) include a hardware value predictor; the MSSP paradigm dif-
fers in that it uses software executed on a general purpose processor to compute checkpoint value predic-
tions.

The MSSP paradigm makes little contribution in how speculative state is buffered. Like most SP para-
digms it extends the cache memory system to support speculative state storage. This enhancement gener-
ally requires the memory to support multiple versions of a given storage element simultaneously and
provide a mechanism to select/construct the storage as it is seen by each task. Centralized [26], snooping
[32, 33, 73] and directory [15, 74] implementations have been proposed. The mechanism required in
MSSP is somewhat simpler than a general SP paradigm since the checkpoints are constructed in-order and
before the (slave) task begins.

MSSP, like any SP paradigm that uses value prediction, uses value-based verification. The mechanism
described in Section 2.2.3 tracks the live-in values consumed by a task and explicitly checks these values
against architected state. This approach has similarities to the ones used in TLDS [75], which buffers the
name/value pair of values that are explicitly predicted, and SM processors [47], which explicitly predicts
task outputs and verifies them against architected state after the task commits. It differs somewhat from the
system proposed for DMT, which re-executes the instructions at retire time to detect misspeculations.

There are many similarities between MSSP and the more limited form of speculative parallelization
found in the trace processor microarchitecture [61, 63, 80]. Although the trace processor has a centralized
fetch mechanism, its instruction window and physical register file are partitioned and distributed. Traces of
instructions are distributed to each window segment in control-flow order. The trace processor microarchi-
tecture proposed the use of live-in value prediction to further de-couple the execution of the traces. Aside
from the differences between trace processors and other speculative parallelization techniques, the two
central difference between MSSP and Trace Processors are that (1) all live-in values are predicted and (2)
approximate code is used rather than a hardware value predictor. Architectures similar to the trace proces-
sor that support different partitioning policies [36] and dynamic vectorization [79] have been explored.

2.3.2 Leader/Follower Architectures

The master/slave architecture of the MSSP paradigm corresponds to the leader/follower architectures
proposed for sequential processors. The first of which | am aware was the decoupled access/execute archi-
tecture [69], which, to tolerate memory latency, broke the program into a stream that loaded and stored
data values (leader) and a stream that performed non-address computation (follower).

More recently leader/follower architectures have gathered a lot of attention, but with a micro-architec-
tural rather than architectural implementation. Pre-execution proposals [18, 52, 64, 65, 66, 85] execute a
speculative subset of the program (leader) to prefetch and generate predictions for the complete execution
of the original program (follower). It was my work in this context that lead to the concept of approximate
code [84].

Leader/follower architectures have also been proposed for fault tolerance, where both processes exe-
cute the original program, detecting inconsistencies in the executions. AR-SMT [60] performs the two exe-
cutions as threads on an SMT. Diva [4] performs the second execution on a simpler processor that can be
verified to detect design faults in the core. In some respects, the use of approximate code in MSSP is the
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software analog of Diva; the distilled program and the parallelized correct code work symbiotically to cre-
ate a fast, correct execution.

Of the leader/follower architectures, the closest to MSSP is SlipStream [77]. In the SlipStream para-
digm, the leader is also a speculatively reduced version of the code executed by the follower. The MSSP
paradigm differs from SlipStream in three major ways: (1) the follower execution is parallelized in MSSP,
(2) the code executed by the leader is a separate static image rather than a strict subset of the original pro-
gram—a separate image provides additional optimization opportunities, but it requires explicit maps to
correlate the two executions—and (3) SlipStream dynamically selects the program subset based on the pre-
dicted path, where MSSP uses a static distilled program.

2.3.3 Speculative Program Optimizations/Transformations

Our leader, the distilled program, derives its advantage over the whole execution through applying pro-
file-driven speculative transformations. Previous work on speculative transformations involves generating
code for the common case that includes checks to detect uncommon case executions. If a check fails, con-
trol flow is re-directed to fix-up code that can handle the general case. The use of speculative transforma-
tions in MSSP differs from this previous work, because verification is not performed by the transformed
code but by running the original program in parallel. Said another way, the traditional approach to specula-
tive transformations is to put the checks inline, while in MSSP they can be placed in a separate thread.

This distinction—shown visually in Figure 2.16—is an important one, because the amount of check
code can be substantial. The check code typically can be scheduled in parallel with the rest of the code, but
by being inserted inline, it will consume fetch, decode, execute, commit, and cache bandwidth and occupy
space in the processor’s instruction cache. These requirements often necessitate wider processors, whose
width makes achieving high clock frequencies difficult [57]. In contrast, MSSP relegates the check code to
a separate thread. In this way, the program that determines performance is not encumbered with the check
code and can efficiently execute on a narrow processor with a high clock frequency.

The transformations can be classified into three main types: control-flow-speculative, data-depen-
dence-speculative, and value-speculative. Control-flow based optimizations typically involve hoisting
operations across basic-blocks, introducing them onto paths on which they were not originally present [13,
17, 19, 24, 46, 70]. Data-dependence based optimizations are employed to hoist load operations above

Traditional Speculative Optimization MSSP-style Speculative Optimization
a) b)

Distilled
Program

Original
Program
Original
Program

|

Check Code

Figure 2.16:Traditional vs. MSSP-style speculative optimizatidtrevious approaches to speculative optimiza-

tion (a) optimize the expected path of the program, inserting checks inline. Although these checks can usually be
scheduled off the critical path, they still will require fetch and execution bandwidth, perhaps necessitating a wide

machine. In contrast, in MSSP (b) no checks are included in the distilled program: all checking is performed by sepa-
rate threads by a “check program” (in this case the original program). If the full execution progresses at thd rate o

the distilled program’s execution, then the benefit of the speculative optimizations can be achieved without needing a
wide machine.
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store operations that could potentially alias [28, 35, 50]. Value-based optimizations exploit dynamically
invariant values, by specializing the code for the dominant value [12, 27].

These speculative optimizations accelerate hot paths at the expense of the cold paths. Typically, the
optimizations transform the hot path such that it is not safe to directly transfer control to the cold path. First
some compensation code must be executed that reverse the optimization applied to the hot path. MSSP
incorporates a form of compensation code that | call transition code to support transitioning from the dis-
tilled program back to the original program, but a key feature of the transition code is that—like the dis-
tilled program—it need not be 100% correct. Like MSSP, the rePLay architecture [23, 58] relies on the
original code when the speculatively optimized code is inappropriate (rePLay avoids the need for compen-
sation code altogether), but it still relies on checks inlined in the optimized code to verify its appropriate-
ness.

2.3.4 Dynamic Optimization Systems

Because the most representative profile information will be available at run-time, | envision that an
MSSP implementation will construct the distilled program at run-time, like a dynamic optimization sys-
tem. There has been a lot of recent research in dynamic optimizers and dynamic translators [5, 14, 17, 21,
38, 83]. The structure of the distilled program shares some characteristics with these systems. Specifically,
both sets of systems create a second copy of parts the program (which need not be in the same instruction
set architecture as the original program) that resides at a different location in memory. This necessitates
functionality to map from one program to the other. In both systems, code is translated at a larger granular-
ity than an instruction—traces in dynamic optimizers, tasks in MSSP—and support is required to transition
back to the original executable at boundaries of these translation units.

The main difference between MSSP and these systems is that they intend to use the translated copy of
codeinstead ofthe original code, while MSSP usedntaddition tothe original code. MSSP always exe-
cutes the original code so there are no correctness constraints on the optimized copy. In contrast, dynamic
optimization systems are highly constrained.

One of the most severe constraints is that they must produce the precise architected state of the original
executable at any instruction boundary in the original executable where a trap could occur. This prevents
removal of some instructions and limits the degree instructions can be reordered. In MSSP, traps are han-
dled much in the same way that they are in existing out-of-order processors; if a slave encounters a trap, it
flushes all post trap instructions and retires all pre-trap instructions to recover the precise architected state.
Before handling the trap, the slave may need to wait to be verified and become non-speculative, if some of
the trap handling actions cannot be performed speculatively. All traps encountered by the master can be
ignored.

Dynamic optimizers are also constrained by the need to avoid memory ordering violations. In a multi-
processor context (or even in a uniprocessor system that supports coherent 1/0), unless the dynamic opti-
mizer has somehow been ensured that a variable is thread private, it must be careful when removing
memory operations. Even if reads or writes appear redundant in a uniprocessor context, they may be neces-
sary due to external reads or writes. This problem could be solved by committing groups of instructions
atomically (as is done in the Crusoe processor [38] for precise exceptions), allowing redundant loads and
stores within a group to be eliminated. In MSSP, the master’s writes are not visible to external parties, so
such precautions are unnecessary, but similar techniques are required for committing live-out values,
because no intra-task ordering information is maintained in the live-out buffer.

2.4 Chapter Summary

In this chapter, | described the parallelization of sequential program as the process of breaking them
into continuous sequences of instructions (tasks) and supplying each task with the live-in values it requires.
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| demonstrated this concept with the Execution Dependence Graphs to emphasize that the execution para-
digm should focus on the set of live-ins actually consumed, not those that could be consumed.

| also introduced the Master/Slave Speculative Parallelization (MSSP) paradigm. MSSP, as a check-
point speculative parallelization paradigm, supplies these live-in values by predicting them before the task
is executed. The MSSP paradigm differs from previous research, primarily in that it uses a specially con-
structed piece of software, the distilled program, to accurately predict these values.
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Chapter 3

Approximate Code and Constructing Distilled Programs

In this section, | discuss the constraints on and opportunities for distilled programs, the form of
approximate code used by the MSSP paradigm. First (in Section 3.1), | discuss the requirements of dis-
tilled programs and some design decisions to maximize distilled program performance. The two major
issues—dividing programs into tasks and the structure of distilled programs—are described in the next two
sections (Section 3.2 and Section 3.3, respectively). In the final two sections, | present the framework
(Section 3.4) and implementation (Section 3.5) of the prototype distiller | constructed, with emphasis on
how the structure of the distilled program affects the traditional compiler algorithms used.

3.1 “Requirements” of the Distilled Program

Since the distilled program cannot affect correctness there are no requirementseorsé but it
should perform two functions to be useful: 1) it should break the program’s execution into tasks and 2) at
task boundaries it should provide the program state expected by the original program. What makes these
“requirements” challenging is that, ideally, they are accomplished in such a way to maximize the perfor-
mance of the distilled program and, as a result, the whole execution. In this section, | describe my approach
to maximizing performance as it relates to these two requirements of the distilled program.

Task Selection Although, in theory, task boundaries could be selected arbitraity, @fter a fixed num-

ber of instructions executed by the master), performance is improved by making an informed selection of
task boundaries and tailoring the distilled program for them. As was shown in Section 2.1.2, the selection
of task boundaries determines the set of live-in values to a task. Two implications result:

» By selecting the task boundaries, the set of live-in values can be selected. Boundaries with many or
hard-to-compute live-in values can be avoided.

» Since we can determine which values are live at the task boundary, we are free to remove any dead
value without a risk of introducing a misspeculation.

Secondarily, it is desirable to have tasks about the same size. This desire is secondary because task size
imbalance can be tolerated, at the expense of lower resource efficiency.

In addition, a mechanism is required to indicate the end of a task to the slave processor. When execut-
ing properly, the slave processor should stop executing just before the instruction that the master specified
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as the first instruction of the following task. Coordinating task ends with task beginnings allows the concat-
enated task executions to be equivalent to a sequential execution of the program.

Providing the Expected Program StateCorrectly stitching individual task executions together requires

that the state used by a task must match the state at the end of the previous task. This requirement can be
accomplished trivially—without correctness guarantees—»by taking a strict subset of the original program
as is done in the SlipStream paradigm [77]. To improve performance of the distilled program beyond that
of SlipStream’s A-stream, | relax two constraints:

» The distilled program need not be a strict subset of the original program. Code can be transformed and
re-scheduled, and new code can be introduced. As a result, there is no longer a one-to-one mapping
from the distilled program to the original program, so an explicit mapping function for program
counters will be required.

» The distilled program can store data in different locations than the original program. Removing this
constraint allows limited register resources to be used more effectively by changing which architectural
register is bound to a particular value and binding memory values to registers. Before the original code
can be executed by the slave, the distilled program’s state will need to be mapped to the locations in
which the original programi.g., the task executed by the slave processor) expects it. This functionality
will be performed byransition code

In the two sections that follow, | explore these two issues in greater detail.

3.2 Selecting Task Boundaries

The location of the task boundaries can affect the performance of the MSSP paradigm. In selecting
task boundaries, there are three main issues to consider: 1) how big should tasks be, 2) what program
boundaries result in good tasks, and 3) what mechanism should be used to specify task end conditions to
slave processors. These three issues have tightly-coupled interactions, but, in the sub-sections that follow, |
try to consider each in turn. At the end of this section (in Section 3.2.4), | describe my task selector imple-
mentation.

Before getting into the details, it is useful to briefly contrast task selection for Multiscalar from that for
MSSP, as there are important differences. The Multiscalar task selector tries to encapsulate reconvergent
control flow within a task to facilitate next task prediction by minimizing the number of task successors;
for MSSP control independence is not a concern. Both task selectors try to minimize the number of inter-
task data dependences, but for different reasons. Multiscalar is trying to minimize the likelihood that tasks
stall or are squashed due to value communication, while MSSP is trying to facilitate distillation. For both
paradigms, tasks must be a minimum size to tolerate the startup overhead, but for the tightly-coupled Mul-
tiscalar paradigm tasks of 10-20 instructions are sufficient, while for MSSP tasks of hundreds of instruc-
tions are more desirable. Both paradigms desire tasks to be roughly equal in size, but MSSP may be more
tolerant in this regard because, without the constraint of the register ring, it can dispatch tasks to any idle
processor.

3.2.1 Task Size

The size of tasks can have a first-order impact on performance, as many of the characteristics of an
MSSP execution are indirectly affected by task size. The two main factors that improve with larger tasks
are distillation effectiveness and bandwidth utilization. The two main factors that are worse with larger
tasks are misspeculation detection latency and the storage requirements for buffering speculative state.

Optimization Effectiveness.Larger tasks means fewer task boundaries, which generally results in less
constrained approximate code, improving the effectiveness with which it can be optimized. Sensitivity
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analysis in Section 5.2.7 shows that my distiller prototype exhibits a 9% reduction in the number of
dynamic instructions executed in the distilled program when average task size increases from 87 to 342
instructions (a factor of 4).

Bandwidth Utilization. Interconnect bandwidth is used to move around task, live-in and live-out values
between processors. The amount of bandwidth required per task scales sub-linearly with task size, so the
bandwidth required per original program instruction decreases with larger tasks. This reduction is found in
both the estimates in Section 4.4.3 and the data shown in Section 5.2.7

Misspeculation Detection LatencyLess desirably, larger tasks will increase the time between task
spawning and task retirement. Larger tasks generally results in a longer latency to detect a misspeculation
as is shown in Section 5.2.7.

Storage RequirementsHardware structures are required to buffer checkpoint, live-in, and live-out data
for in-flight tasks. Estimates in Section 4.4.3 indicate that larger tasks will have larger checkpoints, more
live-in values, and more live-out values, requiring additional hardware buffering at the L2 cache banks as is
shown empirically in Section 5.2.7.

To achieve tasks with a given size, the task boundary locations must be selected at suitable intervals.
Since the number of instructions along different control-flow paths varies, not all tasks will be uniform in
length. In addition, as described in the next sub-section, some task boundaries are more desirable than oth-
ers, leading to additional variability in task size.

3.2.2 Task Boundary Locations

Because task boundary locations determine live-in sets, their selection can impact the effectiveness of
distillation. Optimal task selection is still an open problem (and possibly undecidable), but | understand
some of the factors that make good task boundaries. Task boundaries should be placed where they mini-
mally constrain optimization. For example, if all uses of a value are removed from the distilled program,
the value becomes dead and its creating instruction can be remmledsa task boundary is placed in its
original program live range, forcing the value to be computed for the checkpoint. Thus, one goal of task
selection is to minimize the number of otherwise dead values whose live ranges.are cut

This task selection may seem to be a simple optimization problem, but a circular dependence makes it
particularly challenging to solve. To choose task boundaries, the algorithms wants to know which values
are dead, but the dead values are the result of optimizations that require knowledge of the task boundaries.
This circular dependence is somewhat analogous to the inter-dependence between register allocation and
instruction scheduling [9, 31]. My current implementation of the task selector relies on control-flow-based
heuristics to select task boundary locations. Integrating the task selector with the optimization passes or
performing the process iteratively is an area of future work.

The three heuristics | use have been identified in previous research on speculative multithreading: (1)
breaking tasks after function calls (function continuations) [2, 56], (2) in loop headers (loop iterations) [47,
33, 76], and (3) after loop exits (loop continuations) [2]. These points in programs are expected to gener-
ally have below average numbers of short dependences crossing them because programmers often encap-
sulate tightly coupled operations in functions, loop bodies, and loops. These heuristics generally result in

1. In addition to constraining approximation by forcing particular values to be computed, task boundaries constrain code transformations that
involve code replicationg.g, in-lining). These constraints result from co-location of entries into the distilled program with task boundaries. The
proposed hardware implementation maintains a one-to-one mapping from the original code to the distilled program at the entry sites. If an entry
site is replicated, only one copy can be mapped, making the other sites unreachable for misspeculation recovery.
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reasonable task selection, but this aspect of distillation deserves further attention as some selections are far
from optimal.

3.2.3 Specifying Task Ends and Task End Suppression

Tasks executed by slave processors must end at the point the next task will begin. If this invariant is not
maintained, the tasks cannot be “stitched” together to be equivalent to a uniprocessor execution. After con-
sidering a number of alternative approaches, | settled on something akin to Multisstiarlsits[72] for
my implementation. In this simple approach, each static instructions in the original program is either the
first instruction of a task or not, and task beginning instructions are annotated. These single-bit annotations
can be stored in a separate region of memory, fetched with the instruction on an instruction cache miss, and
buffered along side the associated instruction in the instruction cache. With these annotations it is trivial
for a slave processor to stop executing at the beginning of the next task.

Because one goal of my MSSP implementation was to avoid modifying the original program in any
way, this approach to marking task boundaries constrains task selection. As the annotations are uncondi-
tional, any path from any calling context through an annotated instruction terminates the task. In general,
this inflexibility is not a large concern, as control-flow profile information can be used to place task bound-
aries appropriately along hot paths, and imperfect task selection along cold paths can be tolerated.

There is one common idiom for which this constraint in untenable: tight loops with high iteration
counts. If constrained to make either a single iteration a task or the whole loop a task, we are left with the
sub-optimal choice of small tasks or very large ones. To handle this problem with minimal additional com-
plexity, | introduced task end suppression.

Task end suppression enables multiple iterations of these small loops to be encapsulated into a single
task. To use suppression,SUPPRESSnstruction is included in the distilled program. t&&PPRESS
instruction specifies two things: 1) the PC of an annotated instruction to ignore and 2) the number of times
it should be ignored. When executed, tR6PPRESSnstruction’s information is communicated to the
appropriate slave processor. For simple loops, the loop in the distilled program is unrolled to a correspond-
ing degree. In Section 5.2.2, | quantitatively demonstrate the importance of task suppression.

3.2.4 Task Selection Implementation

In this sub-section, | describe some of the details of my task selection algorithm (shown in Figure 3.1).
All task selection decisions are made using only a call graph and the functions’ control-flow graphs anno-
tated with edge profile information. Task selection is performed one function at a time, using a post-order
traversal of the call graph to process a function’s callees before itself. The task selection algorithm has two
main phases: 1) using the heuristics described in Section 3.2.2, the algorithm identifies a set of potential
task boundary sites, and 2) a subset of those sites is selected to balance task sizes while trying to construct
tasks of a desired size.

select_tasks  (call_graph, cfg[]):
foreach function f in a post-order traversal of call_graph:

regions =]
regions[0] := copy of cfg[f]
insert potential task boundaries after loops and calls
handle_loops (regions) (see Figure 3.3)
promote_task_boundaries (regions) (see Figure 3.4)
transform cfg[f] to include the task boundaries in regions

Figure 3.1:Top-level algorithm pseudocode for selecting tasks.
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Currently, | use the number of dynamic instructions as the metric for load balancing tasks. Clearly, a
task’s dynamic instruction count is path-sensitive. To evaluate a task’s dynamic length in the presence of a
potentially unbounded number of cyclic paths, the algorithm considers only acyclic paths; it works on path
fragments from most to least frequently executed until each function is covered.

The first step of the algorithm is to make a temporary copy of the function’s control flow graph (CFG).
This copy of the CFG is traversed and potential task boundaries are inserted at the beginning of blocks fol-
lowing function call invocations and loop exits. Figure 3.2 shows an example CFG before (a) and after (b)
this step.

Cyclic control flow is removed by the algorithm shown in Figure 3.3. First, | find all loops and con-
sider each (inside-out) for insertion of a task boundary at the top of the loop. Task boundaries are inserted
if the loop body exceeds a certain dynamic size. If a loop header is inserted, the loop body is considered as
a separate acyclic region for the purpose of inserting additional task boundaries. If no task boundary is
inserted into the loop, the loop is logically collapsed and considered as an acyclic region with a weight
equal to the length of the dominant path through the loop body scaled by the average number of iterations
executed.

The algorithm for selecting which potential task boundaries to promote as the final task boundaries is
shown in Figure 3.4. For each acyclic region, a path with the highest execution count is selected. The dis-
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Figure 3.2: Task selection algorithm examplé function with two loops, the second of which is conditional an
calls another function (a). To select tasks the algorithm first inserts potential task boundaries after loops and function
calls (b), then acyclic regions are formed (c) by either collapsing loops (e.g., loopl) or by separating the loop body
into a new region by inserting a task boundary in the loop header (e.g., loop2). Lastly, a subset of the potdntial tas
boundaries are promoted to create the final set of task boundaries (not shown).
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handle_loops (regions): /* regions initially has a single region */
loops := interval analysis of regions[0] to find loop hierarchy
foreach loop L in post-order traversal of loops:
whole_path_len := loop_weight (L) / exec_freq(loop_preheader(L))
iter_path_len := loop_weight (L) / exec_freq(loop_header(L))
if (whole_path_len < whole_path_threshold):
substitute L in regions[0] with a block of length “whole_path_len”
else:
unroll_factor := loop_path_threshold / iter_path_len
insert task boundary in L's loop header, with unroll_factor
remove L from regions[0]
remove back edges from L
regions.append(L)

loop_weight (loop):
weight := 0
foreach block B in loop:
weight +=  block_weight (B)
return weight

block_weight  (block):
weight = instruction_count(block) * execution_frequency(block)
foreach function F called by block:
weight += average path length through F
return weight

Figure 3.3:Algorithm pseudocode for creating acyclic regions for task selection.

promote_task boundaries (regions):
foreach region R in regions:
foreach block B in region R (in order of execution frequency):
select dominant path through B (stopping at promoted task boundaries)
compute path lengths between potential task boundaries
promote task boundaries in path, as suggested by Equation 1
remove un-promoted task boundaries in path

Figure 3.4: Algorithm pseudocode for selecting potential task boundaries to promote.

tance between possible task breaks along this path can be trivially calculated. All that is required is to
determine the best possible subset. | exhaustively quantify the quality of all sets of tasks by evaluating

Equation 1, wherél is the quantity to minimizeT is the target task size, anglis the dynamic instruction

length of thenth task. This function is agnostic of the number of tasks for a given path, but penalizes tasks
that are not close to the desired size; theerm in the denominator biases task selection toward oversized
tasks. The selected set of task boundaries are promoted to permanent status and the other candidate task

boundaries along that path are removed.

N 2

— (T_tn)
= Z T,
n=1

(EQ1)
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Because the number of combinations grows exponentially with the number of potential task bound-
aries, | limit the computation required by divide-and-conquer. When there are many potential task bound-
aries (greater than 10 in the current implementation) and the path is above the target path length, the path is
split by promoting the potential task boundary that will come closest to balancing the two resulting sub-
paths.

Once the dominant path has been handled, | select blocks (in order of execution frequency) that are on
paths that have not yet been evaluated. For each block, | trace backward and forward along the most fre-
guently executed path until a promoted task boundary is reached. This path is then evaluated as above for
new task boundaries, only considering task boundary sites that have not previously been considered. This
process is repeated until all blocks in the function have been covered by paths.

After processing each function, I collect some summary data about the function for use by functions
that call this function. If the function has no task boundaries on the dominant path, the length of the domi-
nant path is stored. Otherwise | collect the distance along the dominant path from the function entry to the
first task boundary and from the last task boundary to the return. If a function calls functions that have not
yet been processed because of recursion or mutual recursion, a task boundary is inserted into the beginning
of the function.

Once the final task selection has been decided, the distilled program’s control flow graph is trans-
formed in a manner described in the next section.

3.3 Distilled Program Structure

Partitioning the program into tasks is only the first step to constructing the distilled program. In this
section, | describe the structure of the distilled program. This structure tries to maximize the flexibility
available in constructing the distilled program while maintaining its ability to correctly compute the state
expected by the original program. Specifically, the distilled program structure has two main features: 1) it
is a distinct code image from the original program necessitating explicit mapping between the two pro-
grams, and 2) it employs transition code enabling the distilled program to store data in different locations
than the original program.

3.3.1 Mapping Between Programs

Transformations like inlining and constant folding can significantly improve the distilled program’s
performance but result in a distilled program that is no longer a subset of the original program. Once this
subset property is lost, there is no longer a one-to-one mapping between instructions in the distilled and
original programs. Instead, by making the distilled program a distinct program image, explicit maps are
required to map program counters (PCs) from one image to the other.

This mapping problem can be found in other contexts where an additional copy of the program is gen-
erated. Software binary translators and dynamic optimization systems [5, 14, 21, 38, 83], which typically
construct optimized versions of traces, construct a hash table that maps an original program PC to an
address in a translation cache where the optimized trace resides. At points in the trace where control flow
exits the translated code, the original PC is embedded somehow to enable recommencement of interpreta-
tion. Hardware-based dynamic optimizers [49, 58] and trace caches [62] use hardware lookup tables to
perform the mapping function.

There are four occasions in MSSP that PCs need to be mapped from one program to the other. The first
two cases arise from the fact that although the distilled and original programs are distinct program images,
they share the same data image. This sharing causes difficulties when program counters (PCs) are stored as
data in registers or memory, because the stored value has to point to oneomntlagether. It is simplest if
all stored PCs point to the original program. To implement this approach, whenever the master writes its
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PC to a registerd.g, the link operation of a call) or jumps to a PC from the data spaag @ return,
switch statement, or virtual function), the PC will first have to be mapped.

The other two cases when PCs have to be mapped are when the master is restarted after a misspecula-
tion and when the slave task is forked by the master. To support restarting the master, a set of mappings is
maintained that encode amtry PC in the distilled program for each annotated instruction in the original
program. The process for forking a slave is discussed in Section 3.3.3.

3.3.2 Transition Code

Some desirable optimizations, including register re-allocation and scheduling, imply that the data
image of the distilled program not exactly match that of the original program. Registers are a valuable
resource, and the register allocation used in the original program may be rather inefficient for the distilled
program. The ability to re-allocate registers and allocate additional variables to registers enables register
moves, saves and restores to be removed from the distilled program and reduces cache bandwidth require-
ments. Similarly, re-scheduling the code can be beneficial, but it changes the lifetimes of variables in the
program.

Although the distilled program may execute faster with a modified data image, the checkpoints must
supply the state as expected by the original program. This apparent contradiction can be resolved by the
use oftransition code Transition code, which is much like the compensation code required for trace sched-
uling [24], is executed during the transition from the original program to the distilled program (and vice-
versa) to map the register and memory state of one program to how it is expected in the other program. |
will demonstrate the importance of transition code with two optimizations.

Figure 3.5 shows a loop that contains code that is loop invariant. Task selection inserts a task boundary
at the loop header making each loop iteration a task. Associated with the task boundary is an entry that will

a) [insert task | b) C)

boundary load r11, 768(gp)
load r12, 0(r11)

in transition

[ Task boundaryr\_u

load rl11, 768(gp)
load r12, O(r11)
use rl2

in transition
load r11, 768(gp)
load r12, 0(r11)

[Task boundar;_\_j

use rl2

load rl1, 768(gp)
load r12, 0(r11)
use rl2

Figure 3.5:Code hoisted across a fork instruction is replicated in the transition cdiiigstrative example shows

a loop containing a loop invariant computation (a), which was not hoisted in the original code (perhaps due to an
ambiguous memory dependence). Because a task boundary is inserted at the head of the loop (b), hoisting the code
out of the loop crosses the task boundary (c). The transition code requires a copy of the hoisted code to fill r12 with
the expected value.
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Figure 3.6: Code can be percolated down into transition code if used only in one task of the original program.

The illustrative example shows a widely separated definition (def) of r13 and its only use (a). The use is by a
branch that is sufficiently biased that it will be removed from the distilled program, but a task boundary separates the
def and the use and therefore r13 is live in the checkpoint (b). Since the def is dead with respect to the distilled pro-
gram it can be percolated down into the transition code (c).

be used to restart the master if a misspeculation occurs inside the loop. When the loop invariant code is
hoisted out of the loop in the distilled program, a discrepancy from the original program’s state is created.
Without the transition codeal2 will possibly contain the wrong value. To assure thzt has the right

value, the loop invariant code is copied into transition code that is executed before the master enters the
distilled program proper. The transition code will affect the time it takes to restart the master, but the loop
invariant code has been removed from the steady state distilled program execution.

Figure 3.6 shows a case where a variable is live across task boundaries but only into the following task
of the original program. In this case, the computation of the variable can be completely delegated to transi-
tion code, via partial dead code elimination [40]. The only useldf is a highly biased branch. This
branch is removed from the distilled program, but becaw3eés live range crosses a task boundary it still
must be in the checkpoint. Since r13 is not needed in the distilled program, its computation can be perco-
lated downward into the “out transition” code. The result of this transformation is that the master is no
longer encumbered by this computation, as this transition code will be executed by the slave before execut-
ing the task in the unmodified original program. While the master’'s execution is frequently the critical
path, the slave’s execution is exceedingly tolerant of additional overhead.

3.3.3 Resulting Structure

The resulting structure of the distilled program is shown in Figure 3.7. Two special instructions are
used to manage the transition from the distilled program to the original program. The first, using a branch-
style format, is theFORKinstruction, which marks the task boundary in the distilled program. Upon
encountering &ORKinstruction, the master processor continues on the fall-through path. In parallel, an
idle slave processor is instructed to begin fetching at the target specified by the fork instruction, which is
the starting PC of the out transition code.

At the end of the out transition code, the second special instructieRIEY) is inserted. Th&ERIFY
instruction signals to the hardware that a transition to the original code is to be made and that collection of
live-in values should commence. Because the distilled program may not be spatially close to the original
program, the jump distance will likely be larger than the maximum displacement in a branch format
instruction. Typically indirect branches are used in such circumstances but are problematic here because all
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Figure 3.7:The distilled program structure supports checkpointing and misspeculation recoBagic  blocks
ending inFORKinstructions continue executing the fall-through path on the master processor and spawn task execu-

tion on an idle slave processor. Entries, with associated transition code, enable restarting the master after a misspec-
ulation.

registers might need to contain the values expected by the original code. As a result, | specify the target PC

using a combination of the target bits in tiERIFY instruction and the 32-bits that follow in the instruc-
tion stream.

3.4 Framework for Automatic Program Distillation

In this section, | describe the approximation framework (program distiller) used in this dissertation.
The structure of this distiller is not intended for a real implementation. Rather, it is intended as a fast path
to identifying the important factors in designing a real approximator.

The implementation that | envision for use in real systems is one that transparently constructs distilled
programs at run time. By doing the construction at run time, the approximator has access to the most rele-
vant profile information: that from the current run of the program. Accurate profile information allows the
program to be aggressively approximated while maintaining a low task misspeculation rate. Of course,
run-time construction of the distilled program is not mandatory, but | believe that some run-time control
mechanism is. Otherwise, because profile information is so highly leveraged, an unrepresentative profile
could lead to the situation where a task misspeculation occurs for every task. Minimally, the run-time sys-
tem should recognize recurring task misspeculations and shift out of MSSP mode for a period of time. Fur-
thermore, it is easy to imagine distiller implementations with on-line and off-line components, where a

candidate distilled program is constructed off-line and refined on-line as more representative profile infor-
mation is collected.

To approximate the quality of a run-time approximator without its complexity of implementation, |
have built a static approximator, which | provide with profile information from the run of the program with
which the evaluation is to be performed. While this self training is optimistic in some respects, this meth-
odology can not be considered to achieve a strict upper bound on performance. A real run-time system has
two advantages over my static implementation. First, a run-time system can exploit phase behavior,
deploying different versions of code as usage patterns in the code change. Second, a run-time system can

evaluate how well the constructed distilled program is working and use the feedback to tune the approxi-
mation.
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My implementation of the approximator is a binary-to-binary translator for the Alpha architecture
[68], except rather than working on binaries it works on already loaded static program images. The system
is built inside a simulator built using the libraries from the SimpleScalar toolkit [10]. The simulator loads
the static image from the program binary into memory, where it is readable by the approximator. The
approximator does not modify the original static image but creates a second one that exists in parallel in a
different range of memory.

The internal representation (IR) used within the approximator is very close to the Alpha instruction set,
as was done in the Alto binary translator [54]. This IR makes the process of translating into and out of the
IR trivial. Though many of the transformations are performed on the IR directly, some higher level con-
structs é.g, loops, variable live ranges) are reconstructed from this low level IR.

The program optimizations can be broken into two classes—speculative and non-speculative—sum-
marized in Figure 3.8. The speculative optimizations—enabled by the approximate nature of the distilled
program—are applied first. Their application is controlled by “correctness thresholds” specified to the dis-
tiller and profile information described in Section 3.4.1. Once these speculative optimizations have been
applied, the resulting code generally has new opportunities to apply non-speculative optimizations. These
transformations and optimizations (described in Section 3.5 below) are largely drawn from the existing lit-
erature in optimizing compilers, but some of them need to be altered slightly to support the distilled pro-
gram structure. An example of such an interaction for liveness analysis is described in Section 3.4.2.

3.4.1 Guiding Root Optimizations with Profile Information

The critical advantage of approximate code is that it need only be correct in the common case. As a
result, the approximator can consider a broader range of transformations and optimizations than a tradi-
tional optimizing compiler. In a traditional compiler, any optimization that is correct and deemed profitable
can be applied. In approximation, correctness is not mandatory, it only contributes to which optimizations
are profitable. For the root optimizations, which do not preserve correctness, | use profile information to
estimate an optimization’s impact on correctness.

| assign a required correctness threshold for each optimization. To apply a given optimization, the pro-
file information must indicate that the optimization will preserve correctness a fraction of times greater
than the threshold. For example, a branch removal threshold of 98% may be set that will remove a branch
with a 98.2% static bias, but not one with a 97.6% static bias. Thresholds for each optimization can be
tuned individually; the thresholds available on the current distilled prototype are shown in Table 3.1.

By varying these thresholds a whole range of approximate programs can be generated that trade off, to
varying degrees, accuracy for common-case performance. As will be demonstrated in Section 5.2.1, many

root (speculative) optimizations: supporting (non-speculative) optimizations:
branch elimination dead code elimination
indirect-to-direct call conversion inlining
long dependency store removal register re-allocation
idempotent operation removal register move elimination
silent store removal save/restore removal
loop unrolling

global pointer computation removal
control-flow simplification

stack pointer optimization

constant folding

Figure 3.8: Summary of root and supporting optimizationRoot optimizations are applied first and expose new
opportunities for the supporting optimizations.
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TABLE 3.1 Correctness thresholds for program distiller optimizations.

Parameter Typical Value Explanation

Branch Elimination | 99% biased The fraction of dynamic instances that must go to the domjnant
Threshold target for the branch to be removed.

Idempotent Optimi- | 99% correct The fraction of times that an instructions output must match an
zation Threshold input for it to be removed.

Silent Store Thresh- | 99% correct The fraction of times that a store must have overwritten the Jalue
old in memory with the same value for it to be removed.

Long Store Definition| 1000 instructions The store to load distance at which a dependence is considered a
long dependence.

Long Store Elimina- | 99% long The fraction of store instances that have to be classified asjlong
tion Threshold for the static store to be eliminated.

of the optimizations are largely insensitive to the supplied threshold value because where the optimizations
are applicable they will be correct almost all of the time. It is mainly the branch elimination threshold that
has leverage on distillation. Sensitivity analysis in Section 5.2.9 shows that for most benchmarks, setting
this threshold in the 98 to 99 percent range generally results in performance rivaling that of the best config-
uration.

Currently | do not consider the benefit of an optimization, only its cost (in terms of induced misspecu-
lations). If benefit can be predicted, the approximator can potentially avoid applying optimizations that
incur misspeculation but do not significantly improve common-case performance. This approach is not
done currently as it is difficult to predict the impact that a transformation will make on later optimizations.
Obvious future work includes developing techniques to predict benefit or support for generating and evalu-
ating multiple versions of a piece of code.

3.4.2 Implications of Distilled Program Structure on Liveness Analysis

As discussed in Section 3.3, the distilled program is structured to support transitions to and from the
original program; this structure impacts how liveness analysis is performed. Some operai@na (
branch that is never taken) in the original program will be removed from the distilled program. This gener-
ally creates new opportunities for dead code elimination in the distilled program. It is important, though, to
not consider dead any value that will be needed as a live-in to a task in the original program.

When doing dead code elimination on the distilled code we must consider paths through the transition
code from the inserteBORKinstructions. The/ERIFY instructions at the end of the transition code are
considered as uses of all variables live at that point in the original code. To minimize the number of live-in
variables, liveness analysis is performed on the original code only considering paths that have been
observed to be exercised. By ignoring unobserved paths, the analysis is more precise for the active paths,
but misspeculations may be introduced if the unobserved paths are executed.

3.5 Implementation

In this section, | present the flow of the approximator implementation. This implementation should not
be construed athe way an approximator should be built, but rather as documentation of the system that |
have built for the purpose of interpreting the results in Chapter 3. As most of the transformations are well
understood in the existing literature—generally covered in [53]—I intend this section to be an overview,
only delving into details when peculiarities of approximation are important.

The approximation implementation can be broken down into a sequence of 5 stages: initialization,
instruction-level optimizations, dead code elimination, function-level optimizations, and output. | describe
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each of these in the following sub-sections and then briefly discuss the implementation’s performance. A
flow chart that overviews the distiller's operation is shown in Figure 3.9.

3.5.1 Initialization

At the end of the initialization phase an un-optimized version of the internal representation has been
constructed and partitioned into tasks. This phase consists of the following sub-steps.

Build Internal Representation (IR). Internal representations for each instruction can be created from the
static program. Using a control-flow edge profile, IR instructions are assembled into blocks, which in turn
are assembled into control-flow graphs (CFGs) on a per-function basis, and a call graph is constructed.
Only instructions on paths that were observed to execute are considered. Like the FX!32 binary translator
[14], my distiller identifies candidate targets of indirect branches through profiling.

Liveness AnalysisAt this point the IR exactly matches the original program, so | can identify the set of
live variables at all points of the original program that are expected to be reached. This set is found by per-
forming an inter-procedural liveness analysis and is used to provide the live-in sets fovERuHy
instruction associated with task boundaries. This means of generatiMEHIEY live-in sets is slightly
conservative, in that a value identified as live may be used in the future but not within the task. To facilitate
the liveness analysis, | first match up register saves and restores to track liveness through stack spills.

Task Boundary SelectionUsing the heuristics and the algorithm described in Section 3.2.4, the location
of task boundaries are selected. Then H@RKinstructions are inserted and the CFG transformed to
include the in and out transition code blocks for entry and verification.

3.5.2 Instruction-level Optimizations

The second phase is local optimizations that typically modify or remove a single instruction, or, rarely,
a small number of clustered instructions. These optimizations are largely independent and could be reor-
dered without impacting their efficacy.

Initialization :

Build Internal Representation
Liveness Analysis

Task Boundary Selection

v

Instruction-level Optimizations:
Long Dependence Store Removal
Global Pointer Optimization
Branch Optimizations
Silent/ldempotent Optimizations

v

Dead Code Elimination

v

Control Flow Simplification

Function-level Optimizations:

Inlining (followed by Dead Code Elimination)
Stack Pointer Optimization

Register Re-allocation

Save/Restore Elimination

v

Code Output:
Code Layout
Code Generation

(cycles until a fixed point is reached)

Figure 3.9:Overview of phases of program distiller implementation.
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Long Dependence Store Removals mentioned in Section 2.1.3, if the distance between a store and its
first use exceeds the task window, then the distilled program need not perform the store, because, by the
time the use is executed, the original code will have already updated architected memory. Using a memory
dependence profile that includes a histogram of store-load distances, | identify candidates for removal.
Two parameters are specified to control this optimization: 1) a specified distance, and 2) the fraction of
store-load distances that must exceed this distance. If a store satisfies these criteria, it is removed from the
distilled program.

Global Pointer Optimization. In the standard Alpha calling convention, the global pointer (GP) is not a
callee saved register. This means that, unless the compiler verifies that the GP is unmodified in a called
function, it must recompute it after a return before it uses it again. Perhaps due to separate compilation or
from the use of libraries, the code studied is rife with GP re-computations, even though only one value for
the GP is ever used. The approximator assures itself that the same GP value is computed at every instance,
then removes the GP computations and ensures that the GP is never modified.

Branch Optimizations. Removing and simplifying branches is a major source of performance improve-
ment as many branches are heavily biased to a single target. If the bias of a direct or indirect branch (as
recorded in the edge profile) exceeds a specified threshold, the branch is removed along with the CFG edge
to the non-dominant path. If this is the only path to the target block then the two blocks can be unified; oth-
erwise, nothing is done at this time, and, if necessary, an unconditional branch is inserted at code layout
time. If an indirect call calls a single function more than a specified fraction of the time, a direct call can be
substituted.

Silent/ldempotent Optimizations.As was noted in [43], some stores frequently write a value to a mem-
ory location that is already holding that value. By profiling for this behavior, we can identify stores that are
silent more than a specified fraction of the time. These stores can be removed. In addition, some static
instructions consistently produce as output one of their input values. These instructions, which | refer to as
idempotent operationsave not been previously studied to my knowledge. These sources of this behavior
fall into three classes: 1) truncating a value to a smaller bit-widtf), from 64b to 32b because the pro-

gram casted &ong long to anint ) but the upper 32b bits were already zeroes, 2) logical operations
where one operand is generally a superset of the other, and 3) conditional moves with highly biased predi-
cates. If the important input operand uses the same architectural register as the output, the instruction can
simply be removed. Otherwise it is replaced by a register move instruction, which generally can be
removed by register re-allocation. Silent register writes that are not idempotent operations are not opti-
mized because they interact poorly with register re-allocation (described below in Section 3.5.4).

3.5.3 Dead Code Elimination and Control-Flow Simplification

The removal of instructions by the above instruction-level optimizations often renders other instruc-
tions dead. By doing an inter-procedural liveness analysis, we can identify the dead code and remove it.
The removal of dead code occasionally removes all instructions from a given basic block. When this
occurs, the block is removed and all input arcs in the CFG are redirected to the block’s single successor (if
a block has multiple successors it must be terminated by a branch and therefore be non-empty).

Occasionally, the removal of blocks will cause all paths from a branch to lead to the same block. When
this occurs, the branch is no longer necessary and can be removed. In this way, un-biased, hard-to-predict
branches can be removed. Removing the branch will generally render new code dead, resulting in addi-
tional benefit from re-running dead code elimination. As the dead code elimination may result in new con-
trol-flow simplification opportunities, | alternate these optimizations until a fixed point is reached. Most
benchmarks benefit from as many as 4 iterations of this process.
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3.5.4 Function-level Optimizations

In this stage, | apply optimizations that have effects that span a function. | optimize each function sep-
arately, in a post-order traversal of the call gragh (eaf functions first).

Stack Pointer Optimization. Most functions use the stack to store locals and saved registers. Non-leaf
functions {.e., ones that call other functions) allocate space on the stack by adjusting the stack pointer (SP)
on entry and exit, so that called functions use a different region of the stack. During approximation, non-
leaf functions are frequently converted into leaf functions, either by removing paths containing calls or
through inlining (see below). In most of these cases, the pair of SP manipulations can be removed by
adjusting the offset of loads and stores that are relative to the SP. This optimization is not applied if any
unrecognized manipulations of the SP are presegt €opying the SP to another register or other updates

to the SP).

Register Re-allocation After dead code elimination and inlining, there are often opportunities to make
better use of the registers and remove register move instructions. To accomplish this, | first extract the reg-
ister def-use webs [53].€., symbolic registers) using data-flow analysis to match the reaching definitions
with the uses. This is greatly affected by the distilled program’s structure, as entries to the distilled pro-
gram must be considered as definitions &&RIFY instructions as uses of all live registers. The webs are
used to build an interference graph, which encodes which webs cannot be allocated to the same registers.
Then webs that are live-in or live-out to the function or are arguments or the return value of a called func-
tion are pre-colored to the architectural register they were assigned in the original program. Move instruc-
tions are identified. Iterated register coalescing [29] is then performed, which removes most of the
unnecessary register moves.

Remove Saves/RestoreBuring register re-allocation, when assigning registers to the interference graph,

| attempt to use the minimum number of registers and only use the callee-saved registers if necessary. Typ-
ically, because register pressure is lower in the approximate code, many saves and restores can be avoided.
Because none of the currently implemented optimizations potentially increase register pressure, no spilling
is necessary beyond what was performed in the original code.

Inlining. After processing a function, | consider inlining it into its callers. This is always applicable if the
function is called from a single call site. Otherwise, because inlining would require code replication, it can
only be considered for leaf functions that do not contain any task boundaries or non-return indirect
branches (in the approximate version) due to limitations of mapping from the original program to the dis-
tilled program. | also limit the static size of functions to prevent code explosion and limit optimization time
(for many of the optimization implementations time scales super-linearly with instruction count). When a
function is inlined, it is copied into the CFG of the calling function. Return blocks are converted into
unconditional jumps to the return target. The call instruction is removed and inserted in its place are a
sequence of instructions (LDAH and LDA) that compute the expected return address, which is sometimes
a live-in to the original code; when unneeded this computation is eliminated by dead code elimination.

3.5.5 Code Output

Once optimization is complete, the IR needs to be converted back to a new static image. This process
involves code layout, recomputing branch target offsets, and generating code.

Code Layout. With the available profile information, it is natural to perform a profile guided layout of the
code. | use simplified version of the Pettis and Hanson algorithm [59] that performs intra-procedural layout
to minimize taken branches along the dominant control-flow paths. In the layout process, | can identify
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where unconditional branches will be needed and allocate space for them. At this time | construct the map
that maps restart entries, indirect branch targets and return targets in the original program to their corre-
sponding location in the distilled program. Transition code for the function is laid-out after the function to
minimize fragmentation in the master’s instruction cache.

Code Generation.Having computed the new program counters (PC) (in a separate region of memory

from the original code segment) for each instruction of the IR, the next step is to compute the new branch
offsets for control instructions. With these determined, the relatively straight-forward process of converting
the IR back to Alpha instructions is performed.

3.5.6 Performance

Because the approximator can ignore the significant fraction of the program that is never used and typ-
ically reduce the remaining portion of the program to less than half its original static size, the approximator
can be very efficient. Despite almost completely ignoring the performance of the approximator’s imple-
mentation, it typically can generate a distilled program in a small number of seconds (< 5), even for non-
trivial programs likegcc . | am optimistic that a real implementation can be constructed to have a suffi-
ciently small overhead to be viable.

3.6 Chapter Summary

In this chapter, | presented the two main requirements of the distilled program: 1) to break its execu-
tion into tasks, and 2) to efficiently and largely accurately compute the program state expected at task
boundaries. | discussed how placement of task boundaries can be critical to performance both with respect
to impact on optimization and on task size. | described my control-flow based heuristics for selecting can-
didate task boundaries and my algorithm for balancing task sizes.

In addition, this chapter describes the structure of the distilled program and my prototype implementa-
tion of a program distiller. The distilled program structure includes features—program counter maps and
transition code—that enable the distilled program to be started from the state of the original program and
vice-versa. These features allow the state of the distilled program to be decoupled from that of the original
program, increasing the flexibility with which the distilled program can be optimized. The prototype dis-
tiller is a binary-to-binary translator that is largely based on existing compiler techniques, except that some
of the optimizations need not preserve correctness and the idiosyncrasies of the distilled program structure
must be maintained.
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Chapter 4

Implementing the MSSP Paradigm

In this chapter, | present the required mechanisms and one possible implementation of the MSSP para-
digm. This implementation of the execution paradigm is by no means the best possible one, but it is com-
plete and demonstrates all of the necessary functionality. Beyond completeness, the proposed
implementation focuses on maximizing performance and effectively tolerating the latency of inter-proces-
sor communication.

First (in Section 4.1), | discuss the mechanisms the paradigm requires at a high level. Then (in
Section 4.2), | present an analytical model of the execution paradigm to allow reasoning about the execu-
tion paradigm. Section 4.3 covers the themes that guided the design of the implementation that follows.
Then (in Section 4.4), | describe the high-level architecture and some program data that validates some of
the design decisions. Finally (in Section 4.5), | present some details on the mechanisms themselves, where
they differ from prior work, and conclude with a chapter summary.

4.1 Required Functionality

Besides the construction of the distilled program—described in the previous chapter—the MSSP para-
digm requires a number of mechanisms to function properly. The requirements listed reflect my selection
of a “block reuse”-style mechanism for verification and commit; for alternative mechanisms some of these
requirements may be different. These mechanisms are:

Timestamps.The relative logical ordering of tasks is vital to providing the appearance of a sequential exe-
cution. Tasks are assigned sequence numbers, which | call timestamps, by the master according to their
order in a sequential execution. Slave tasks will have the same timestamp as the corresponding task exe-
cuted by the master.

Checkpoint buffering. In executing the distilled program, the master processor performs writes to regis-
ters and stores to memory. These writes are not intended to be externally visible. Instead, they need to be
buffered and associated with the timestamp of the task that performed the write. These checkpoints can be
deallocated when the corresponding task in the original program is committed.
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Live-out Buffering. Unlike the master, slave tasks update the architected state, but not until they have

been verified. Because tasks may be significantly larger than the internal buffering available in most pro-
cessor cores, | expect slave processors will “speculatively retire” instructions and buffer the resulting stores
in a live-out value buffer. If task misspeculations always recover to the beginning of a task (as is done in

my implementation), then speculative retirement can be allowed to retire registers noiraaligr¢voca-

bly updating the local register file), by keeping a checkpoint of the state of register file as of the beginning

of the task.

Live-in Buffering. As a slave task executes, it must keep track of the values that the task used that it did
not create, so that these values can be verified. Not only do the names of these live-in values need to be
buffered, but the values themselves as well.

Register Communication.Because checkpoint and live-out state includes register state, | need a mecha-
nism to read register values from a processor and to load register values from a checkpoint.

Checkpoint AssemblyWhen a slave task performs a memory access, the returned value should reflect the
most recent checkpoint value from a task with a timestamp that precedes or is equal to that of the request-
ing processor. If no checkpointed value is available, the value from the architected state is returned.
Because most architectures support memory operations at multiple granularigiésy{es, 32-bit words,

etc.) this process can require assembling multiple, potentially overlapping, small writes from separate tasks
along with architected data to satisfy a large read operation.

Live-in Verification. To see if a task can be committeick(, its results reused), the hardware has to check

to see if all of the live-in values are correct. | do this checking by comparing all of the live-in values to the
architected value at the same storage location. This comparison has to appear as if it were done atomically,
and the task is verified only if all live-in values match. After live-in comparison is complete, the live-in
buffers can be cleared.

Live-out Commit. To avoid memory ordering violations in most consistency models, a task’s speculative
state has to be committed atomically (or have the appearance of being committed atomically) with the live-
in verification.

Task End Condition. Each slave processor must know where its current task ends and the next task
begins.

Maps. PC's of entries and indirect branches need to be mapped from the original program to the distilled
program; PC’s of transitions to the original program and link addresses need to be mapped from the dis-
tilled program to the original program.

Although all of these mechanisms are required for correct execution, they do not have equivalent
impact on performance. As | show in the next section, only mechanisms that affect the throughput of the
master processor and verification/commitment must perform well. The slave executions of tasks are toler-
ant of additional latency.

4.2 Analytical Model

I now present a simple analytical model to allow us to reason about performance. Our model makes the
following simplifying assumptions:

1. All tasks are equivalent and have execution fine
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N

. Distilling the program results in a speedupmpélistilled program segments executdsiia time.

3. Verification of live-in values and commitment of speculative data can be done in less time than distilled
task execution, so that verification/commit is never a bottleneck. In practice, thera iseyond which
no further speedup can be achieved because the execution is verification/commitment limited.

4. There is an initiation latendybetween when a fork instruction is executed by the distilled program and
when the task begins. This latency accounts for inter-core communication latency, time to execute tran-
sition code, and any additional execution latency incurred due to branch mispredictions or cache misses
not observed by a sequential execution.

5. There is a binomial distribution with some probabilRythat a checkpoint received by a task will be
correctly verified:

6. Misspeculations are detected with a lateBcgfter the previous task has been completed. This latency
accounts for the time to update architected state and the inter-core communication required to check the
misspeculated task’s live-ins.

7. Restarting the distilled program takes a lateRafter a misspeculation has been detected. This latency
accounts for any inter-core communication to transfer architected state and for the time required to exe-
cute transition code.

8. Additional slave processors are always available. Thus, verification is on the critical path only for tasks

that correspond to distilled program segments that produce incorrect checkpoints.

The original execution time for a program composedllafsks iSNE. The execution time of each task
in the MSSP execution depends on whether its segment in the distilled program produced a correct check-
point. If so, the task’s execution time is that of the distilled program’s segriémt If not, the task’s exe-
cution time is its latencyk, plus the initiation, detection, and restart latencief+R. (For algebraic
simplicity, | group these terms into a single normalized overhead t€&m, (I+D+R)/E). These events
occur at a frequency oP and (1 - P), respectively. Thus, the total execution timeN$PE/a + (1-
P)E(1+0)), and speedup is given by:
O
[

oo

time(sequentigl _
time( parallel)

NE _ 1
E\I%%E+(1—P)E(1+O)% §+(1—P)(1+0)

speedup

The resulting equation has three free variabtes?, andO. Figure 4.1(a) shows that if | assume the
normalized overhead, is 1 (.e.,equal to the task execution time), thgmeedup is super-linear with pre-
diction accuracy As is expected, at low prediction accuracies slow-downs are incurred. At high accuracies
(i.e., P > 0.98),performance closely tracks the performance of the distilled progre®ensitivity to nor-
malized overhead is shown in Figure 4.1(b). This plot demonstratethiharchitecture is largely insen-
sitive to inter-core latencyhen prediction accuracy is high.

To summarize, the accuracy of the distilled program is paramount, as it decouples the throughput of
the execution from the latency of the individual tasks. In turn, this decoupling allows the paradigm to be
tolerant of communication latency if checkpoint construction and verification/commitment are centralized
(explored in the next section). With an accurate distilled program, the rate that checkpoints can be con-
structed by the master and the verification and commitment throughput become the main limiters of perfor-
mance.

1. The correctness of checkpoints is assumed to be independent and identically distributed (11D).
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Figure 4.1:Performance predicted by the analytical modg@l) Speedup is super-linear with checkpoint prediction
accuracy, and, at high prediction accuracy, performance tracks that of the distilled program (results shown for O=1).
(b) The architecture is insensitive to inter-processor communication latency (captured by parameter O) when check-
point prediction accuracy is high (results shown dior 4).

4.3 A Guiding Theme: Tolerating Inter-processor Communication Latency

Having described the implementation’s requirements (in Section 4.1) and abstractly explored the per-
formance characteristics of the paradigm (in Section 4.2), | am prepared to discuss the guiding theme that |
used to make implementation decisions: the ability to tolerate inter-processor communication. Since the
MSSP paradigm breaks an inherently sequential program to execute it on multiple processors, there is
invariably going to be some communication. With this fact in mind, | quote David Clark:

“Bandwidth problems can be cured with money. Latency problems are harder because the
speed of light is fixed—you can’t bribe God.”

With clock frequencies increasing, communication latency between processors on the same die is
likely to be in the tens of cycles [48]. Short of designing smaller cores, to allow them to be placed closer,
there is little that can be done about this latency. Hence, one major goal of this execution paradigm is to be
very tolerant of this inter-processor communication latency.

Latency can be effectively tolerated when it is not on the critical path. As we saw in the previous sub-
section, assuming the distilled program is accurate, there are two main critical paths in the execution para-
digm (Figure 4.2a): (1) the master’s execution of the distilled program, and (2) the rate at which tasks can
be verified and committedAll other latencies only slow down the execution of individual tasks on
slave processorgFigure 4.2b). This slowdown will increase the occupancy of the slave processors, which
is solvable by making more slave processors avaifatilee task misspeculation detection time is also
increased, but this latency is not a major concern with low task misspeculation rates.

The impact of communication latency on the master’s execution is minimized by performing it all on a
single processor. By caching the speculative memory image in the master processor’s local data cache, the
master generally stalls for off-core communication only when a traditional uniprocessor execution would.

In addition, the MSSP related tasks are performed in the background. For instance, check-pointing is done
completely in hardware without additional instruction overhead. Only the special fork instruction is used in
the distilled program to indicate where in the execution the checkpoint should be taken. Collection of the

2. There is a subtle interaction between task commit latency and task misspeculation accuracy. When the distilled program is constructed such
that it does not produce the value for a long dependence (Section 2.1.3), misspeculations can occur if the commit latency exceeds the dependence
length.
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Figure 4.2:Critical path through the MSSP executiom) there are two critical paths through an MSSP execution:

1) the rate the master can execute the distilled program to compute the necessary value predictions, and 2) the rate
that tasks can be verified and committed. b) If an implementation can avoid serializing latency on these two critical
paths, increasing the communication latency should not affect task throughput, if live-ins are accurately predicted.

checkpoint information should be done in a manner that minimally interferes with distilled program execu-
tion; when data is read from storage arraggy( the register file), reads of checkpoint values should be
done in the background to avoid stalling the execution of the distilled program.

Similarly, inter-processor communication should be kept out of the verification and commit critical
path. | accomplish this act—in the same manner as for the master’s execution—by centralizing the process.
| propose a centralized verification and commit unit at the first shared level of the cache hierarchy (the L2
cache in the proposed implementation). The slave processors will have to communicate their live-in and
live-out values to this central commit unit, bilie communication from multiple slave processors can
be performed in parallel, overlapping the latencies. Once the data is present at the L2 cache, it can be ver-
ified and committed without crossing the interconnect.

To summarize, a major goal of my implementation is to tolerate inter-processor communication
latency in the two critical paths of the execution paradigm: the master execution and the verification/com-
mitment unit. In the next section, | describe the architecture that resulted from this approach.

4.4 An MSSP Implementation

As mentioned earlier in this dissertation, the MSSP paradigm can be implemented on an enhanced chip
multiprocessor. So it should not be a surprise that the proposed implementation looks much like previously
proposed chip multiprocessor architectures [7]. As seen in Figure 4.3(a), it consists of a number of proces-
sors, each with local first-level instruction and data caches, a unified L2 cache (banked to provide sufficient
bandwidth), and an interconnection network to connect them all. Except for the addition of a global regis-
ter file (GRF), it appears to be a standard CMP, at least at this level of detail.

In this implementation, | made the following design decisions:

» All processors are physically equivalent; a mode bit distinguishes their role (either master or slave) in
the execution. This decision avoids the complexity of designing a second core.

» Checkpoint, live-in, and live-out data must be stored in a central place with the architected state; |
selected the L2 cache as it already contains much of the active architected data. The L2 is enhanced to
include the hardware necessary to assemble checkpoints and verify and commit task data. Since a task’s
live-ins may be physically distributed across multiple L2 cache banks and must be verified simulta-
neously, a distributed commit process is required.
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Figure 4.3:Block diagram of the MSSP hardwaréa) chip multiprocessor consisting of processors with private
instruction and data caches, a shared banked L2 cache, and a global register file (GRF), (b) the processor core has
been enhanced to map program counters, collect live-in and live-out values, and track speculative data in the private
caches, (c) the interconnection network supports new kinds of messages for efficiently moving register dalues an
parts of cache lines, (d) the GRF stores retired and speculative versions of registers for the original and distilled pro-
gram, and (e) the L2 cache banks include MSSP specific hardware for managing checkpoint data, live-in ard live-ou
values.

e There is no direct inter-processor communication. The master sends checkpoint data to the L2 cache
banks where it can be used to satisfy requests by slave processors. Slave processors send all live-in and
live-out values to the L2 cache banks where the data is verified and committed. Processors can cache
speculative data in their local (L1 data) caches. In this way, a slave need only cache data currently rele-
vant to itself.

» Task live-outs and checkpoint differences are “written through” to the L2. To more efficiently use inter-
connect bandwidth, multiple values are accumulated for a particular bank before a message is sent.

In the following sub-sections, | overview the MSSP-specific mechanisms (Section 4.4.1), referencing
the detailed descriptions at the end of this chapter, describe the operation of the implementation
(Section 4.4.2), and provide some application data to justify these design decisions (Section 4.4.3).

4.4.1 Mechanism Overviews

Figure 4.3.b-e shows an exploded view of the elements of the MSSP implementation, highlighting the
differences in each element. | overview these differences here.

Processor CoreBesides support for theORKandVERIFY instructions and for tracking the task number,

the processor core has been enhanced in three major ways: (1) MSSP adds support in the branch resolution
path for mapping indirect branches from the original program to the distilled program (Section 4.5.7). (2)

At the retirement stage, MSSP adds structures for tracking the registers and memory locations that have
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been read or written, to capture task live-in and live-out values (Section 4.5.1); these values are sent across
the interconnection network using special register and memory word messages (Section 4.5.2). (3) MSSP
requires a mechanism to load register file contents at the beginning of a task and to read them at the end of
a task (Section 4.5.9). In addition, the private caches track which lines contain speculative data; blocks
holding speculative data are purged between tasks (for slaves) or periodically “refreshed” (for the master)
to ensure that the processors see recent updates to architected state (Section 4.5.8).

Global Register File.The global register file (Section 4.5.4) keeps two distinct register fietsial and
checkpoint The actual registers are the true architected state, which is programmer visable. The check-
point registers are those computed by the execution of the distilled program. These register files are distinct
because register re-allocation may have been performed by the distilled program. In addition to an archi-
tected register file that holds the view of these registers as of the end of the last retired task, each register
file speculatively buffers the writes by in-flight tasks. These speculative updates are held in a structure
much like the register map/physical register file found in most out-of-order processor cores. A verifier
included in the global register file, compares the two files for each task to validate the task’s register live-
ins (Section 4.5.5).

L2 Cache Banks.The L2 cache banks are similar in function to the GRF, but are organized differently due

to the differences between the register and memory name-spaces. In addition to the storage for architected
memory state found in normal caches, the L2 cache banks include buffers for holding checkpoint data,
live-in values, and live-out values. Each type of data is stored in a separate buffer because the data needs to
be accessed in different ways. The checkpoint data is merged with architected data by hardware that per-
forms checkpoint assemblyhe process of constructing the view of memory expected by a slave task
(Section 4.5.3). The verifier hardware gathers the architected value for each buffered live-in memory value
and ensures that the necessary coherence permissions are available to perform the verify/commit atomi-
cally (Section 4.5.5). The GRF and the L2 cache banks, which are physically distributed across the chip,
use a two-phase commit algorithm to simultaneously agree that the task is verified.

4.4.2 High-level Operation:

The steady state operation of the implementation is shown in Figure 4.4. As the master executes a task
of the distilled program, it notes which registers were written by retired instructions and collects retired
stores into message buffers. As buffers fill up they are sent to the appropriate L2 cache bank. When the
master processor retires-@RKinstruction, the contents of the remaining message buffers are sent. In par-
allel, the final values of the written registers are read out of the register file and shipped to the GRF, along
with the program counter (PC) specified by #@RKinstruction. This check-pointing generally takes mul-
tiple cycles, during which the master continues executing subsequent tasks, and all of the data is tagged
with the current checkpoint timestamp. When it can be assumed that all of the data has been received, it
notifies the centralized task logic (located at the GRF) that the checkpoint is available and the task should
be allocated to a processor when one is available.

The task logic then selects an idle processor and sends it the timestamp of the task to be allocated. In
addition, it sends a register checkpoint (including a PC) constructed by overlaying all of the partial register
file checkpoints over the architectural checkpoint register file. When the slave requires a cache block not
currently in the L2—recall that all stale blocks have been invalidated—it sends a request to the L2 cache
that includes its timestamp. The data returned is assembled from the architectural memory state and the
check-pointed memory state. For each byte, the most recent value that is not newer than the requesting
timestamp is selected. If the returned cache block includes any checkpoint data, this information is indi-
cated in the message from the L2 cache bank, and the stale bit is set when the data is loaded into the cache.
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Figure 4.4:Life of a single task (steady state operation of MSSH)e distilled version of a task is first exealite

by the master processor; the master periodically sends messages when its message buffers fill, until a fork instruction
is retired, at which point it sends any partially complete messages before sending a fork message. The task is allo-
cated to a slave, which first receives its initial register file then begins executing the transition code. Upon retiring the
VERIFY instruction, it sends the written transition registers. When the task is complete, the slave sends a live-in reg-
ister mask and any remaining partially complete live-in/live-out memory messages.

The slave executes two pieces of code: the transition code and the task from the original program. The
slave first executes the transition code that rearranges the state data provided by the master program into
the locations that the slave taske(, the original program) expects it. Because this code is part of the dis-
tilled program {.e., not part of the task from the original program) the processor need not track live-in val-
ues, but it does track writes. Register writes are sent to the GRF, tagged as transition register writes.
Transition stores are treated as checkpoint stores. The program distiller marks the end of the transition
code by making its last instructionERIFY instruction. TheVERIFY also encodes the starting PC of the
task in the original program; this PC is also sent as a transition register to the GRF.

The retirement of th® ERIFY instruction marks the true beginning of the task, where the slave proces-
sor must begin tracking live-in and live-out values. Task live-outs are tracked the same way that checkpoint
writes are tracked, by recording stores into message buffers and noting register writes. Tracking live-ins is
similar to tracking live-outs, except that values read are recorded, but only those that have not yet been
written. So, on the register side, | only set bits in the read register bitmask if the register has not yet been
written by this task (as indicated by the written register bitmask). For loads, it means | need to keep track
of the task’s memory writes at the processor. This tracking can be done with a structure that tracks store
addresses and which bytes were written. This structure is searched to determine if part or all of a load was
satisfied by a store from within the task.

Generally, tasks are allowed to complete before they are fully verified. When a slave processor reaches
an instruction that is tagged as being the beginning of another task, it stops fetching additional instructions.
When this last instruction retires, the live-in register bitmask is sent to the GRF and the message buffers are
purged to their respective L2 cache banks. The registers written by the task are read out of the retirement
register file into a register message buffer to the GRF. When all data has been sent, stale blocks are invali-
dated and the processor is free to be allocated to another task.
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When all previous tasks have completed, verification of a task can begin in earnest. Verification
requires that all L2 cache banks and the GRF to simultaneously agree that all live-in values are valid and
coherence permission to write the live-outs has been attained. For each of the task’s memory live-in values,
the L2 cache bank ensures that it has read permission to the cache line (requesting the block if it is not
present) and reads the corresponding architectural value into the live-in buffer. The live-in buffer hardware
compares the value against the recorded live-in value, signalling a misspeculation if the value does not
match. Issues derived from maintaining these buffer entries coherent and overlapping the verification of
multiple tasks are discussed in Section 4.5.5.

Once an L2 cache bank has successfully verified all of its live-in values and acquired write permission
to all of the cache blocks with live-out values, it can signal that it is ready to commit the task. These signals
are used in a two-phase commit algorithm (described in Section 4.5.5). If, for whatever reason, it is diffi-
cult to acquire the necessary blocks simultaneously, it is correct to signal a misspeculation and execute the
task non-speculatively (as a traditional processor would). Policies for maximizing performance in the pres-
ence of multiprocessor coherence are beyond the scope of this dissertation.

When a task misspeculation is detected, the master processor and all slave processors executing later
tasks are reset (including an invalidation of all stale cache lines). Furthermore, all speculatively buffered
(un-committed) data for later tasks is cleared. To restart the execution, first, the actual register file is copied
to the checkpoint register file. Then, a processor is selected to be the master and is sent the checkpoint reg-
ister file. The master processor maps the architected PC to the PC of an entry into the distilled program and
begins execution. Then a processor is selected for the non-speculative execution of the task, and the GRF
sends that processor the architected register file.

Task sizes vary and generally some tasks are (dynamically) longer than can be buffered in the limited
resources of the L2 cache banks. In these cases, | perform what is cadladyaverification. In effect, the
slave processor pretends that it has finished the task. Logically, at an arbitrary point in the task, the slave
flushes all in-flight instructions and sends all live-out values for verification. In parallel with verification, it
purges all stale blocks from its cache and requests the GRF to send it the new architected register file. Once
this new register file is received and the task has been verified, the slave processor can now execute in non-
speculative mode. In Section 4.5.10, | describe how this early verification can be done without stopping the
execution of the task.

4.4.3 Program Data That Validates This Approach

Although this implementation is justified somewhat by the performance results in the following chap-
ter, | find that more intuition can be gained from doing back-of-the-envelope calculations. In this section, |
present estimates of storage and bandwidth requirements for this implementation to give some intuition
about its feasibility. | have collected some empirical data about the register and memory usage of various
size fragments of program’s execution (shown in Figure 4.5). Approximate values are shown in Table 4.1
for tasks of 100, 200, and 800 instructions, for which | calculate storage and bandwidth requirements. It
should be noted that these are not tasks selected by any task selection algorithms, but merely segments bro-
ken at fixed length intervals, so these estimates are intended to taken with a grain of salt.

| assume the cores to be comparable to modern processors and would achieve an average IPC of 1.5 on
these workloads if executed in normal uniprocessor mode (my baseline 4-wide machine ranges from 0.7 to
2.0 IPC for SpecInt2000). | would like the implementation to be able to support distilled programs that
execute three times faster than the original progriae &n equivalent IPC of 4.5). Thus the master com-
pletes 100, 200, and 800 instruction tasks in 22, 44, and 178 cycles, respectively. It is expected that execu-
tion of the tasks by the slave processors will take longer than they would if they were part of a traditional
uniprocessor execution (due to inter-processor communication and incomplete branch history). In spite of
this fact, in the bandwidth calculations that follow, | assume no elongation to do a worst case analysis.
Thus, the slave completes the 100, 200, and 800 instruction tasks in 66, 133, and 533 cycles.
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Figure 4.5: Characterization of task live-in and live-out set siz&egister and memory live-in and live-outt se
sizes are shown for tasks of 50, 100, 200, 400 and 800 dynamic instructions. Register set sizes are almost constant,
while memory set sizes are slightly sub-linear with task size.

TABLE 4.1 Raw data on average number of 64-bit registers, 64B cache lines for refreshes, and 8B memory
words moved for tasks of different sizes, estimated from Figure 4.5.

Registers Refreshes (blocks Memory Words
Task
Size | M-out S-in Trans. S-out M-in S-in M-out S-LI S-LO
100 32 63 14 32 3 1 1( 15 1p
200 32 63 14 32 5 11 20 3p 0
800 32 63 14 32 13 4( 50 8p
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Figure 4.6:Graphical representation of flow of register and memory ddfar use as a key for data in Table 4.1

Bandwidths. | walk through the calculation of the 200 instruction tasks in detail, but initial and final data
for 100, 200, and 800 instruction tasks is provided in Table 4.2. | consider the bandwidth required at 4 dif-
ferent endpoints: the master, the slave, the GRF, and the L2 cache bank.

Master. In steady state, the master has to communicate any register changes since the last forked task; |
assume that the master writes the same number of registers as the original program (32 for 200 instruction
task), which | believe to be conservative. In addition, any stores performed by the task need to be flushed
down to the L2 cache banks; again, | conservatively assume that the master does no more than the original
program (~20 memory words for 200 instruction tasks). Lastly, | periodically refresh the master’s stale
cache blocks to remove old checkpoint stores and get committed stores by the original program. | estimate
that perhaps one-fourth as many blocks should be refreshed as memory words were stored to by the task;
the factor of four accounts for the fact that multiple words of the same cache block might have been written
and there is likely some overlap between the blocks written by sequential tasks (as is suggested by the
memory live-out data in Figure 4.5). | assume 5 blocks are refreshed per 200 instruction task.

Master Bandwidth:

32 registers (at 7 regs/block) =5 blocks
20 memory words (at 4 words/block) = 5 blocks
memory refresh = 5 blocks
Total =15 blocks

Over a 44 cycle task, that rate is a little more than 1 block every 3 cycles.

Slave.Slaves are first sent an initial copy of the register file (62 registers plus PC, assuming no optimiza-
tion to avoid sending unchanged registers, 9 blocks). Then the slave processor can begin refreshing the
invalidated stale blocks in its cache; | assume that 15 blocks will be refreshed for 200 instruction tasks

TABLE 4.2 Estimated bandwidths calculated from raw data in Table 4.1.

Data Transferred per Task Cycles per Task Bandwidth messages (bytes) per cycle
Task
Size M S L2 R M S M S L2 R
100 11 30| 30/8 21 22 66 .50 (32 45 (29) .17 (11) .95 (61)
200 15 44| 43/8 21 44 138 .34(22) .33(21) .12(8) .47 (30)
800 31 89| 99/8 21 178 538 .17 (11) .17 (@L) .07 (4) 12 (8)
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(estimated as half the number of memory live-ins). When the slave retir®ERIEY instruction, the writ-

ten transition registers are sent to the GRF (slightly less than half of the integer register file (14 registers)
can be re-mapped with 2 blocks). By the end of the task, the slave will have sent the final register updates
(32 registers, or 5 blocks for 200 instruction tasks), memory live-ins (about 30 memory words for 200
instruction tasks, or 8 blocks), and the stores (about 20 memory words for 200 instruction tasks, or 5
blocks).

Slave Bandwidth:

63 initial registers (at 7 regs/block) = 9 blocks
memory refresh = 15 blocks
14 transition registers (at 7 regs/block) = 2 blocks
32 written registers (at 7 regs/block) =5 blocks
30 live-in memory words (at 4 words/block) = 8 blocks
20 written memory words (at 4 words/block) =5 blocks
Total = 44 blocks

Over a 133 cycle slave task, that rate is a little above 1 block every 3 cycles.

GRF/L2 Cache Bank.The GRF and L2 cache banks have to absorb and produce all of the register-related
and memory-related (respectively) traffic required by the master and slave processors. So from the above:

GRF Bandwidth:

32 checkpoint registers (at 7 regs/block) = 5 blocks
62 initial registers (at 7 regs/block) = 9 blocks
14 transition registers (at 7 regs/block) = 2 blocks
32 written registers (at 7 regs/block) = 5 blocks
Total: = 21 blocks/task

Because the task throughput is one task every 44 cycles, this communication rate requires bandwidth
of just less than one block every other cycle. This rate is perhaps an over-estimate because | don't expect
the master to write as many registers as the slave, nor that so many transition registers will be needed all of
the time (right now the distiller uses at most one for the stack pointer). Nevertheless, this unit requires the
most bandwidth, suggesting the optimizations to avoid sending a full initial register file (described in
Section 4.5.9) will be beneficial.

L2 Cache Bank Bandwidth:

20 memory words (at 4 words/block) = 5 blocks
memory refresh (Master) = 5 blocks
memory refresh (Slave) = 15 blocks
30 live-in memory words (at 4 words/block) = 8 blocks
20 written memory words (at 4 words/block) =5 blocks
Total: = 43 blocks

Because this traffic is spread across multiple banks, it is not a major bottle neck. Even if a third of the
traffic was directed at one bank (a rather severe hot spot for a system with 8 banks), that would only be 13
blocks every 44 cycles, or less than one block every three cycles.
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Storage.With the same data | estimate the amount of storage space that will be needed to hold the check-
point, live-in, and speculative store data. My default implementation includes eight processors, so | con-
sider storage for eight tasks. For 800 instruction tasks (80 double-word live-ins, 50 double-word live-out

stores/checkpoint stores):

Live-ins:
80 live-ins/task * 8 tasks = 640 live-ins
640 live-ins * 16B storage/live-in =10240B = 10KB storage

Checkpoints/Live-outs:

50 live-ins/task * 8 tasks = 400 live-ins
400 live-ins * 16B storage/live-in = 6400B = 6.25KB storage each

10KB + 2 * 6.25KB = 23KB storage

For a 2MB L2, which is available on existing processors and will likely be small for future processors,
this amount of storage is only about 1% of the L2 storage resources.

Although it is one of our goals to minimize the amount of MSSP specific hardware, in this case, over-
loading existing storage arrays appears to be inefficient. For example, the speculative data takes such a
small amount of storage relative to the size of the L2, | do not think it makes sense to use a unified struc-
ture, as is demonstrated by a quick thought experiment. If L2 cache blocks stored non-architectural data, at
minimum the current array would have to be augmented to store the timestamp, at least an additional 4 bits
of state. Assuming that these bits were added to every block uniformly, a cache with 64B blocks (512b data
+ 40b tag = 552b) would have 0.7% overhead (not counting the higher utilization of the cache) a significant
fraction of the whole amount of storage necessary for all of the speculative data. Furthermore, designing
specialized arrays for this data allows it to be searched and manipulated more efficiently. | discuss the
design of these structures and other implementation details in Section 4.5, after a brief interlude about
power consumption.

4.4.4 Power Consumption

Although power consumption is a serious implementation constraint, it is not one of the main focuses
of this dissertation. As a result, the proposed implementation is not particularly power efficient. In this sec-
tion, | intend to demonstrate that this inefficiency is a characteristic of the proposed implementation and
not a characteristic of the execution paradigm and that power efficient implementations are likely.

The two major features of the MSSP paradigm that would likely be the root of power inefficiency are:
(1) the use of multiple processors to execute a sequential program and (2) the increased frequency of com-
munication required between processors and the L2 cache. | will discuss each of these issues in turn.

Using N processors need not use N times as much power, especially if the processors do not have to be
equivalent. Because the architecture is tolerant of the slave processor’s execution rate— performance is
largely determined by the execution rate of the master processor—the slave processors do not need the
microarchitectural complexity used to maximize the performance of modern processors or the power bur-
den that goes along with it. The slave processors can be designed to be simpler, narrower, and with shorter
pipelines, and they can be clocked at lower frequencies to enable lower voltages. Furthermore, the unique
role of the master processor as a value predictor leads to other power optimizations. Similar to what was
proposed with the DIVA checker [4], the master processor can potentially be executed at a voltage with
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minimal noise margins, if it can be engineered so that all noise-induced faults will manifest as bad check-
point writes that will be detected during task verification.

Although | find reasoning about the impact of the additional communication bandwidth to be more dif-
ficult, | am reassured by the fact that this communication is rather latency tolerant. If the dynamic power
consumption of the interconnection network can be modelled with the traditional logic power equation P =
aCV2F (whereP is power,a is an activity factorC is capacitancey is voltage, and- is frequency) and
voltage scaling can be applied, then increases in latency yield a cubed reduction in power consumption.
Realistically, the power benefits will not be quite this high as some measure must be taken to maintain the
required bandwidth, either by increasing the width of the interconnect or its degree of pipelining.

Finally, consider that the MSSP paradigm can only be considered power inefficient where there is an
alternative means of achieving the same level of performance that uses less power. The traditional architec-
tural approaches to improving sequential program performamge deeper or wider pipelines, more and
larger predictors) have their own power costs and, as the distance signals can travel in a single cycle
decreases, monolithic processor designs will become even less efficient requiring more information to be
replicated and cached.

4.5 Mechanism Details

In this section, | describe a number of MSSP specific mechanisms in detail. These descriptions are not
fundamental to the MSSP paradigm, but are meant to serve two purposes. First, they explain concretely
one way that the required functionality could be implemented. Second, they document the implementation
that was used to collect the results presented in Chapter 5.

4.5.1 Live-in/Live-out Collection

Master and slave processors both must track the registers and memory locations they write, and the
same mechanisms are used for both processor roles, although the different characteristics of registers and
memory led me to develop separate mechanisms for tracking register and memory writes. Memory live-
outs are captured at retire time, by recording a store’s address, size, and value. These values are held in a
structure organized like a store buffer until they are sent to the appropriate L2 cache bank. Since registers
are frequently over-written, no register values are sent to the GRF until the end of the task. Thus, when an
instruction that writes a register is retired, the hardware only needs to record the architectural register iden-
tifier. The set of written registers is tracked using a bitmask that has one bit for each architected register.
When the task ends, the final values of these registers aré freatthe physical register file and sent to
the GRF.

In addition, slave processors need to track their live-in values. Tracking live-in values is similar to
tracking live-out values, except that values read are recorded, but only those that have not yet been written.
So, for register reads, | filter updates to a read register bitmask with the written register bitmask. For loads,
it means | need to keep track of the task’'s memory writes at the processor. This tracking can be done with a
structure that tracks store addresses and which bytes were written. This structure is searched to determine
if part or all of a load was satisfied by a store from within the task. Figure 4.7 shows the structures for
tracking live-in and live-out values and their storage requirements.

3. Inthe case of the master, it is important to be able to read out these registers without stalling execution; readingshese v
can be accomplished by exploiting unused register read bandwidth or by creating a retirement register file specifically for this
purpose.
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in bitmasks; the final values of these registers are read at the end of the task. Memory values are recorded at retire
time into message buffers, to be sent to the L2 bank. As a load or a store is recorded, the location of the recorded bytes
are tracked in the memory live-in filter, which is used to filter future memory live-ins.

Since the live-in and live-out values are stored at the L2 cache banks and the GRF, they must be sent
over the interconnection network using special message types (described in the next sub-section). Proces-
sors periodically send memory live-in and live-out values as they accumulate. Register live-outs are packed
into messages as they are read out of the register file. Only the bitmask indicating which registers were
live-ins need to be sent; register live-in values are available in the architected checkpoint register file (part
of the GRF, described in Section 4.5.4). Live-in memory values are captured at the processor when first
used; the possibility that architected memory values can be modified during the execution of a task—via
task commitment or coherent writes—makes other value tracking schemes challenging to implement.

Two subtleties of the implementation deserve mention: 1) the opportunity for different live-in values
for the same memory location, and 2) the window of vulnerability between capture of live-out values and
when they are received by the L2 cache banks. Whenever cache lines are displaced from a slave proces-
sor’s cache, the contents of the cache line could be different if it is brought back in, because the architected
state may have been updated in the mean time. For this reason, two loads to the same address from a given
task could receive different values without an intervening store in the task. Since tasks are retired atomi-
cally one of the values must be incorrect. | delegate the detection of this situation to the verifier hardware.
When a cache block is replaced in a slave processor’s cache, any corresponding entries in the live-in filter
are cleared, ensuring that the slave will send all copies of the value observed to the verifier.

Because non-architected state is created by the processors, but buffered and merged with architected
data remotely at the L2 cache banks, there is a window of vulnerability when cache data could potentially
get lost. It occurs when a data block is in transit to a processor’s L1 data cache when the processor retires a
store to the block. This vulnerability is largely a result of the combination of my selections of write-
through and no-write-allocate policies. It is both a correctness issue for non-speculative tasks and a serious
performance issue for the master. Because this window results from data in transmission being unobserv-
able, the implementation keeps a copy of all non-architectural data retired by the processor until it has been
acknowledged by the L2 cache bank. This data is merged with cache lines received from the L2; the local
data will always be more recent than the received data. This buffering also allows the L2 cache bank to
send negative acknowledgements (“nacks”) when no storage is available, without risking losing data.
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4.5.2 Register/Memory Word Messaging

To efficiently communicate register file and memory image differences, the interconnection network
interfaces support two additional types of messages: register messages and memory word messages.
Figure 4.8 shows a pair of packet formats assuming 64B messages: register messages can hold 7 registers
(64b value and 8b identifier) and memory messages hold 4 memory words (48b physical address, 64b
value, 8 valid bits (one per byte), and 8 bits of flags). Live-in and live-out values can be sent in the same
message by flagging each with its type. For example, transition registers and live-out registers could be
packed in the same message using four bits to specify that the first N values are transition registers. In addi-
tion, all messages are tagged with the processor’s current timestamp.

4.5.3 Memory Checkpoint Assembly

Memory checkpoints—the view of memory required by a particular task—are constructed by the L2
cache banks by layering the difference data over the architected data in increasing timestamp order, as
described in Section 2.2.1. As mentioned in Section 4.4.3, this implementation stores the checkpoint data
in a special structure and not in the L2 cache arrays. Each entry of the checkpoint buffer holds an aligned
64-bit value, eight valid bits (one per byte), a timestamp, and an address. Storing the checkpoint data in
this way allows it to be deallocated trivially (with a flash invalidate of entries with matching timestamps)
when the corresponding task commits.

My implementation requests checkpoint data at the granularity of cache blocks, so that the data can be
cached in the slave processor’s L1 data cache. To construct a cache block’s worth of the memory check-
point, the differences that match the cache block have to be merged with the architected data. All entries
that match the cache block, which is larger than the granularity at which checkpoints are stores, must be
considered. As there may be contributions from multiple timestamps, potentially many entries in the
checkpoint buffer may need to be read. In practice, 85% of the time there are two or less matching entries.
As a result, the hardware can be designed to read them out serially and merge them with the architectural
data as shown in Figure 4.9. First, the tags are probed to find all matching entries. Second, the matching
entries are read out one by one and merged imterying blockEach byte is merged independently, and a
byte is only kept if it has the most recent timestamp in that location. Third, the architectural data read from
the L2 cache array is merged; architectural data is only kept if no checkpoint value was found for that byte.

Memory Word Packet 119 bits: 4 fit in a 64B (512b) packet
Type | Timestamp Physical Address Bytemask Data
2b 5b 40b 8b 64b

. Type = Chkpt, Live-in, or Live-out Value
Register Packet

IDO] ID1] ID2 ] ID3 ] ID4 ] ID5 | ID6 | type . ) .
register value 0 7 register identifiers (8b)
:29:2:3: xg:gg % 7 register values (64b)
registor value 3 fitin a 64B (512b) packet
register value 4
register value 5 — i iy
register valus 6 type = Chkpt, Transition, or Original

Figure 4.8: Packet formats for sending memory words and register values through interconnection networks.

Memory packets send 4 64b double words with address and bytemasks indicating which bytes contain data. Reg-
ister packets send 7 64b register values and their identifiers.
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Figure 4.9: Checkpoint assembly from entries of the checkpoint buffea) Matching entries of the checkpoin

buffer are identified, (b) the matching entries are read out serially and merged in a merging structure that kekps vali
bits and timestamps on a per byte basis, and (c) the checkpoint data is merged with the architectural data read out o
the L2 cache array (checkpoint data always takes precedence over architectural data).

When few checkpoint entries match, they can be read out in parallel with the reading of the architectural
data. In these cases, the L2 hit time is only increased by the time to merge the architectural and checkpoint
data.

4.5.4 Global Register File

The global register file holds the architected register values and the checkpoint, transition, and task
live-out registers. Register file checkpoints are simpler to manage because—at least in the Alpha architec-
ture—there are no partial register writes so ho merging is required and the architectural register name
space is small. These characteristics lead to a different organization for the global register file (GRF) than
for the L2 cache banks.

There are three independent name spaces tracked by the GRF: visible state, checkpoint state, and tran-
sition state. Visible state is the register state associated with the original program’s execution, and the com-
mitted version of visible state is the architected register state. The checkpoint state is that produced by the
master processor’s execution. The transition state is produced by the transition code executed by the slave
processors. As described in Section 3.3, the transition code is necessary because state, especially registers,
may be mapped differently in the distilled program than the original program. Thus, the transition registers
hold the state of the distilled program after it has been mapped back to the original program’s naming
scheme.

Functionally, the GRF is like an ARB [26] for registers: when queried, the GRF returns the newest (in
program order) value that is older than the requesting task. The organization of the GRF (shown in
Figure 4.10), which differs from the ARB for efficiency reasons, is similar to the organization of the regis-
ter file in some out-of-order processors, like the HP-8000 family [41]. For each namespace, the GRF has a
committed register file, a set of register maps, and a set of physical registers. For each architectural register,
the GRF has one map entry for each active task. If the task wrote a register, the map entry points to the
physical register that holds the value, otherwise the map entry is invalid. When a register for an uncommit-
ted task is requested, the register's map entries are read (in parallel) and the most recent valid entry is
selected. If no uncommitted value older than the requesting task exists, the value is read from the commit-
ted register file.
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Figure 4.10:Detail of global register file implementatior®) The GRF tracks three independent namespaces (visi-

ble state, checkpoint state, and transition state). Checkpoint and transition state share a physical register file. b) Each
register has a map table entry for each in-flight task, which can be invalid (indicated by an ‘X’) or contain arpointe

to a physical register. The GRF supplies the youngest register write from a task older than the requesting task.

Because the complete register images are maintained in the GRF, the slave tasks can communicate the
set of live-in registers read by sending a bitmask, with one bit per architectural register. Register verifica-
tion is performed by comparing the transition registers to the original program registers for a given task.
Only the registers indicated by the live-in register bitmask must match for the task to be validated. Because
transition registers are the mapping of a given task’s state, only transition registers associated with the
requesting task are considered. If no matching transition register was written for the requesting task, the
register must have been mapped similarly in both the distilled and original program and the request pro-
ceeds as a request for a checkpoint register for the same task. When a task is committed, its register values
are copied to the committed register file.

455 Verification/Commitment

As previously mentioned, verification and commitment is like performing instruction reuse at the gran-
ularity of a task and must appear atomic to ensure no consistency model violations. MSSP provides the
appearance of atomicity by acquiring the necessary coherence permissions (read for lines with live-ins,
write for lines with live-outs) and delaying coherence requests while live-outs are committed. Though log-
ically centralized, the verification and commitment process is physically distributed across the GRF and L2
cache banks requiring a two-phase commit protocol. Also, to avoid putting the inter-processor communica-
tion latency on the critical path, it is important to be able to verify tasks in parallel; initially, though, 1 will
describe a sequential commit process.

The GRF and each L2 cache bank independently verify their portion of live-ins. Register verification is
straightforward; the original program register file is compared to the transition register file, and if all regis-
ters indicated by the live-in mask match, the GRF raises a verify signal. Memory verification is more com-
plicated, in part due to coherence. When a memory live-in value is received by the L2 cache bank, read
access to the corresponding block is acquired and the architected value is stored with the live-in value in a
live-in buffer. If the block in the cache is invalidated (either due to a cast-out or coherence request), so is
the architected value. When all live-ins for the oldest timestamp have been received and match their archi-
tected value, the L2 raises its read verify signal. When the L2 receives live-outs, it tries to acquire write
permission to the necessary cache blocks and tracks this permission with a bit in the live-out buffer entries,
which are kept coherent with the cache. A write verify signal, raised when all live-out values with the old-
est timestamp have permission, is ANDed with the read verify signal to form the bank’s verify signal.
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To verify a task, all of the verification signals have to be set simultaneously, which is hindered by these
signals coming from distant parts of the chip and the fact that they can transition from set to clear if a
coherence transaction steals away a necessary block. In our two-phase commit protocol, these verify sig-
nals are routed to a central “arbiter” on the chip. This arbiter ANDs these signals together and broadcasts
the result back to the register and L2 cache banks. When a bank sees this resulting signal go high, it stops
processing coherence requests to avoid having to lower its own signal. If the signal remains high for more
than the round trip latency of the longest path, then all parties know that verification has been successful.
Committing a task involves copying live-out data with the oldest timestamp into architected state, both at
the L2 cache banks and in the global register file. In addition, buffered live-in values and memory check-
point values can be invalidated.

To avoid sequential communication latency in the verification process, verification of multiple tasks
can be overlapped. Overlapping the verification requires that the live-in and live-out buffers search each
other when new entries are written (much like load/store queues) to keep the live-in value’s architected
value up-to-date. In addition, each byte of the architected value needs to be tagged with the timestamp (if
any) of its current source, because live-outs can come out of order and write a subset of a live-in value.
Lastly, | need the ability to source data from the live-out buffer while it is lazily copied to the architected
state. A task can begin verification as soon as all of its live-ins have been received and all of the preceding
tasks’ live-outs have been received. Tasks must commit in order, but, if data can be sourced from the live-
out buffer, commitment can be as simple as settir@p@amittedbit for the task’s entries in the live-out
buffer; movement of committed data to the L2 cache array can be done in the background.

If a live-in does not match architected state, a misspeculation is signalled. This signal is sent to the cen-
tral arbiter and forwarded to all processors and all banks. Also, if, for some reason, all of the necessary
coherence permissions cannot be acquired simultaneously, the L2 cache bank signals a misspeculation;
policies for decidingvhento signal a misspeculation are beyond the scope of this dissertation. After recov-
ery, the task will execute non-speculatively, enabling forward progress, using the existing mechanisms to
ensure forward progress in multiprocessors.

The peak bandwidth at which live-in and live-out data can be received by an L2 cache bank may out-
strip the rate at which it can be written into the buffer structures. If this outstripping can occur, some buff-
ering may be necessary to smooth out bursts of traffic. If these buffers are full and another message is
received, it can be dropped and a re-send requested, because copies of the messages are kept at the proces-
sor until acknowledged.

4.5.6 Misspeculation Detection/Recovery Path

As mentioned in the previous section, misspeculations are detected in the L2 cache banks or the GRF
and signalled to the other storage entities through the central arbiter. Because the live-outs of all previous
tasks must have been received for the misspeculation to have been detected, there is usually only a small
number of cycles between when a misspeculation is detected and when its task becomes the oldest task. As
a result, for simplicity, this MSSP implementation walits for all previous tasks to commit before beginning
recovery.

Failed verification is not the only means of instigating a recovery. For MSSP to be resilient to any
faults in distilled program construction, a watch dog timer is necessary to handle cases that would other-
wise cause deadlock. One such case occurs when the master enters a state where it ceases to fork new tasks
(e.g, it enters an infinite loop that includes no fork instructions); this situation is remedied by signalling a
recovery when no slave tasks are in flight. Another case occurs when a slave task is forked, but it fails to
transition to the original program; this case is handled by restarting if the head task fails to transition for a
given amount of time. The case where the master provides a speculative slave task with a set of input
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parameters that prevent it from ever reaching a task boundayydn infinite loop) is detected by the early
verification mechanism (described in Section 4.5.10).

A recovery entails squashing all processor executions and invalidating all non-architected state
(including any stale data in processor caches). Then, within the GRF, the architected register file is copied
to the committed checkpoint register file. For the checkpoint, the PC is mapped to the PC of an entry (see
Section 4.5.7 below). Processors are selected to be the new master—typically the same one as the old mas-
ter for cache affinity—and a new slave. Each is sent a copy of its register file and directed to begin execu-
tion. The master processor executes the entry transition code before executing the next task in the distilled
program proper. The slave processor executes its task non-speculatively since all of its live-in values will
come from architected state.

Failed verification can also be used to provide a simple mechanism for handling traps and synchronous
interrupts. If a slave task encounters a trap or synchronous interrupt, it can signal to the L2/GRF that it
should fail verification. After recovery, the task will be executed non-speculatively. The fault should occur
again when the faulting instruction is re-executed, and can be handled using the conventional uniprocessor
mechanisms. Asynchronous interrupts can be handled similarly: when the interrupt is received by the
CMP, all speculative tasks are forced to fail verification. After recovery or if the head task was already non-
speculative, the interrupt is delivered to using conventional techniques.

4.5.7 Mechanisms for Mapping Between Programs

As described in Section 3.3.1, the distinctness of the distilled and original program necessitate map-
ping PCs between programs under certain circumstances. The implementation uses different techniques
depending on the direction of the mapping. When mapping from the distilled program to the original pro-
gram, the statically mapped PC can be embedded in the distilled program text. When mapping the other
way, table lookup is employed.

Distilled program PCs to be mapped, be they link PCs in call instructions or task start FERIFY
instructions, are fixed for a given instruction in the distilled program. As a result, they can be statically
translated during the construction of the distilled program. To avoid any unnecessary hardware tables, the
mapped PCs are encoded directly into the distilled program. To encode the full PC instruction slots after
the mapping instruction can be used to provide a large enough immediate. These inlined immediates
require a change in the way return addresses are computed for insertion into the return address stack.

Mapping from the original program to the distilled program is performed by table lookup so the imple-
mentation can leave the original program text unmodified. The two cases that need to be supported are 1)
indirect branches and 2) entries into the distilled program.

Mapping indirect branch targets is one of the most intrusive changes to the processor core, but one that
is latency tolerant. Since it performs a similar duty, the hardware is organized much like the hardware used
to accelerate virtual memory. Most mapping requests can be satisfied by aeigali4 entry) mapping
lookaside buffer (MLB) that holds pairs of PCs <original program, distilled program>. As is shown in
Section 5.2.12, most programs are insensitive to the addition of a few cycle delay to perform this mapping.

When an MLB lookup results in a miss, a page table structure in memory is accessed. As my results
show that performance is insensitive to the time to access this page table, my implementation tries to mini-
mize the size of this page table. A sparse page table is used because only about one-half to two percent of
instructions are active indirect branch targets and they are not evenly distributed. My implementation,
shown in Figure 4.11, uses two tables created by the program distiller: the L1 table encodes the range of L2
entries associated with a page of original program text, and the L2 table encodes the map entries them-
selves. The benchmarks have an average of 2 to 10 entries per thousand static instructions (16 4-byte
entries fit on a 64-byte cache line). By ordering the entries sequentially, the mechanism could often guess
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Figure 4.11:A sparse page table implementation for mappifidne L1 table has one entry per (8kB) page of origi-

nal program text. These entries hold a (16-bit) pointer to the first L2 entry associated with the page. Thus, by looking
at two consecutive L1 entries, a state machine can identify the range in the L2 table to search. Each L2 entry concat-
enates the (11-bit) original program page offset and a (21-bit) offset from the beginning of the distilled program. The
index in the first table is found by subtracting off a base pointer and dividing by the page size.

which block holds the correct entry on the first try. Because of its latency tolerance the state machine could
be implemented either at the processor—buffering the tables in private cache—or at the L2 cache banks—
buffering the tables in the L2 cache arrays.

Entry PCs can be mapped with a similar mechanism, but the entry MLB is located at the GRF. As the
set of entry PCs is smaller and exhibits better locality than the set of active indirect branch targets, the
same hardware structure has a smaller miss rate (generally by a factor of two).

4.5.8 Tracking Stale Data and Refreshing

Unlike at the L2, (speculative) checkpoint data and speculatively written data is intermingled with
architected data in the L1 data caches. Since the checkpoints are complete before the task is allocated to a
slave processor—unlike other speculative multithreading paradigms—it is unnecessary to annotate data in
the L1 with the timestamp of the task that creatédlitstead, a singlstalebit is kept per block that indi-
cates when the block is out-of-sync with current architected state. A block is marked stale if (1) it contains
checkpoint data, (2) a speculative task stores to it, or (3) a write has been committed to this block since it
was loaded by this processor. Even this single bit is just a performance optimization, which is rendered
unnecessary if the data cache is flushed after every task. With the stale bits, only the tagged blocks need to
be invalidated.

Setting the stale bit is trivial in the first two cases; the third is accomplished by extending an invalida-
tion coherence protocol. When a cache block is fetched, the L2 cache bank knows if checkpoint data was
used and communicates this information using a bit in the message. When a retired store by a speculative
task is written into the cache, the block’s stale bit is set. The most difficult case is when a store is commit-
ted at the L2 cache bank, but this case is very similar to need to invalidate a block in a traditional coherence
protocol. Thus, as previous research has done [15, 32, 33, 73, 74], | extend the existing invalidation proto-
col to send “invalidate” messages when a store is committed. These messages are interpreted by MSSP
processors as an indication to set their stale bits.

Although not necessary for correctness, it helps performance—by 20 percent on average, as shown in
Section 5.2.11—if the master periodically “refreshes” stale blocks in its cache. A refresh is just the
retrieval from the L2 of a block that the processor already has in its cache. The refresh brings the current
view of the block (from the most recent timestamp) and enables the master to shed old checkpoint state and

4. This statement assumes that each processor is executing a single task at a time.
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see architected state updates by slave processors. The frequency of refreshes has to be selected to balance
conflicting desires; frequent refreshes ensure that the master has the most recent data available, while less
frequent refreshing uses less bandwidth. Currently my simulations use a relatively naive mechanism: a
simple queue that is filled on “invalidation” requests and drained by one entry periodically when there are
few cache misses outstanding.

4.5.9 Efficiently Communicating, Reading and Writing Register Files

The MSSP paradigm requires us to communicate register values between processors, necessitating
mechanisms to read values out of and write values into the processors register files. To avoid impacting
cycle time, | try to avoid adding additional special ports to the register file, by harnessing unused band-
width on the existing ports. Also, to minimize the interconnect bandwidth used to communicate register
file contents between the GRF and the processor | keep a reference register file at the processor. | briefly
detail these notions in this sub-section.

The processor core’s register file is written under three circumstances—beginning of a slave task,
restart of the master, and an early verification—and read under three—checkpoint registers at the end of a
master’s task, transition registers at the end of the transition code executed by the slave, and live-out regis-
ters at the end of the slave’s task. Of these tasks, reading of the checkpoint registers from the master pro-
cessor is the only performance critical one.

Filling the processor’s register file can be done by using the existing write ports, by adding a path from
the interconnection network to the register file. In two of the cases, task start and master restart, there is no
competition for these resources, in the third, early verification, execution can be stalled. Reading the regis-
ter file can be done similarly by using the existing read ports. Live-outs are generally read at the end of the
task when there is no competition for the read ports. It would be preferable not to have to stall the proces-
sor to read transition registers, but it would be tolerable as slave execution is rarely on the critical path. On
the contrary, master execution is frequently on the critical path.

Initializing the processor’s register file at the beginning of a task or after a restart of the master can be
done using the existing write ports (by adding a path from the core’s interconnection network controller)
because no instructions will be executing while the register file is being filled. Reading the register file is
more common and needs to be done with little impact on the execution; these reads can either be accom-
plished by adding additional read ports, harvesting unused read bandwidth, or creating a separate retire-
ment register file solely for the use by the MSSP logic.

4.5.10 Early Verification

If a task is particularly long, then some finite buffer may become full, which would prevent further
execution. In such a situation, the MSSP implementation performs an early verification. An early verifica-
tion can be implemented by squashing all in-flight instructions, temporarily stopping fetch, sending any
remaining live-ins and live-outs to the appropriate banks, and requesting verification. If verification suc-
ceeds, the architected register file is sent to the slave and all of its stale data is invalidated. At this point the
task can execute non-speculatively and can continue without the need for further buffering.

The processor need not halt execution if it can begin the early verification process while some buffer-
ing is still available. The challenge of performing verification concurrently with execution is that execution
can produce new live-in values that need to be verified. To avoid this situation, the slave purges all check-
point data from its cache and register file; only architectural data and speculatively written data will remain
in the cache and register file. At this point, no new task misspeculations can be introduced: only existing
misspeculations can be propagated, but these will be detected by verification of the existing set of live-in
values. Once all checkpoint data has been purged, the slave no longer needs to capture new live-in values,
just live-out values. When the task has been verified all live-outs can be immediately committed.
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The early verification mechanism also gets overloaded to support task synchronization, where a specu-
lative slave task waits until it becomes non-speculative before executing. Although not required frequently,
support for synchronization enables the distiller to substitute a stall for cases that would almost certainly
otherwise cause a task misspeculation. One such case is described at the end of Section 6.1. The required
support is an additional special instruction that | can SYNC, which is inserted in the task’s out-transition
code. When the SYNC is encountered, an early verify is requested before the task begins; as no live-ins
have been recorded, the verification should never fail. The result is that the task can begin executing non-
speculatively, as soon as it becomes head and has retrieved the necessary architected state.

4.6 Chapter Summary

In designing an implementation of the MSSP paradigm, | focused on two key bottlenecks of the para-
digm: (1) the master’s execution of the distilled program, and (2) the verification and commitment of task
data. To minimize overhead on the execution of the distilled program, | elected to perform all checkpoint
construction and communication in hardware. To avoid communication latency on the verification and
commitment of tasks, | perform this process centrally at the L2 cache banks. These design decisions enable
an implementation that is remarkably tolerant of communication latency, because many of these latencies
can be incurred in parallel, off the critical paths.
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Chapter 5

Experimental Evaluation of the MSSP Paradigm

In this chapter, | present a simulation-based evaluation of the performance of the MSSP paradigm. |
first describe the three components of my evaluation methodology (in Section 5.1) and then present perfor-
mance results, supporting data, and sensitivity analysis (in Section 5.2). The major findings of this experi-
mental analysis are summarized at the end of the chapter in the chapter summary.

5.1 Experimental Methodology

In this section, | describe the experimental infrastructure | used to evaluate the performance of the pro-
posed paradigm. This infrastructure consists of three elements: 1) the prototype program distiller, 2) a tim-
ing simulator, and 3) the SPEC2000 integer benchmarks. These are the topics of the three sub-sections that
follow.

5.1.1 Program Distiller Implementation

As described in Section 3.4, the preliminary evaluation in this dissertation is performed using a static
off-line implementation of the program distiller. This implementation simplifies the construction of the dis-
tiller, because all of the profile information is available at the beginning of its execution.

All distilled programs are created automatically. The distiller is a binary-to-binary translator, which
takes the original program and extensive profile information and generates the distilled program image and
the necessary maps. This distiller prototype only implements a subset of the optimizations that | have iden-
tified as profitable. Currently, the distiller eliminates highly-biased branches, dead code, stack pointer
updates, and branches whose taken and un-taken paths are the same. It also re-allocates registers, inlines
functions, and performs code layout to minimize the frequency of taken branches. | expect results to
improve as additional optimizations are implemented. Some parameters specified to the distiller are shown
in Table 5.1.

5.1.2 Simulation Infrastructure

The performance results presented below were generated by a detailed cycle-level simulation model.
The simulator | used was derived from the SimpleScalar toolkit [3], but the timing model has been con-
structed from scratch. Like SimpleScalar, only the user-level instructions are simulated; all system calls are
emulated by calls to the machine running the simulation. .
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TABLE 5.1 Baseline parameters supplied to the program distiller.

Parameter Value Explanation

Target Task Size 250 instructiong The task size the task selection algorithm considers optifnal.

Branch Threshold 99% biased The fraction of instances that must go to the dominant tarpet for
the branch to be removed.

Idempotent Opt. 99% correct The fraction of times that an instructions output must match an

Threshold input for it to be removed.

Silent Store Thresh- | not applied The fraction of times that a store must have overwritten anjden-

old tical value in memory for it to be removed.

Long Store Definition| 1000 instructions The store to load distance at which a dependence is consfdered a
long dependence.

Long Store Threshold 99% long The fraction of store instances that have to be long for th¢ static
store to be considered long.

Unlike the traditional SimpleScalar timing simulators, functional simulationasdecoupled from
timing simulation. Instead, the simulator tries to perform operations as the simulated machine would, when
the simulated machine would. For example, registers are renamed to hold speculative state and misspecula-
tion recovery is performed by rewinding to a pre-misspeculation register map. This truly execution-driven
methodology is vital in simulating speculative parallelism architectures, because, like a traditional parallel
processor, the timing of an operati@ng, a load) can alter its result.

Since the simulator is organized in this manriar.(not decoupled), | have some confidence that the
results presented are correct for the system as modelled. Concurrently with the timing simulation, | run a
verification simulator, which has its own distinct copy of registers and memory, that verifies the functional
correctness of instructions as they are retired. The second simulator ensures that the correct path through
the program is taken and that the correct program values are computed. Because it is the timing model gen-
erating the functional results, it is difficult to accidentally construct an incorrect timing model that consis-
tently generates correct functional results. Despite this validation of the timing model, conclusions drawn
from these results are subject to the implicit assumptions made when constructing the timing model.

The simulator models a chip multiprocessor (CMP) that supports the Alpha AXP instruction set. The
baseline model reflects the implementation described in Chapter 4, with 8 processors and a shared 2MB L2
cache with 8 banks, as shown in Figure 5.1.

Each processor core is configured to look similar to the HP Alpha 21264; details can be found in
Table 5.2. The superscalar width, pipe depth, and functional unit latencies simulated are similar to those
published for the 21264 [37]. In addition, the line predictor-based front-end is modelled—the machine
fetches aligned groups of four instructions so the compiler-inserted nops for padding are important—but
larger, more advanced branch predictors are used. Many engineering details of thee22i#h¢tional
unit clusters, troll traps, etc.) are not modelled, but it is my belief that the flexibility inherent in the distilled
program would allow it to better avoid their negative impacts than traditional code can.

p p configured like Alpha 21264 (4-wide out-of-order superscalar)
$ $ 64kB L1 I-cache, 64kB L1 D-cache, 2-way assoc., 64B blocks
|nterconnect|on Network |<&— 10 cycle uncontended latency, 1 message per entity/cycle

|
GR L2 L2 L2 L2 L2 L2 L2 4— 2MB L2 cache divided into 8 banks, 4-way assoc., 64B blocks

Figure 5.1: Diagram of machine model.
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TABLE 5.2 Simulation parameters approximating a CMP of Alpha 21264 cores

Front A 64kB 2-way set associative instruction cache, a 64kb YAGS branch predictor, a 32kb cascading fdirect
End branch predictor, and a 64-entry return address stack. The front end fetches aligned blocks of 4 fnstruc-
tions. A line-predictor a la the 21264 is implemented.

Execution | 4-wide (fetch, decode, execute, retire) machine with a 128-entry instruction window and a 13 cycl¢ pipe-
Core line, includes a full complement of simple integer units, 2 load/store ports, and 1 complex integer unit, all
fully pipelined. The first-level data cache is a 2-way set-associative 64kB cache with 64B lines arfjd a 3-
cycle access latency, including address generation.

System The system on a chip includes 8 processor and 8 L2 cache banks (each 4-way set-associative jwith 64B
lines, 2MB total), and one GRF. An interconnection network is modelled that can move one 64B mgssage
per cycle to or from each processor and cache. One-way network latency is 10 cycles, unless stat¢d other-
wise. Minimum memory latency (after an L2 miss) is 100 cycles.

My experiments compare the performance of the MSSP paradigm to a traditional uniprocessor execu-
tion of the program on a single processor of the same CMP. Although clearly not an “equivalent resource”
comparison, this comparison is valid. As we move into the billion transistor era, processor cores will be
less resource constrained and more communication latency constrained [1, 48]. Thus, the resource inequal-
ity is less important than whether communication latencies are modelled sufficiently accurately. By
default, the one-way communication latency across the interconnection netveqrigtween processors,
and between processors and L2 cache banks) is 10 cycles; in Section 5.2.6, | explore the sensitivity to this
parameter.

5.1.3 Benchmark Programs

| performed this evaluation using the integer benchmarks from the SPEC2000 benchmark suite. These
programs exhibit the control-flow and memory access behaviors representative of non-numeric programs.
Generally, these behaviors make these programs harder to analyze with a compiler and more difficult to
efficiently execute than numeric programs.

The benchmarks were compiled for the Alpha architecture using the Digital Unix V6.21 compiler with
optimization levels and flags specified for producing PEAK executables. The executables were compiled
for the 21264 (EV6) implementation and include implementation specific optimizations. The compiler
inserts nops primarily to avoid more than one branch per group of four aligned instructions (to facilitate
line prediction) and to align branch targets. Because our simulator models a fetch architecture very similar
to that of the 21264, these nops are useful in the simulated architecture. Like the 21264, our simulator
drops nops at decode time, so they do not consume scheduling, window or retirement resources. The
results include nops, but they are unimportant as it is the relative performance (MSSP vs. sequential) that is
important.

Because my detailed timing simulator incurs a slowdown of a factor of 10,000 from native execution,
simulating the full reference inputs to completion is impractical. In an attempt to make simulation of these
programs practical, | have modified the input parameters or data sets of the reference inputs to reduce their
run time. | chose this approach, rather than using the training inputs, because in some cases the data work-
ing sets of the reference inputs are significantly larger. In all cases, | tried to modify the input sets to main-
tain the size of the working set. Some benchmarks perform similar operations multiple times, and this
reduction can be performed trivially by specifying that fewer operations be performed. In a few cases
(twolf , vortex , andvpr ), the operations performed were simplified to reduce the run time. The set of
input parameters used are shown in Table 5.3.

5.2 Results

In this section, | present the experimental results. The most important results can be summarized as
follows:
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TABLE 5.3 Input sets used for simulation of Spec 2000 integer benchmarks

Benchmark | Input Parameters Notes
bzip2 input.source 10 reference input, first 10 MB
crafty crafty.in reference input truncated to only play twg
games
eon chair.control.kajiya chair.camera chair.surfaceseference input
chair.kajiya.ppm ppm pixels_out.kajiya
gap -l ./input -q -m 64M < train.in train input
gcc integrate.i -0 integrate.s reference input
gzip input.source 10 reference input
mcf train.in train input
parser 2.1.dict -batch < train.in train input
perl diffmail.pl 2 350 15 24 23 150 train input
twolf ref reference input without “slow 10” directivg
vortex lendian2.raw reference input, with number of tasks
reduced: LOOKUPS 1000, DELETES
2000, STUFF_PARTS 2000
vpr net.in arch.in place.in route.out -nodisp - reference input for routing phase, modifiqd
route_only -route_chan_width 15 - to increase the overuse penalty and limitg¢d
pres_fac_mult 2 -acc_fac 1 -first_iter_pres_fato a single iteration
100 -initial_pres_fac 1000 -
max_router_iterations 1

Speedups up to 1.75 (1.25 harmonic mean) can be achieved on full runs of the reduced inputs. The two
largest speedups are achieved ot andvortex . Geec has a humber of loops with low iteration
counts where (in the common case) the iterations are independent from each other and the code that
follows. Invortex , many functions have error checking code that is removed and a single dominant
path that allows a significant degree of distillation.

Distilled programs can accurately predict task live-in values with the necessary coverage. Task mis-
speculations typically occur only once every 10,000 instructions or more.

These accurate predictions limit the execution paradigm’s sensitivity to inter-processor communica-
tion: raising the communication latency from 5 cycles to 20 cycles only reduces the MSSP speedup
10%.

The MSSP-specific hardware storage requirements (beyond a chip multiprocessor) are modest. For
example, only 24kB of storage resources are required at the L2 to hold checkpoint, live-in, and live-out
values.

The root optimizations only account for about one-third of the effectiveness of distillation (as deter-
mined by speedup); dead code elimination and the other supporting optimization each account for one-
third of the speedup in our current distiller.

The program distiller is largely insensitive to root optimization thresholds. Most of the benefit of the
root optimizations is achieved at the lowest threshold settings because it comes from removing never-
observed behaviors.

| first present some supporting numbers exploring the effectiveness of optimization (Section 5.2.1),
task selection (Section 5.2.2), hardware resource utilization (Section 5.2.3), and indirect branch target
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mapping (Section 5.2.4). Performance results are presented in Section 5.2.5 and correlations are drawn to
distillation effectiveness. In Sections 5.2.6 through 5.2.12, sensitivity analysis is performed to explore the
implementation’s sensitivity to variables including communication latency, bandwidth, task size, and num-
ber of processors.

The performance results in Section 5.2.5 are derived from complete runs of the benchmarks. The sup-
porting results—where multiple MSSP simulations are compared—are simulations of a 5 billion instruc-
tion sample started after 5 billion instructions. This sample is representative for all of the benchmarks
exceptgcc , which performs particularly well in this sample.

5.2.1 Distilled Program Optimizations

Distilled program optimizations can be divided into two categories: 1) the speculative base optimiza-
tions, and 2) the non-speculative supporting optimizations. The root optimizations are pictorially repre-
sented in Figure 5.2. The results shown in Figure 5.4 and Figure 5.3, demonstrate the effect of the root
optimizations. For each optimization, | vary the correctness threshold provided to the distiller (plotted on
the X axis); as the threshold is decreased there are more opportunities for application of an optimization,
because the distiller is less demanding that an optimization preserve correctness. | have plotted both the the
number of times each optimization was applied to the static program and the resulting number of dynamic
instructions removed for a range of different input threshold parameters (allowing from 0.01 to 2.0 percent
incorrect results). For example, the point in the first graph at (99.9%, 350) indicates that with a 99.9%
threshold, 350 static branches were removed froem

The first thing to notice is that biased control-flow elimination—the first two optimizations—have a
gualitatively different shape than the four other optimizations; they have increasing opportunity with
higher threshold values. This shape is due to a distribution of branch biases. The effectiveness of the sec-
ond optimization is not monotonically increasing because the two optimizations interact and non-dominant
entries are eliminated after non-dominant branch targets. For the mosth@ather four optimizations
are independent of threshold indicating that most exploitable instructions are always or almost always
safe to remove.

From the dynamic instruction counts in Figure 5.4 and Figure 5.3, one can see that a non-trivial num-
ber of instructions are removed. The larger number of static idempotent operations removed is partly an
artifact; if an instruction always writes the value zero into a register it is counted in these results. For some
optimizations and benchmarks, the numbers range into the billions of dynamic instructions: a substantial
number for these executions that range from 9 to 40 billion instructions. Nevertheless, the base optimiza-
tions by themselves are seldom sufficient to get sizable performance gains. However, they also create
opportunities for the non-speculative supporting optimizations.

a) b) c) d) e) ) |jsrra, (r12)
sextb r4, r4
few;( \many fem)s % many store X, A store X, A L"»bsr ra, PC

r4 usually
no load A positive A contains X r12 usually
same PC

Figure 5.2:Root optimizations represented pictorial@ptimizations involve removing or transforming instruction

and are shown with their pre-condition. (a) branch elimination removes non-dominant branch targets, (b) entry elim-
ination removes non-dominant control-flow sources, (c) long dependence store elimination removes stores with dis-
tant first uses, (d) idempotent operation elimination removes instructions that mostly produce one of its inputs as its
output, (e) silent store elimination removes stores that mostly write the value already present in a memory location,
and (f) indirect-to-direct call conversion is applied when an indirect call has a single dominant target.
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In Figure 5.5, | compare the relative effectiveness of the root and supporting optimizations. | plot the
distillation ratio the number of dynamic instructions executed by the distilled program relative to the orig-
inal program, and the average distance (in original program instructions) between task misspeculations for
three configurations: 1) only root optimizations, 2) root optimizations and dead code elimination (DCE),
and 3) all root and supporting optimizatioms. general, DCE and the set of other supporting optimiza-
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(b) and indirect-to-direct call conversion (c) are all largely independent of threshold.
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tions each reduce the distillation ratio about as much as the root optimizationg-or the most part this
reduction in distillation ratio comes with little impact on misspeculation frequency. @aly observes
significant impact: the cause appears to be due to the master thread getting too far ahead of the slaves
(causing what were long dependences to become short dependences).
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5.2.2 Task Selection

By default, the program distiller is requested to create tasks of approximately 250 instructions. There
are not always suitable task boundaries at this interval, so the distiller satisfies this task size goal as best it
can. The resulting distribution of task sizes is shown in Figure 5.6a, as a cumulative distribution. For most
benchmarks the average task size (shown in Table 5.4) is just under 200 instructions. Without task bound-
ary suppression (Section 3.2.3), the average task size is smaller, as shown in Figure 5.6b. Five bench-
marks—bzip2 , gcc, gzip , mcf andparser —suffer from a large number of small tasks; without task
boundary suppression these benchmarks experience significant slow-downs relative to a uniprocessor exe-
cution.

Additional data about the constructed distilled programs is shown in Tabld-6rdmost bench-
marks, the static distilled program is substantially smaller than the original program; vortexis a
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Figure 5.6:Task size distributions, with and without task boundary suppressinMost benchmarks have ntos
of their tasks in the range of 100 to 300 instructions. b) Without task boundary suppression benchniks
gcc, gzip , mcf andparser are dominated by small tasks (less than 50 instructions).
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TABLE 5.4 Distilled program statistics

number | avg. discont.
original distilled of static | dyn. indirect loads / stores/ | fetch

Bench | program program task task map size | 1k inst 1k inst / 1Kk inst

mark size (insts)| size (insts)| bound’s | size (kB) orig/dist | orig/dist | orig/dist
bzip2 39,000 9,000 188 140 Ll 216/26} 46/82 62/11p
crafty 93,000 41,000 364 182 1 242/29p 45/55 35/84
eon 161,000 51,000 952 129 O 210/266  157/215 32/8
gap 215,000 35,000 844 218 B 194/236 61/89 57/133
gcc 452,000 133,000 2968 196 30 109/280 89/135 46/132
gzip 43,000 6,000 113 280 l  155/190 34/69 33/74
mcf 34,000 4,000 99 19( 1 266/321 33/62 79/158
parser 67,000 27,000 454 196 1 167/24p 53/112 59/11p
perl 187,000 47,000 894 11p 14 214/279  108/167 54/1Q9
twolf 99,000 27,000 732 188 1 192/238 60/74 48/78
vortex 166,000 109,000 2161 186 14 108/272 56/173 11/146
vpr 75,000 25,000 486 344 1 247/318 78/1Q7 31/54

notable exception because it performs a lot of function in-lining, which involves code replication. The
number of static task boundaries correlates strongly to the size of the static distilled program; for each task
boundary there is one stat@iHKPTinstruction, one in-transition entry into the distilled program, and one
out-transition block with &/ ERIFY instruction. The average size of a task in (original program) dynamic
instructions indicates how often ti&HKPTand VERIFY instructions are encountered during execution.

The number of indirect branch targets used by the distilled program, which need to be in the indirect map
table, is also correlated to the size of the static distilled program. | also present the distillation ratio for
loads and stores demonstrating that my optimizations can be effective at reducing the number of required
cache accesses. Lastly, | show the number of discontinuous fetches (taken branches) for the distilled and
original program. This metric is improved by the profile-driven code layout. The benefitsrtek 's
aggressive inlining can be seen byféstor of 10 reductionin this metric.

5.2.3 Hardware Resource Utilization

Next, | present the hardware resources required to make the paradigm work, namely interconnection
network bandwidth, non-architectural data storage, and processor utilization.

Communication Bandwidth. Measured bandwidth utilization corroborates our estimates in Section 4.4.3.
Figure 5.7, shows the average number of bytes of data communicated per instruction for each major type
of entity: master processor, slave processor, L2 cache bank, and GRF. This data may be slightly pessimistic
due to a naive cache refreshing policy. Cache refreshing (discussed in Section 4.5.8) is responsible for
many of the fills requested by the master. Currently, my refresh policy errs on the side of refreshing too
often, naively requesting a refresh for a block at the end of a task in which it was written. | am confident
that a more intelligent technique could achieve the same results with less bandwidth.

Non-architectural State Storage A moderately small amount of storage is required for speculative data.
In our current model, the amount of such data is currently not limited, allowing us to measure the require-
ments of each workload. Figure 5.8 shows the amount of storage that is sufficient for 98% of the cycles;
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Figure 5.7:Bandwidth utilized.Although “bandwidth can be bought”, our MSSP implementation uses quite a bit.
Utilization is shown in bytes per original program instruction for each type of entity (M = Master, S = Slave, C = L2
Cache bank, R = global Register file). So far little has been done to optimize bandwidth utilization.
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Figure 5.8: Amount of speculative state storage requirédttle speculative storage is necessary. The number of
8B memory words sufficient to buffer state in 98% of cycles is shown (b). Rarely are more than 128 words of stor-
age required of any type (C = checkpoint, L = live-in, S = live-out stores).

storage for each type of data (memory checkpoints, live-in values, and live-out values) is plotted sepa-
rately. When a lot of storage is required, it is to keep many tasks in flight simultaneously (as will be shown
next, in Figure 5.9). Since this behavior is desired, the implementation should have sufficient resources to
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Figure 5.9: Processor utilization and task activity distribution(a) distribution of number of processors allocdte
at any given time, and (b) distribution of number of tasks active (i.e., executing or completed and waiting for commit-

ment).
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Figure 5.10:Hit ratio of as a function of indirect branch target map siZ€he lines that end before 256 entries
have no capacity misses, only compulsory misses. Benchimapds , gzip , mcf, twolf , andvpr are not shown
as they have a negligible number of misses.

support it. Taking the load imbalance into account, providing each bank with 64 entries of each type should
be sufficient for these workloads. Since checkpoint, live-in, and live-out entries require about 16B of stor-
age eacha structure of this size would require about 24KB of storage, or a little more than 1% of a

2MB L2 cache

Processor Utilization.Although the simulated machine has 8 processors available, they are rarely being
used simultaneously. Figure 5.9a shows a cumulative distribution of cycles of the number of processors
(either master or slave) that were allocated. Because distillation ratios from the current distiller prototype
are reasonably low and the implementation uses processors efficiently—processors can be reallocated
when a task is completed, not when it commits—for most of the benchmaskéewer processors were
necessary 90% of the timeOnly gcc can regularly keep more than 4 tasks active simultaneously. Perfor-
mance sensitivity to number of processors is measured in Section 5.2.10.

5.2.4 Mapping

As | described in Section 4.5.7, a mechanism is required for mapping between the original and dis-
tilled programs. In this sub-section, | demonstrate that there is a working set of indirect branch targets in
the distilled program. Figure 5.10 shows the hit ratios for a range of fully associative tables with least
recently used (LRU) replacement, up to 256 entries. For the most part, the working sets would fit in a 64-
entry fully associative cache with a least-recently-used policy. All benchmarks except gcc have at least an
85% hit ratio; indirect branches are rare enough in gcc's distilled program that it only misses every 3,000
instructions with a 64-entry cache. | believe these results demonstrate that indirect branch target maps can
be effectively cached.

One reason that the working sets are small is that some indirect branches that are present in the original
program have been removed from the distilled program. If an indirect branch has a single dominant target,
it can either be converted to a direct branch or removed altogether. Furthermore, returns are a big source of
indirect branches and they are frequently removed by function inlining. Table 5.5 shows the average reduc-
tion of dynamic instances of indirect branches, which ranges from 35 to 100 percent.
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TABLE 5.5 Number of indirect branches per 1000 dynamic (original program) instructions

Benchmark | bzi |cra eon dap gcc gzi mcf par| per| two | vor |vpr
original 15 19 35 37 6 6 34 26 36 13 28 10
distilled 0 5 10 26 2 1 1 9 24 1 4 0

5.2.5 Performance

The MSSP performance simulations are compared to a base case in which a single processor of the
CMP is used to execute the program as a traditional uniprocessor. Speedups are computed from execution
times (in cycles). All references to retired instructions per cycle (IPC) relate to original program instruc-
tions; such comparisons are meaningful because the same original program instructions are committed—in
the same order even—by both execution paradigms.

| first present data from the whole program’s execution; Figure 5.11 shows data on task misspeculation
frequency, distillation effectiveness, and speedup together to allow correlations to be drawn visually. In
Figure 5.11a, | show the average distance between task misspeculations (in dynamic instructions). This
distance ranges from 10,000 to over 100,000 instructions, demonstrating that task misspeculations can be
made rather infrequent. Figure 5.12 plots the misspeculation detection latency. While there is wide distri-
bution of detection latencies, most misspeculations are detected in less than 300 cycles of starting a task.

The misspeculation frequency data is meaningless in isolation, in Figure 5.11b | try to quantify the
effectiveness of the distillation that corresponds to this misspeculation frequency. Quantifying distillation
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Figure 5.11:MSSP Performance across the whole program’s executitask misspeculations (a) are infrequent;

the smallest average distance (in dynamic instructions) between misspeculations is just under 10,000 instructions,
and for some benchmarks it is more than 100,000 instructions. The distillation ratio (b), the ratio of the ndmber o
non-nop instructions in the distilled program vs. the number of non-nop instructions in the original program {smalle

is better), estimates the effectiveness of distillation. This figure correlates well to the speedups (c) achieved, which
range from 1.0 (no speedup) to 1.75.
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Figure 5.12:Task misspeculation detection latendylost task misspeculations are detected within 300 cydes o
starting the slave task. Longer detection times are due to long tasks preceding the misspeculation.

independent of an implementation model is difficult; as an attempt | have definddbtifiation ratio to be

the number of non-nop instructions “retired” by the master processor relative to the number of non-nop
original program instructions retired by the slaves. Although this metric cannot quantify the benefit of IPC
improving optimizations€.g, pre-fetching, if-conversion, global scheduling, etc.), it is a decent metric for
my current distiller implementation as few IPC improving optimizations are implemented.

The distillation ratio varies greatly between benchmarks. My current distiller only effectively distills
two of the benchmarkgcc andvortex . In these two benchmarks the master executes 70% fewer instruc-
tions than the original program; the rest of the benchmarks only observe a 20% to 35% redtmtibas
a number of loops with small loop bodies whose iterations are independent from each other (in the com-
mon case), like the one shown in Section 2.2.5. Most of the code in these loops can be removed by the dis-
tiller leaving only the updates of the induction variable. Then the loop in the distilled program can be
unrolled by just scaling the values added to (or subtracted from) the induction variables. The result is that
the master executes about 5 instructions for each task of 200-250 instructions.

Vortex has a number of factors contributing to the effectiveness of its distillation. First, it has a lot of
error checking code, much of which is removed by biased branch and dead code elimination. Second,
many small functions have a single dominant path, allowing all branches to be removed from them. This
action both leads to a significant reduction in the computation performed by the function and sometimes
transforms non-leaf functions into leaf functions. Thivdritex is very call intensive; the function call
overhead is greatly reduced by inlining leaf functions (some of which were created by non-dominant path
elimination). If all of a function’s calls are inlined, it too becomes a leaf function, and is considered for
inlining. Invortex , such inlining is often carried three or four levels up the call graph.

In Figure 5.13, | show the same metrics as in Figure 5.11, but break the simulations in five billion
instruction segments to explore the variations between segments of the execution. My reduced input sets
for the benchmarks have runs that range from just under 10 to almost 45 billion instructions, resulting in
between 2 and 9 segments, inclusive, per benchmark. As can be seen, most benchmarks have little varia-
tion over their execution at this granularity, although some benchmarks demonstrate variation in their initi-
ation and/or termination segments from the rest of the segments. The main excepjmn which
performs significantly better in its second segment (the segment starting after five billion and ending at 10
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Figure 5.13:Performance variation across executioBach benchmark’s execution is broken into five billion
instruction segments. IPC (a), speedup (b), distillation ratio (c), and average misprediction distance (d) data for is
shown for each segment. Shorter running benchmarks execute fewer instructions. For many benchmarks there is little
variability between segments. Gcec is a noteworthy exception, where the second segment (the one | used for sensitivity
analysis) achieves a significantly higher speedup.

billion instructions). | point this fact out because it is this second segment that | plot for all of the support-
ing and sensitivity analysis.

5.2.6 Sensitivity to Interconnect Latency/Bandwidth

One of the goals of the MSSP paradigm is to tolerate inter-processor communication latency, and, for
the most part, this goal is achieved. Figure 5.14 compares the baseline and MSSP implementation for on-
chip one-way communication latencies of 5, 10, and 20 cycles. Both base and MSSP executions are
affected as the L2 hit time has increased from 12 to 22 to 42 cycles. For the most part there is only moder-
ate impact on the MSSP speedups. Ogdy andvortex observe a significant relative performance
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Figure 5.14:Limited sensitivity to inter-processor communication latenadys the network communication
latency between processors and the L2 cache is scaled from 5 cycles (S = short) to 10 cycles (M = medium) to 20
cycles (L = long)—causing the minimum L1 miss penalty to go from 12 to 42 cycles—relative performanceé on mos
benchmarks diminishes slightly, and performance relative to the base case improves with increased lateancy on

reduction. The MSSP execution for the benchmaok is actually more tolerant of inter-processor com-
munication latency than the baseline uniprocessor execution.

The implementation is even less sensitive to the amount of bandwidth available, at least around this
operating point. Figure 5.15 shows the performance sensitivity as | reduce the inter-processor bandwidth
from 1 message per cycle, to 1 message every 2 and 3 cycles.
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Figure 5.15:Limited sensitivity of inter-processor bandwidth on performantleC (a) and speedup (b) are shown
for configurations that can communicate a message dy@nand3 cycles.



81
5.2.7 Sensitivity to Task Size

With task boundary suppression in place, the execution is somewhat insensitive to task sizes. In
Figure 5.16a, | show the resulting average task sizes when the distiller is charged with creating tasks of
100, 250, and 500 instructions. As can be seen, the distiller usually undershoots its mark, largely because
of frequently executed loops below the target task size. Figure 5.16b shows that performance on most
benchmarks is mostly insensitive to task size—with performance slightly increasing on average with larger
tasks—but gcc and vortex have distinctly better performance with 250 instruction tasks. The sensitivity of
performance on task size is a complex interaction of a number of forces. In Figure 5.17, | demonstrate that
distillation improves slightly with task size (recall that a smaller distillation ratio is better), and generally

a) — M _
o 400 — 7 -
@ 300 B
£ 200 M '
S 100-
0=SML SML SML SML SML SML SML SML SML SML SML SML
bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr
b) 21
i
21
0=SML ~SML ML _
bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

Figure 5.16:Sensitivity of task size on performandé&/hen directed to construct tasks of three different sizes—100
instruction (S=short), 250 instruction (M=medium), and 500 instruction (L=long) tasks—the program distille
obliges but generally constructs undersized tasks (a). For the most part performance is insensitive to task size (b).
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Figure 5.17:Impact of task size on distillation ratio and misspeculation frequenty.task size increases, distil-
lation is slightly more effective (a) and misspeculations are less frequent (b), because there are fewer tasks to be mis-
speculated.
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Figure 5.18:Sensitivity of task size on task misspeculation detection latelhayger tasks generally have longe

lifetimes (i.e., time between allocation to a slave processor and commitment) than short tasks. Data shown for 100
(a), 250 (b), and 500 (c) instruction tasks.

the distance between task misspeculations is increased, although this is mostly an artifact resulting from
there being fewer tasks to be misspeculated. The factor that has the largest negative impact is the task mis-
speculation detection latency (shown in Figure 5.18). As the desired task size is scaled from 100 to 500

instructions, the median latency to detect a misspeculation increases from 150 cycles to 300 cycles, on
average.

Much larger than its effect on performance, variations in task size impact the bandwidth/storage trade-
off. As is shown in Figure 5.19, larger tasks use less inter-processor bandwidth (on a per instruction basis),
but require more buffering for non-architectural data, as the larger tasks have more state per task.

5.2.8 Sensitivity to Task Boundary Selection

To explore the sensitivity to the heuristics used to select task boundaries, | ran three experiments. The
first experiment, rather than always putting loop task boundaries before the loop header, picked a random
block on the dominant path of the loop. The second experiment ignored the after loop and after call heuris-
tics for placing task boundaries; instead potential task boundaries were placed before every basic block.
The third experiment varied the location within a basic block task boundaries were place; instead of always
inserting the task boundary before the first instruction of the block, a random instruction in the block was
selected.

The performance of these experiments is compared to the baseline task selection algorithm in
Figure 5.20. For the most part, these alternate task selections perform within 5% of the baseline algorithm
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Figure 5.20:Sensitivity of performance on task boundary selectizhe performance of three alternate kas
selection heuristics are compared to the baseline task selection algotithimsert boundary before random blec
for Loop tasksS: make all basic blocks equally likely @&raight-line code, andP: Perturb task selection within a
basic block by picking a random instruction to be the task boundary.

and in a few instances give 1% speedups. In two benchngagkandgcc the experiments that affect loop
task selectionl( andP) causes the unrolling optimization to fail on a few important loops.

5.2.9 Sensitivity to Optimization Thresholds

My prototype distiller requires (as an input) threshold parameters to guide the application of the root
optimizations. In experimenting with these parameters, | have found that, for the most part, the distiller is
not very sensitive to their settings. In Figure 5.21, | show the speedup of a variety of configurations relative
to baseline MSSP configuration. With the exceptioryaf , these changes to the threshold values affect
performance less than 5%.cc’s performance is significantly impacted by the first four configurations,
because they specify a higher (99.9% vs. 99%) threshold for the number of instances that must be long for
a store to be characterized as a long store, a critical parametgrcfoNo one configuration is best for all
of the benchmarks, suggesting that these thresholds should not be specified directly. Rather, an approach
that evaluates the benefit of the enabled optimizations against the cost of the induced misspeculations is
likely to provide both good and robust performance.
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Figure 5.21:Sensitivity of distillation thresholds on performanc8peedups are relative to the base MSSP config-
uration. The simulations are provided with the following input parameters:

Configuration
Threshold base 1 2 3 4 5
branch threshold 99% 99.5% 99% 98.59 98% 98%
long store threshold 99% 99.9% 99.9% 99.9% 99.9% 99%
idempotent threshold 99% 99.5% 99.9% 99.9% 99.9% 99%

5.2.10 Sensitivity to Number of Processors

Earlier, | showed data (in Figure 5.9) indicating that rarely are all eight processors utilized in the
default MSSP configuration. In Figure 5.22, | vary the number of available processors from three to eight.
The benchmarks with little or no speedup can be satisfied with four processors, but some slowdowns occur
with three. The rest of the benchmarks benefit from up to six processorgcandvhich demonstrated a
high utilization in Figure 5.9, benefits from all eight.

5.2.11 Sensitivity to Refreshing

Periodically refreshing the master's cache (as described in Section 4.5.8) is important. Without
refreshing, performance can drop as much as 20 percent, as shown in Figure 5.23.

5.2.12 Sensitivity to a Realistic Mapping Lookaside Buffer (MLB)

There is a tiny performance difference between a realistic implementation of an MLB and an ideal
MLB. Figure 5.23b shows the performance of an implementation with a 64-entry MLB that has a 2-cycle
access time (misses fetch page table entries from the L2 cache banks) relative to one with a perfect 0-cycle
MLB. In eight cases the performance difference is negligible; the other four lose a half of a percent.
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Figure 5.22:Sensitivity of performance on number of available process@seedup is compared among configu-
rations with three, four, six and eight processors. Many benchmarks benefit from up to six processar; arbily
benefits from more than six processors.
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Figure 5.23:Sensitivity to refreshingRefreshing the master’s cache periodically is important; failing to do so can
drop performance by as much as 20%.
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Figure 5.24:Sensitivity indirect branch target mappingé 64-entry indirect branch target map lookaside buffe
with a 2-cycle access time gives most of the benefit of a perfect mapping mechanism; four of the 12 benchmarks are
slowed by about a half of a percent with the realistic scheme.

5.3 Chapter Summary

In this chapter | described the infrastructure | used for the experimental evaluation of the MSSP imple-
mentation and the resulting data. | briefly summarize the results as follows:

« My distiller prototype yields distilled programs that can accurately predict task live-ins (misspeculat-
ing less than once every 10,000 original program instructions retired).

» The performance of the distilled programs varies significantly between benchmarks. Although some
programs may be fundamentally harder to distill, this result is in part due to the applicability of the
optimizations that | have implemented to these programs.

« The performance of the MSSP implementation largely correlates to the effectiveness of distillation.
Speedups ranging from 1.0 (no speedup) to 1.75 were achieved with a harmonic mean speedup of 1.25.

» The architecture is tolerant of inter-processor communication latency: only 10% slowdown is observed
when the communication latency is scaled from five cycles to 20 cycles.

« The distiller is largely insensitive to both the specified optimization thresholds and task selection (both
task size and task boundary locations), but the data suggests that further research could lead to
improvements on both these fronts.

* The hardware requirements can be modest; for example, on the order of 24kB of speculative storage at
the L2 appears to be sufficient.

Although the MSSP paradigm has some desirable characteristics, | find the overall performance of my
current implementation to be disappointing. Some benchmarks—najablgandvortex —hint at what
can be achieved, but most of the benchmarks are not effectively distilled by my current infrastructure. Still,
I remain optimistic; performance appears to be limited by the effectiveness of optimization and there are
many optimizations that | have not yet implemented. In short, | believe that the MSSP paradigm is deserv-
ing of continued research. In the next chapter, | describe some of the avenues | have identified for follow-
on research.
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Chapter 6

Conclusions

In this conclusion chapter, rather than merely summarize the definition, implementation, and perfor-
mance of the Master/Slave Speculative Parallelization, | pause to reflect on some unexpected results of the
research and some directions that future research should take. Specifically, | describe lessons learned dur-
ing the implementation (in Section 6.1), classify mechanisms with regards to their correctness require-
ments (in Section 6.2), and present some open questions (Section 6.3).

6.1 Lessons Learned

I have learned many lessons in the process of studying this execution paradigm, not the least of which
is that it is perhaps a reasonable way to organize computers in the future. Of course, | had that hunch or |
never would have embarked on this journey. Not all of the lessons | learned were expected. In this section,
| briefly summarize some factors that were not obvious to me when I initially envisioned the execution par-
adigm.

Program Information Content. | had expected that distillation would be more successful on some pro-
grams than others, but | did not know what the important characteristics of a program would be that would
determine the effectiveness of distillation. The result of this study leads me to believe there is an inherent
information content to a program and the process of distillation is akin to compression. The information
content of a program is high if it performs a diverse set of computations in an unpredictable order and low
if it repeatedly performs a set of operations in the same manner every time. Much like compression, distil-
lation is most effective when its input has low information content.

The information content of programs varies in part due to the computation being performed and in part
due to the way the program is written. The compression programs2( andgzip ) unsurprisingly con-
sist of computation with high information content (loops with highly variant iteration counts and little
redundancy), which to date my distiller cannot effectively optimize. In contrast, the benchonask is
written in a very low information content style that is call intensive and has significant amounts of error
checking code. As aresultprtex can be effectively distilled. Perhaps the style in whioktex is writ-
ten is more indicative of large software projects than hand-tuned prograrmspike andgzip .
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Optimization Effectiveness.Although | have forgotten exactly which optimizations | thought would be

most effective, | am sure that my predictions were not entirely correct. The Slipstream work [77] demon-
strated that a significant fraction of instructions can be removed as a result of the elimination of predictable
branches. Also, significant are the mutually beneficial optimizations of inlining and register re-allocation
that can remove much of the overhead in call intensive programs. Two particularly surprising results were
the number of store instructions that could be removed because they result in long dependences and that
distillation can make both paths of an unbiased branch point to the same target allowing the branch to be
trivially removed.

Tight Loops. | did not anticipate the impact on task construction of loops with small loop bodies and high
iteration counts. The implementation is designed to efficiently execute when tasks are a moderate size—
large enough to amortize communication costs, but small enough to buffer speculatively—perhaps
between a few hundred and a thousand dynamic instructions. For simplicity, | originally proposed to use
static annotations of the original program to specify the boundaries of tasks. These annotations are insuffi-
cient for loops with small loop bodies€., less than 20 instructions) that are executed for many iterations
(i.e, more than a thousand). The static annotation allow either a single iteration or the whole loop to be
selected as a task. Many tiny tasks or a single enormous task are both sub-optimal. As a result, | imple-
mented task boundary suppressors (described in Section 3.2.3).

Synchronization. Another unexpected wrinkle was the impact of non-leaf functions with a variable num-

ber of arguments. In the Alpha architecture, the first six arguments to a function are passed in registers.
When a function calls another function, it must save its arguments (generally on the stack) so that it can
pass arguments to the called function. Even if the second function has fewer arguments, all arguments are
saved to the stack because the contents of these registers are not guaranteed to remain intact across calls by
the calling convention. In a function with variable arguments, this process can result in the contents of all
argument registers being saved before it is determined which actually contain valid arguments.

These saves are a minor problem in a normal execution, where some garbage value is saved and
restored. In an MSSP execution, these garbage values become live-in values and must be correct for the
task to be verified. Ensuring that these values are correct is possible—by performing inter-procedural live-
ness analysis on registers and avoiding re-allocating those registers—but difficult, because they could have
been written long before in many possible locations. However this approach is inefficient, as it reduces the
amount of dead code that can be removed and limits how registers can be reallocated. As a result our
implementation takes a different approach: synchronization. Identifying the rare variable argument func-
tions is trivial. When one is found the distiller automatically inserts a “synchronize” instruction before the
VERIFY instruction in the distilled program. This synchronize instruction causes the slave to stall until it
becomes the head task and to perform an early verification (as discussed in Section 4.5.10) immediately
before any instructions are executed. This early verification causes the architected registers to be loaded
and the task to be executed non-speculatively. The stall is a performance penalty, but a smaller one than a
guaranteed misspeculation.

6.2 Requirements for Correct Execution

One of the interesting aspects of the MSSP paradigm is that, by construction, a non-trivial fraction of
the mechanisms involved need not be verified. Results generated by these mechanism are only used for
prediction, so if they are faulty, they will only result in mispredictions that will potentially hurt perfor-
mance, but not correctness. In this section, | briefly outline the portions of the design that must be correct
or can be flawed.



88
6.2.1 Mechanisms That Must Be Correct

Instruction Fetch, Execute, and Commit.The reuse test used to validate task live-ins does not re-execute
instructions at commit time, so MSSP relies on correct execution of the task by the slave processor. Tech-
niques like Diva [4] can be used to ensure this correctness.

Collection of Live-ins and Live-outs.The execution of the task is abstracted down to its live-in and live-
out sets. An error in a live-in set could allow a misspeculated task to be committed and an error in a live-
out set would incorrectly update the architected state.

Transport of Live-ins and Live-outs. The live-in and live-out sets must be transported correctly from the
slave processor to the L2 cache banks and the global register file. This data movement can be accomplished
using the techniques from cache coherercg,(ECC). In addition, a slave processor must ensure that all
live-ins and live-outs have been sent before a task is committed.

Capture and Transport of Transition registers. Transition registers, much like memory live-in values,
must be correctly captured and transported to the global register file. Failure to do so could result in a mis-
speculated task being committed.

Transport of Non-speculative Datalike a traditional architecture, tasks executing in non-speculative
mode €.g, after a recovery) rely on (architected) memory data being correctly moved through the memory
hierarchy.

Coherently Matching to Architected State.Live-ins buffered at L2 cache banks and the global register

file must be correctly verified against the most recent value previous to the task being verified. This
requirement is made difficult because live-outs from tasks can arrive out of program order. It is further
complicated on the memory side by coherence requests from other processors. Failure to correctly match
state could allow misspeculated tasks to commit.

Two-Phase Commit.The physically distinct L2 cache banks must all agree simultaneously that a task has
been verified and can be committed. Failure to maintain this simultaneity can cause memory ordering vio-
lations in some memory models.

Tagging and Evicting Stale DataPrivate L1 caches are used to hold non-architected data (e.g., data from
predicted checkpoints). MSSP tags the non-architected data as such, so that it can be evicted before a non-
speculative task executes on the processor. If non-architected data is incorrectly tagged or evicted, a non-
speculative task, which will not have its live-ins verified, can potentially read an incorrect value that can
result in the architected state being updated incorrectly.

Checkpointing Hardware. Although it is not necessary that the checkpoints be correct, it is important
that the master processor is not allowed to update architected state in any way. Updates by the master can
only modify its local cache and write entries of the checkpoint buffers.

6.2.2 Mechanisms That Don’t Need To Be Correct

Program Distillation. If the above mechanisms are correct, the MSSP paradigm can be made impervious
to faults in the distilled program. The master is prevented from directly affecting architected state, so the
only faults it can induce are indirectly through faulty checkpoint values. By verifying all live-in values
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against architected state, such faults can be detected. The MSSP paradigm includes a set of watchdog tim-
ers to detect if the master enters an infinite loop and force a recovery to ensure forward progress.

Mapping. Mapping is only performed in four situations, none of which are during the slave’s execution of
the task in the original program. They are: 1) starting the master at an entry, 2) link operations performed
by the master, 3) indirect branches performed by the master, and 4) the verify instruction executed by the
slave to compute the PC of the first instruction of the task in the original program. All of these will only
result in the master processor getting off track or bad values being part of checkpoints (as a transition reg-
ister in the case of #4) that will be verified as live-ins if used.

Checkpoint Assembly.Checkpoint assembly need not be verified because the faults it introduces are
equivalent to the distilled program computing bad checkpoint values in the first place.

Refresh.MSSP periodically evicts or re-fetches cache blocks that contain non-architectural data in the
caches of the master and speculative slaves. Refreshes are purely a performance optimization; executing
with stale data will only result in generation or consumption of incorrect checkpoints by the master and
slaves, respectively.

Stop Bits. If the indications the slave processors use to decide where to stop executing a task are faulty, the
task may end at an unexpected location. Bad stop annotations should not affect the ability of the current
task to commit. If the following task was not specified to start where this task ended it will be detected
when verifying the live-in PC or other live-in values.

6.3 Open Questions

In this section, | outline some of the open questions that remain in the study of the MSSP paradigm.

To what extent can programs be distilled?l have seen opportunities for if-conversipadditional regis-

ter allocation, pre-fetch insertion, scheduling (both local and global), phase-based optimization, full unroll-
ing of loops with few iterations (predicating the final iterations if necessary), more general constant
folding, constant propagation, redundancy elimination, tail duplication, and others. How effective can
these additional optimizations be?

What does the continuum of distilled programs look like?What is the relationship between perfor-
mance when the code is correct and its accuracy? Which optimizations are most important? Which optimi-
zations enable other optimizations?

How should distillation be performed? Can the run-time implementation proposed in this dissertation
be implemented efficiently? Are some optimizations not worth the time they take to perform? What hard-
ware support should the implementation include for profiling and distillation?

How can the original program be constructed to facilitate distillation and the MSSP paradigm?n
this work, | focused on a binary-compatible approach. Can altering the original code improve the extent to
which it can be distilled? Can such alterations simplify the hardware? In addition, an alternative paradigm

1. If support for predication is not available, conditional moves (CMOV) can be used. Stores in the distilled program can also be made conditional
by using a CMOQV to conditionally set the store’s address to some garbage loaatiothg address 0) where the value will not be read. Like all
stores performed by the master, the store will be deallocated when the slave task is committed and not affect architeereg state
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where the following execution is not the original program, but the minimal subset of the program neces-
sary to check the original program may be possible.

What improvements can be made to the MSSP implementatioria our evaluation the same processor

core was used for the master and the slaves. How could the master processor be tailored to facilitate execu-
tion of distilled programs. Can slave processors be simplified (or dynamically reconfigured) to fulfill their
role while using less power?

Can the architecture scale to larger (16-64) processor count€&n a hierarchy of distilled programs be
constructed that provide perhaps less accurate, but more distant predictions about execution. Can tech-
niques like pre-execution be incorporated into the paradigm to further increase the master’s execution rate.
Does non-architectural state need to be organized and communicated differently to support such large pro-
cessor counts?

6.4 Chapter Summary

In this dissertation, | have described Master-Slave Speculative Parallelization, an execution paradigm
that parallelizes a sequential program’s execution using an approximate copy of the program. This chapter
describes the lessons learned, describes the correctness requirement of the paradigm, and outlines some
guestions left open by this work. To summarize, in studying this execution paradigm, | have observed
many opportunities to effectively approximate programs. Of these, I've perhaps implemented half. These
optimizations are an encouraging start, but to this point, during the implementation of each optimization, |
discover another one or two possible optimizations. This dissertation demonstrates that this paradigm has a
number of nice characteristics—not the least of which is the relaxed constraints on correctness of a number
of mechanisms—but only begins the characterization of distilled programs and the performance potential
of MSSP. There is much potential future work to explore the extent to which programs can be approxi-
mated, how the approximation should be performed, and how architectures should be organized to effi-
ciently execute programs with the assistance of approximate code.
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