
Generalized Pattern Searches
with Derivative Information

Mark A. Abramson
Air Force Institute of Technology

Department of Mathematics and Statistics
2950 Hobson Way, Building 640

Wright Patterson AFB, Ohio 45433-7765 USA
Mark.Abramson@afit.edu, http://www.caam.rice.edu/∼abramson

Charles Audet
École Polytechnique de Montréal and GERAD

Département de Mathématiques et de Génie Industriel
C.P. 6079, Succ. Centre-ville

Montréal (Québec), H3C 3A7 Canada
Charles.Audet@gerad.ca, http://www.gerad.ca/Charles.Audet

J.E. Dennis Jr.
Rice University

Department of Computational and Applied Mathematics
8419 42nd Ave SW

Seattle, Washington, 98136 USA
dennis@caam.rice.edu, http://www.caam.rice.edu/∼dennis

May 23, 2003

Acknowledgments: The authors were supported by AFOSR F49620-01-1-0013, The Boe-
ing Company, ExxonMobil Upstream Research Co., the LANL Computer Science Institute
(LACSI) contract 03891-99-23, and the Sandia Computer Science Research Institute (CSRI).
The second author was also supported by FCAR grant NC72792 and NSERC grant 239436-
01.

May 23, 2003 1

Abstract: A common question asked by users of direct search algorithms is
how to use derivative information at iterates where it is available. This paper
addresses that question with respect to Generalized Pattern Search (GPS) meth-
ods for unconstrained and linearly constrained optimization. Specifically this
paper concentrates on the GPS poll step. Polling is done to certify the need to
refine the current mesh, and it requires O(n) function evaluations in the worst
case. We show that the use of derivative information significantly reduces the
maximum number of function evaluations necessary for poll steps, even to a
worst case of a single function evaluation with certain algorithmic choices given
here. Furthermore, we show that rather rough approximations to the gradient are
sufficient to reduce the poll step to a single function evaluation. We prove that
using these less expensive poll steps does not weaken the known convergence
properties of the method, all of which depend only on the poll step.

Key words: Pattern search algorithm, linearly constrained optimization, sur-
rogate-based optimization, nonsmooth optimization, gradient-based optimiza-
tion.

1 Introduction

We consider in this paper the class of Generalized Pattern Search (GPS) algorithms applied
to the optimization problem

min
x∈X

f(x) (1)

where f : Rn → R ∪ {∞} and where X ⊆ Rn is defined, as in [24, 8], by a finite set
of linear inequalities: X = {x ∈ Rn : Ax ≤ b}, where A ∈ Qm×n is a rational matrix
and b ∈ (R ∪ {∞})m. The way of handling constraints here is the same as in [23, 24, 8].
Specifically, we apply the algorithm not really to f , but to the function fX = ψX + f , where
ψX is the indicator function for X. It is zero on X and ∞ elsewhere. Thus, when fX is
evaluated outside of the domain X, then the function f is not evaluated and fX is set to∞.
Also, when a local exploration of the variable space is performed near the boundary of X,
the directions that define the exploration are related to the local geometry of the boundary
of the domain.

GPS algorithms can be applied to these problems, particularly when f is quite expensive
to evaluate, and GPS can also be used in the surrogate management framework [10, 11]. We
can not justify further global assumptions about the class of problems [10] we target, but
fortunately, the Clarke [13] calculus enables a simple unified convergence analysis by allowing
for fX to be extended valued (see [8]). GPS algorithms are direct search algorithms: They
rely only on function values. We like to view GPS algorithms as having each iteration divided
in two steps (as presented in [10]): A global exploration of the variable space –to identify
promising basins containing local optima– called the search step, and a local exploration –to

May 23, 2003 2

refine the solution– called the poll step. Both these steps are fully described in Sections 3.1
and 3.2, but this paper is concerned only with modifications to the poll step. Our limited
discussions of search steps are only in the context of being used with one of the modified
poll steps suggested here, and their purpose is to alleviate any concern a reader might feel
about our poll steps being too much like a crude gradient descent method.

Derivative-free GPS algorithms were defined by Torczon [29] for unconstrained optimiza-
tion, and then extended by Lewis and Torczon to bound constrained optimization [23] and
to problems with a finite number of linear constraints [24]. Lewis and Torczon [22] present a
pattern search algorithm for general constraints through a sequence of augmented Lagrangian
subproblems. Audet and Dennis extend GPS algorithms to general constraints [7] using a
filter-based [17] approach, and they extend GPS to categorical optimization variables [6] as
well. The latter are discrete variables that arise often in engineering design but cannot be
treated by the common branch and bound techniques (e.g., see [20, 1] where engineering
applications with categoriacal variables are solved by a GPS algorithm).

In this paper, we add to the GPS algorithm class the possibility of using any derivative
information for the objective function that might be available at an iterate. Our objective is
to decrease the worst case cost of a poll step at that iterate. To test our proposals, we give
some numerical results with empty search steps to compare poll steps with and without
derivative information. These results should not be interpreted as saying anything about the
efficiency or robustness of GPS algorithms in comparison with other direct search methods.
We emphasize that their only purpose is to test our ideas for GPS poll steps.

We will not discuss using derivative information in the search step, although that is
an interesting direction for further research. The algorithm presented here reduces to the
previous GPS versions when derivatives are not available. Abramson [3] synthesizes all this
into a GPS algorithm for generally constrained mixed variable problems where derivative
use is optional.

We are aware that users may choose direct search methods even for problems where
∇f(x), or a finite difference approximation, might be available and reliable. They are willing
to accept more function evaluations in hopes of finding a better local minimum since gradient-
based algorithms have a tendency to converge quickly to a local minimizer in the same basin
as the starting point. In the tests given here for our gradient-informed poll steps versus
standard GPS poll steps, the derivative and non-derivative versions using the same positive
spanning set are equally likely to find a better local minimizer. We provide one example to
illustrate the utility of a simple search in finding a better minimizer than would be found
with no search. Our example supports the claim that locality is unlikely to be a problem
in practice if a search procedure of the type suggested in Section 3.1 were used.

Lewis and Torczon [21] began the quest to reduce the worst case number of function calls
per GPS iteration. They showed under global continuous differentiability of f that the set of
directions used in the poll step can be composed of as few as n+1 directions if their nonneg-
ative linear combinations span the whole space, and still ensure subsequence convergence to

May 23, 2003 3

a stationary point. In this paper, we show how to use gradient information to further reduce
the worst case cost to one function evaluation per iteration in the unconstrained case, and to
achieve a related reduction in the linearly constrained case without giving up perceived GPS
advantages over gradient-based methods. Indeed, in the linearly constrained case, we may
require no function evaluations and no additional gradient evaluations for some iterations. It
is noted that if one computes gradient approximations by finite differences, then the linearly
constrained case is the only one likely to see any savings from the use of such an expen-
sive gradient. However, for many engineering problems, inexpensive, but inexact, gradient
information can be available, and that is all we need for our modifications (see [26, 27]).

Our results do not assume that derivative information is used at every iterate, nor do
we assume that derivative information in all directions is used. At an iterate where ρ ≤ n
approximate partial derivatives are used, we can reduce the worst case cost of a poll step
from n + 1 to n + 1 − ρ. Thus, if even a rough approximation to the full space gradient is
available, the poll step reduces to 1 evaluation of fX . Of course, this may or may not be
a worthwhile savings depending on the cost of computing the derivative information at an
iterate. However, we suspect it will be especially worthwhile near convergence, when our
poll steps generate points close enough to the current iterate that they mimic gradient
descent steps and are surely not expected to find a different basin.

Whether we have derivative information or not, polling directions considered by the new
algorithm must still conform to the geometry ofX, as proposed in [24], i.e., they must contain
the generators of the tangent cone at all nearby boundary points (a sufficient condition for
this property is the rationality of the matrix A). If the directions do not conform to the
boundary, then the iterates may stagnate at a non-optimal point even for a linear program.
This leads to very satisfying optimality conditions for a finite number of linear constraints
under local smoothness assumptions on f (see [8]). These conditions are unlikely to be
realized for more general constraints, the key restriction being that there must be a single
finite set containing generators for all the tangent cones to the boundary of the feasible
region.

The remainder of the paper is as follows: In the next section, we give a brief collection
of information about positive spanning sets. Next, we give a brief description of the GPS
algorithm class and modify it to make use of available derivatives in the poll step. Then,
we propose in Section 4 a way to select polling directions that reduce as much as possible the
number of function evaluations at each iteration. We also discuss the case of incomplete and
inaccurate derivative information, such as when only a subset of the partial derivatives can
be computed. In Section 5, we show that the key convergence result for the GPS algorithm
still holds when it is modified to use any available derivatives. In Section 6, we use some
unconstrained and bound constrained problems from the cute test set [9] to test reasonable
variants of our approach in a GPS algorithm with an empty search step. To illustrate the
value of even a simple search step, we give an academic two-dimensional example in which
a rudimentary random search improves the quality of the solution. The paper concludes
with a discussion of how derivative information could be used in a GPS algorithm that

May 23, 2003 4

includes a search step.

Notation. R, Z, and N denote the set of real numbers, integers, and nonnegative
integers, respectively, and N denotes the set {1, 2, . . . , n}. For i ∈ N , ei denotes the ith

coordinate vector in Rn. For x ∈ X ⊂ Rn, the tangent cone to X at x is given by TX(x) =
cl{µ(w − x) : µ ∈ R+, w ∈ X} where cl denotes the closure, and the normal cone NX(x) to
X at x is the polar of the tangent cone, namely, NX(x) = {v ∈ Rn : vTw ≤ 0 ∀ w ∈ TX(x)}.
The normal cone is the nonnegative span of all outwardly pointing constraint normals at x.

2 Positive Spanning Sets

Since the GPS framework and theory relies on the use of positive spanning sets, it is useful
to briefly define some terminology and cite some important results.

The following terminology and key theorem are due to Davis [15]. The theorem is the
motivation behind the use of positive spanning sets in GPS algorithms [21].

Definition 2.1 A positive combination of the set of vectors D = {di}ri=1 is a linear combi-

nation
r∑

i=1

αidi, where αi ≥ 0, i = 1, 2, . . . , r.

Definition 2.2 A finite set of vectors D = {di}ri=1 forms a positive spanning set for Rn, if
every v ∈ Rn can be expressed as a positive combination of vectors in D. The set of vectors
D is said to positively span Rn. The set D is said to be a positive basis for Rn if no proper
subset of D positively spans Rn.

Davis [15] shows that the cardinality of any positive basis (i.e., a minimal positive span-
ning set) in Rn is between n + 1 and 2n. Common choices for positive bases include the
columns of [I,−I] and [I,−e], where I is the identity matrix and e the vector of ones. In
fact, for any basis V ∈ Rn×n, the columns of [V,−V] and [V,−V e] are easily shown to be
positive bases.

Theorem 2.3 A set D positively spans Rn if and only if, for all nonzero v ∈ Rn, vTd > 0
for some d ∈ D.

Proof. (Davis [15]) Suppose D positively spans Rn. Then for arbitrary nonzero v ∈ Rn,

v =
∑|D|

i=1 αidi for some αi ≥ 0, di ∈ D, i = 1, 2, . . . , |D|. Then 0 < vTv =
∑|D|

i=1 αid
T
i v, at

least one term of which must be positive. Conversely, suppose D does not positively span
Rn; i.e., suppose that the set D spans only a convex cone that is a proper subset of Rn.
Then there exists a nonzero v ∈ Rn such that vTd ≤ 0 for all d ∈ D.

It is easy to see that for any positive spanning set D, if ∇f(x) exists at x and is nonzero,
then by choosing v = −∇f(x) in this theorem, there exists a d ∈ D satisfying ∇f(x)Td < 0.
Thus at least one d ∈ D is a descent direction for f at x.

May 23, 2003 5

3 Description of pattern search algorithms

Pattern search algorithms are defined through a finite set of directions used at each iteration
to create a conceptual mesh on which trial points are selected, evaluated and compared
against the current best solution, called the incumbent. The basic ingredient in the definition
of the mesh is a set of positive spanning directions D in Rn constructed by following rules:
each direction dj ∈ D (for j = 1, 2, . . . , |D|) is the product Gz̄j of the non-singular generating
matrix G ∈ Rn×n by an integer vector z̄j ∈ Zn. Note that the same generating matrix is used
for all directions, and is often defined to be the identity matrix. These conditions are essential
to the convergence theory (see [8], where the same notation is used). We conveniently view
the set D as a real n× |D| matrix.

At iteration k, the mesh Mk is centered around the current iterate xk ∈ Rn, with its
fineness described by the mesh size parameter ∆k ∈ Rn

+ as

Mk = {xk + ∆kDz : z ∈ N|D|}. (2)

For any mesh Mk, the distance between any two distinct mesh points is bounded below by
∆k

‖G−1‖ (see [8], Lemma 3.2).

3.1 The search step

At each iteration, the algorithm performs one or two steps, or only part of them. The
objective function is evaluated at a finite set of mesh trial points with the goal of improving
the incumbent value. If and when an improvement is found, that trial point becomes the
new incumbent and the iteration is declared successful. The optional first step is called the
search step. Any strategy of searching a finite set of mesh points can be used. It can be
as simple as doing nothing (i.e., the finite set of mesh points is empty), or it can make use
of heuristics, such as genetic algorithms, or surrogate functions based on interpolation or on
simplified models. See [10] and [11] to see how this can be done effectively.

At this point, we wish to make a distinction between two types of search strategies.
In one case, the mesh size parameter ∆k controls not only the resolution of the mesh, but
the size of the step as well. Such is the case with the PDS or MDS method of Dennis and
Torczon [16]. In the other case, the search routine is more or less independent of ∆k (other
than ensuring that trial point in fact lie on the mesh). We prefer the latter type because, at
least near the beginning of the run, it allows for a more diversified sampling of the space. For
example, a few points chosen by a classical space-filling sampling technique like the Latin
hypercube [25, 28] has led to good local solutions in our experience with the NOMADm
software [2] (e.g., see the simple problem in Example 6.1).

Obviously, derivative information can be used in the search step; for example, one
might use Hermite interpolants as surrogates, but that is outside the scope of this paper.

May 23, 2003 6

Our thesis here is that available derivative information can be used as detailed in the sequel
to reduce the number of trial points considered in the poll step.

3.2 The poll step

If the search step is omitted or is unsuccessful in improving the incumbent value, a second
step, named the poll step, must be conducted before terminating the iteration. The poll
step consists of a local exploration of mesh points surrounding the incumbent solution. A
global search step as described above is where the global quality of the final local solution
is determined most effectively.

When the poll step is invoked, the objective function must be tested at certain mesh
points, called the poll set, near the current iterate xk ∈ Rn. At each iteration, a positive
spanning matrix Dk composed of a subset of columns of D is used to construct the poll set.
We write Dk ⊆ D to signify that the columns of the matrix Dk are columns of D. The poll
set Pk is composed of mesh points that lie a step ∆k away from the current iterate xk along
the directions specified by the columns of Dk:

Pk = {xk + ∆kd : d ∈ Dk}. (3)

Rules for selecting Dk may depend on the iteration number and on the current iterate, i.e.,
Dk = D(k, xk) ⊆ D. We will show in Section 4 how to exploit this freedom when derivatives
are available at iteration k.

In order to handle a finite number of linear constraints, we use the following definition
from [8].

Definition 3.1 A rule for selecting the positive spanning sets Dk = D(k, xk) ⊆ D conforms
to X for some ε > 0, if at each iteration k and for each y in the boundary of X for which
‖y − xk‖ < ε, the nonnegative linear combinations of the columns of a subset Dy(xk) of Dk

generate TX(y).

This definition means that when xk is near the boundary of the feasible region X, then
Dk must contain the directions that span the tangent cones at all nearby boundary points
(see [24]).

The rules for updating the mesh size parameter are as follows. Let τ > 1 be a rational
number and w− ≤ −1 and w+ ≥ 0 be integers constant over all iterations. At the end of
iteration k, the mesh size parameter is set to

∆k+1 = τwk∆k, where wk ∈
{

{0, 1, . . . , w+}, if the iteration is successful
{w−, 1 + w−, . . . ,−1}, otherwise.

(4)

By modifying the mesh size parameters this way, it follows that, for any k ≥ 0, there exists
an integer rk ∈ Z such that ∆k = τ rk∆0, and the next iterate xk+1 can always be written as
x0 +

∑k
i=1 ∆iDzi for some set of vectors {zi}, i = 1, 2, . . . , k in N|D|.

May 23, 2003 7

3.3 Generalized pattern search algorithm with a pruned poll set

The main difference between this paper and previous work on pattern search algorithms
comes from the following. Whenever the derivative information for the objective function at
the current iterate xk is available, it can be used to prune (or eliminate from consideration)
ascent directions from the poll set, thus reducing the number of function evaluations required
by the poll step. Because there is some ambiguity, at least in French and English, we remark
here that when we use the term pruned set of directions, or pruned set, we mean what is
left after the pruning operation removes some directions, not the directions that have been
eliminated. The pruned set of polling directions, denoted Dp

k ⊆ Dk, is defined as follows.

Definition 3.2 Given a positive spanning set Dk, the pruned set of polling directions, de-
noted by Dp

k ⊂ Dk, is given by

Dp
k = {d ∈ Dk : dT∇f(xk) ≤ 0}

when the gradient ∇f(xk) is known, or by

Dp
k = Dk \ {d ∈ Vk : f ′(xk; d) > 0},

when incomplete derivative information is known, where Vk ⊂ Dk is the set of directions in
which the directional derivative is known. In the case where the gradient is known, −∇f(xk)
is said to prune Dk to Dp

k.

Note that the pruning operation depends only on xk, Dk, and the availability of the
derivative information. It is independent of ∆k. Note also that if no derivative information
is available, then the pruned set of directions Dp

k equals Dk. We can now define the pruned
poll set at iteration k as

P p
k = {xk + ∆kd : d ∈ Dp

k}. (5)

The poll step of the algorithm evaluates the constraints and objective at points in P p
k

looking for an improvement in fX at a feasible point. If no improvement is found, then the
incumbent solution xk is said to be a mesh local optimizer with respect to the pruned poll
set. Notice that if all the points y in the pruned poll set lie outside X, then ψX(y) =∞ (and
thus fX(y) = ∞) for all y ∈ P p

k and f would not be evaluated at all in order to conclude
that xk is a mesh local optimizer. We have seen large savings from this fact in preliminary
tests because in the standard poll step, the only poll points at which one does not have
to evaluate the function are those that lie outside X. The value of f is required for all poll
points that lie in X, even they lie along ascent directions.

May 23, 2003 8

We now present the GPS algorithm that uses any available derivative information.

GPS Algorithm with derivative information

• Initialization:
Let x0 be such that fX(x0) is finite, fix ∆0 > 0 and set the iteration counter k to 0.

• Search and poll steps on current mesh Mk (defined in equation (2)):
Perform the search and possibly the poll steps (or only part of the steps if a trial
mesh point with a lower objective function value is found).

– search: Evaluate fX on a finite subset of trial points on the mesh Mk (the
strategy that selects the points is provided by the user).

– poll: Evaluate fX on the pruned poll set P p
k (see equation (5)) around xk defined

by ∆k and Dp
k ⊆ Dk (Dk depends on k and xk, and Dp

k on the availability of
derivatives).

• Parameter update:
If the search or poll step produces an improved mesh point, i.e., a feasible iterate
xk+1 ∈Mk ∩X for which f(xk+1) < f(xk), then update ∆k+1 ≥ ∆k through rule (4).
Otherwise, xk is a mesh local optimizer. Set xk+1 = xk, decrease ∆k+1 < ∆k through
rule (4).
Increase k ← k + 1 and go back to the search and poll step.

If the gradient is available and is nonzero, then its negative must prune at least one
column of Dk since there must be at least one column for which dT∇f(xk) > 0 (see Theo-
rem 2.3). Moreover, it could prune as many as |Dk| − 1 directions (i.e., all but one), leading
to considerable savings for an expensive function. In Section 4, we choose a particular D for
which very rough derivative information allows us to prune the respective special choices we
make for Dk to singletons. We think it is an interesting aside that the single poll directions
left after pruning are generally the negatives of the `1 and `∞ gradients [12].

Of course, we expect that our pruning operation will yield more iterations in which the
poll step fails to find an improved mesh point, but this should happen less frequently as
the mesh size parameter gets smaller. Furthermore, the role of the poll step is mainly to
determine whether the current iterate is a mesh local optimizer. This means that the string
of successful searches on the current mesh is halted and searching can start afresh on a finer
mesh. But for all sufficiently small values of the mesh size parameter, if our pruned poll
fails, then the “unpruned” poll would also fail. This suggests that derivatives might be
more useful when the mesh parameter is small and the poll step would not be expected to
get out of the current basin. Of course, the search can always move us into a deeper basin
housing a better local optimum.

May 23, 2003 9

4 Using derivative information to prune well

Each iteration of a GPS algorithm is dependent upon the choice of a positive spanning set
Dk, selected from the columns of the larger finite positive spanning set D. Here it is useful to
think of D as preselected, but in fact, it can be modified finitely many times at the discretion
of the user.

In this section, we first consider a simple measure of the richness of the setD. Theorem 2.3
says that a positive spanning set has at least one member in every half space. We are
interested in a positive spanning set D so rich in directions that, for every half space, a
positive spanning subset of vectors in D can be selected in such a way that a single element
of the subset lies in the half space in question. We will show that no positive basis D can
be so rich, but we will prove that the set D = {−1, 0, 1}n has this property. We build up to
this point by considering some useful measures of directional richness in D. The upshot is a
major point of this paper: When gradients are not available, positive bases are useful in GPS
because they give small poll sets [21]. However, when derivative information is available,
positive bases may be a poor choice because a richer choice of directions makes it easier to
isolate a descent direction and prune to a smaller poll set than would result from prunning
a preselected positive basis.

The following definition is consistent with the earlier Definition 3.2, although it is more
general in keeping with the applications to follow.

Definition 4.1 (i) Given a positive spanning set D ⊂ Rn and a nonzero vector v ∈ Rn,
let D(v) ⊂ D be a positive spanning set that minimizes the cardinality of the pruned set
Dp(v) = {d ∈ D(v) : dTv ≥ 0} (that cardinality is denoted ρ(D, v)). Then the vector v is
said to prune D to ρ(D, v) vectors.

(ii) Let ρ(D) = max {ρ(D, v) : v ∈ Rn \ {0}}. Then the positive spanning set D is said to
prune to ρ(D) vectors.

If D is not only a positive spanning set, but also a positive basis, then one would expect
to see less pruning in general since D(v) = D for every choice of v. Indeed, it is not surprising
for positive bases that ρ(D) grows with the dimension n.

Proposition 4.2 If D is a positive spanning set, then 1 ≤ ρ(D, v) ≤ ρ(D) ≤ |D| − 1 for all

nonzero v ∈ Rn. Moreover, if D is a positive basis, then n+1
2
≤ |D|

2
≤ ρ(D) < |D| ≤ 2n.

Proof. The first assertion is direct, because for any v 6= 0 and any choice of positive spanning
set, there must be at least one member of the set that makes a positive inner product with
v, and another that makes a negative one (see Theorem 2.3). Thus, every possible Dp(v)
contains at least one element and at most |D| − 1.

This argument also guarantees that ρ(D) < |D|. To derive a lower bound on ρ(D), we
simply consider v and −v. Since no proper subset of a positive basis is a positive spanning

May 23, 2003 10

set, the only possible choice for D(v) and for D(−v) is D. Thus, Dp(v) ∪ Dp(−v) = D,
and so 2ρ(D) ≥ ρ(D, v) + ρ(D,−v) ≥ |D|. The other inequalities follow from Theorem 2.3,
where it is shown that 2n ≥ |D| ≥ n+ 1 for any positive basis.

Taking v as the negative gradient −∇f(xk), Definition 4.1 can be applied to the poll set
of a GPS algorithm, as introduced in Section 3.3.

Proposition 4.3 If ∇f(xk) is available at iteration k of the GPS algorithm, then the poll
set at xk has minimal cardinality ρ(D,−∇f(xk)), which is an upper bound on the number of
function evaluations required to execute the poll step using a minimal poll set.

Proof. From the discussion following Definition 3.2, the reader will see that ρ(D,−∇f(xk))
represents the minimal number of polling directions that can be found by pruning choices of
Dk = D(−∇f(xk)) ⊂ D. Consequently, the cardinality of the pruned poll set P p

k constructed
from Dp

k = Dp(−∇f(xk)) ⊂ Dk ⊂ D is minimal.

When P p
k is constructed from Dp

k = Dp(−∇f(xk)), we will say that P p
k is a minimal poll

set. The above results imply that the richer the directional choice in a positive spanning set
D, the more sagacity can be employed to ensure that the poll set can be extensively pruned.
In the next section, we propose a set of directions rich enough so that, when the gradient
is available, the upper bound on the number of function evaluations in the poll step (see
Proposition 4.3) is one; thus P p

k contains a single element.

4.1 Pruning with the gradient

We show here that the set D = {−1, 0, 1}n prunes to a singleton, i.e., for any nonzero vector
v ∈ Rn, there exists a positive spanning set D(v) ⊂ D such that the subset of vectors of
D(v) that makes a nonnegative inner product with v consists of a single element. Note that
the set D is never actually constructed by the algorithm – it serves only as a mechanism to
identify a pruned poll set consisting of a single direction. The key lies in the construction of
D(v), which is done by taking the union of the ascent directions of D with an element d̂ of
D that satisfies the following properties:

if vi = 0, then d̂i = 0, (6)

if vi 6= 0, then d̂i ∈ {0, sign(vi)}, (7)

if |vi| = ‖v‖∞, then d̂i = sign(vi), (8)

for every i ∈ N = {1, 2, . . . , n}, with the convention that sign(0) = 0. Our construction will
be such that d̂ will be the only unpruned member of D(v).

We first show the existence of vectors in D satisfying properties (6)–(8). This means that
there are various choices for D(v). Three different choices for the single unpruned direction
are given, and we will discuss their significance below.

May 23, 2003 11

Proposition 4.4 Let D = {−1, 0, 1}n. For any nonzero v ∈ Rn, properties (6)–(8) are
satisfied by each vector d(1), d(2), and d(∞), where for each i ∈ N ,

d
(1)
i =

{
sign(vi) if |vi| = ‖v‖∞,

0 otherwise,
(9)

d(2) ∈ arg max
d∈D\{0}

vTd

‖d‖2
, (10)

d
(∞)
i = sign(vi). (11)

Proof. Let v be a nonzero vector in Rn. The proof is trivial for d(1) and for d(∞). To show
the result for d(2), first note that, since d(2) ∈ D \ {0}, ‖d(2)‖22 ∈ N . For each δ ∈ N , define
the optimization problem

max
d∈D

vtd

(P δ) s.t. ‖d‖22 = δ.

Let N− and N+ be a partition of the set of indices N such that |N+| = δ and |vj| ≥ |vi|
whenever i ∈ N− and j ∈ N+. Define dδ ∈ Rn so that dδ

i = 0 for each i ∈ N− and
dδ

j = sign(vj) for each j ∈ N+. It follows that dδ is an optimal solution for (P δ).

From (10), it follows that d(2) = dδ for some δ not less than the number of elements
of v with magnitude ‖v‖∞ and not greater than the number of nonzero elements of v. By
construction, dδ and thus d(2) satisfy properties (6)–(8).

The next theorem shows that for any nonzero vector v ∈ Rn, any direction d̂ satisfying
properties (6)–(8) can be completed into a positive spanning set by adding the directions in

A(v) =
{
d ∈ D : vTd < 0

}
, (12)

and consequently, v prunes D to the single vector {d̂}.

Theorem 4.5 The set D = {−1, 0, 1}n has ρ(D) = 1.

Proof. Let v ∈ Rn be nonzero, and let d̂ ∈ D be any vector satisfying the properties (6)–
(8), and define D(v) to be the union of {d̂} with the set A(v) of directions in D that make
negative inner products with d̂.

Theorem 2.3 says that D(v) = {d̂} ∪ A(v) ⊂ D positively spans Rn if and only if, for
any nonzero b ∈ Rn there exists a vector d in D(v) such that bTd > 0. Let b ∈ Rn be a
nonzero vector. If bT d̂ 6= 0, then clearly either of ±d̂ makes a positive inner product with
b, in which case, the proof is complete since both are in D(v). Thus, consider the situation
where bT d̂ = 0. The analysis is divided in two disjoint cases.

May 23, 2003 12

Case 1: bivi < 0 for some index i ∈ N . Set dj = 0 for j ∈ N \ {i} and di = sign(bi). It
follows that d belongs to A(v) ⊂ D(v) and makes a positive inner product with b since

vTd = vjdj = vjsign(bj) = −vjsign(vj) = −|vj| < 0, and

bTd = bjdj = bjsign(bj) = |bj| > 0.

Case 2: bivi ≥ 0 for all i ∈ N . From equations (6) and (7), we have bid̂i ≥ 0 for all i ∈ N ,
and since bT d̂ = 0, it follows that bid̂i = 0 for all i ∈ N . Let i, j ∈ N be such that |vi| ≥ |v`|
for all ` ∈ N and bj 6= 0. Then bi = 0, d̂j = 0, and by equation (8), d̂i = sign(vi) 6= 0.

Furthermore, since d̂j = 0, |vj| < |vi|. Set d` = 0 for ` ∈ N \ {i, j} and di = −sign(vi) and
dj = sign(bj). It follows that d belongs to A(v) ⊂ D(v) and makes a positive inner product
with b since

vTd = vidi + vjdj = −visign(vj) + vjsign(bj) ≤ −|vi|+ |vj| < 0, and

bTd = bidi + bjdj = bjsign(bj) = |bj| > 0.

Thus Dp(v) = {d̂}, and the proof is complete since v 6= 0 was arbitrary.

We now apply these results to the determination of the poll set in the GPS algorithm. Of
course, for v = −∇f(xk), the set A(−∇f(xk)) would contain only ascent directions, which
−∇f(xk) then prunes away. Therefore, the directions in A(−∇f(xk)) do not need to be
explicitly constructed.

Theorem 4.6 If ∇f(xk) is available at iteration k of the GPS algorithm with positive span-
ning set D = D and if Dk = D(−∇f(xk)) = {d̂} ∪ A(−∇f(xk)) with d̂ satisfying the
properties (6)–(8), then a single function evaluation is required for the poll step.

Proof. Theorem 4.5 and Proposition 4.3 with v = −∇f(xk) guarantee the result.

Thus, choosing the rich set of directions D and using the gradient information allows us
to evaluate the barrier objective function fX at a single poll point xk + ∆kd̂. This may not
require any evaluations of the objective function f if the trial point lies outside of X, or
obviously if ∇f(xk) = 0.

Again as an aside, we mention that our notation is meant to be consistent with [12] in
the sense that for v = −∇f(xk), the vectors d(1) and d(∞) are the negatives of the normalized
`1 and `∞ gradients of f at xk, respectively, while d(2) is the vector in D that makes the
smallest angle with −∇f(xk).

May 23, 2003 13

4.2 Pruning with an approximation of the gradient

In many engineering applications, derivatives are approximated or inaccurately computed
without much additional cost during the computation of the objective [26, 27]. Let us define
a measure of the quality of an approximation of a vector.

Definition 4.7 Let g be a nonzero vector in Rn and ε ≥ 0. Define J ε(g) = {i ∈ N : |gi|+ε ≥
‖g‖∞}, and for every i ∈ N set

dε
i(g) =

{
sign(gi) if i ∈ J ε(g)

0 otherwise.

The vector g is said to be an ε−approximation to the large components of a nonzero vector
v ∈ Rn if i ∈ J ε(g) whenever |vi| = ‖v‖∞ and if sign(gi) = sign(vi) for every i ∈ J ε(g).

Note that if ε = 0, then dε(g) is identical to d(1) in equation (9), and if ε = ‖g‖∞, then
then dε(g) is identical to d(∞) in equation (11). The following result implicitly provides a
sufficiency condition on the quality of the approximation.

Proposition 4.8 Let ε ≥ 0 and g be an ε−approximation to the large components of a
nonzero vector v ∈ Rn. Then dε(g) satisfies properties (6)–(8).

Proof. Let ε ≥ 0 and g 6= 0 be an ε−approximation to the large components of v 6= 0 ∈ Rn.
The set J ε(g) is nonempty and contains every i for which |vi| = ‖v‖∞. If i ∈ J ε(g) then
dε

i(g) = sign(gi) = sign(vi), and therefore properties (6)–(8) are satisfied. If i 6∈ J ε(g) then
the properties are trivially satisfied.

The next result establishes a mild accuracy requirement for an approximation of the
negative gradient to prune D(−∇f(xk)) to a singleton.

Lemma 4.9 Let ε ≥ 0 and gk be an ε−approximation to the large components of ∇f(xk) 6=
0. If there exists a vector d̂ satisfying equations (6)–(8) for both v = −∇f(xk) and v = −gk,
then the set {d̂}

⋃
A(−∇f(xk)) positively spans Rn and prunes to {d̂}.

Proof. This follows directly from the proof of Theorem 4.5.

The significance of this result resides in the wide latitude allowed for the approximation.
For example, if d(∞) with v = −gk is used (see equation (11)) to obtain d̂, then we only
need the components of the approximation gk to match signs with those of the true gradient
∇f(xk) in order to prune to a singleton. If d(1) with v = −gk is used (see equation (9)) to
obtain d̂, then we only need the component of largest magnitude of gk to have the same sign
as that of ∇f(xk).

The following result shows that if an approximation to the gradient matches signs with
the true gradient for all components of sufficiently large magnitude, then the approximation
prunes the set of poll directions to a singleton.

May 23, 2003 14

Theorem 4.10 Let ε ≥ 0. At iteration k of the GPS algorithm with D = D = {−1, 0, 1}n,
let gk 6= 0 be an ε−approximation of ∇f(xk) 6= 0. Then the set of directions Dk =
{dε(g)}

⋃
A(−∇f(xk)) positively spans Rn. Thus, Dp

k = {dε(g)}.

Proof. This follows directly by combining the fact that dε(g) is the same if constructed
from v = ∇f(xk) or v = gk and by Lemma 4.9.

Observe that when ε = 0 or ε = ‖g‖∞, then Theorem 4.10 reduces to Theorem 4.6 with
dε(g) = d(1) or dε(g) = d(∞), respectively.

4.3 Pruning with incomplete derivative information

It is possible that in some instances and some iterations, the entire gradient is not available,
but a few partial or directional derivatives might be known. This situation may occur for
example when f(x, y) = g(x, y)× h(y) where g(x, y) is analytically given, but the structure
of h(y) is unknown. In such a case the partial derivatives of f can be computed with respect
to x but not with respect to y.

If at iteration k, the directional derivative f ′(xk; d) exists, is available, and is nonnegative,
then polling in the direction d from xk will fail if the mesh size parameter is small enough.
This leads to the following result.

Proposition 4.11 Let Dk ⊆ D be a positive spanning set and Vk be the subset of directions
d in Dk for which the directional derivative f ′(xk; d) > 0 is known. Then the pruned set of
directions is Dp

k = Dk \ Vk and contains |Dk| − |Vk| directions.

Proof. The result follows from the fact that the directional derivative f ′(xk; d) equals
dT∇f(xk).

Note that when the gradient exists, if f ′(xk; d) is nonpositive, then f ′(xk;−d) is nonneg-
ative. The most typical application of incomplete gradient information is when some, but
not all, partial derivatives are known. The spanning set D can be used to reduce as much
as possible the size of the pruned poll set. The approach for doing so can be outlined as

May 23, 2003 15

follows:

Pruning Operation for Incomplete Gradients

For xk ∈ Rn and a set of nonzero partial derivatives ∂f
∂xj

(xk), j ∈ J ⊆ N ,

• Set Vk = {sjej : j ∈ J} ⊂ D, where sj = sign
(

∂f
∂xj

(xk)
)
, j ∈ J , and ei denotes the ith

coordinate vector, i ∈ N .

• Set Wk = {e` : ` ∈ N \ J}.

• Set u = −
∑
j∈J

sjej −
∑

`∈N\J

e`.

• Set Dk = Vk ∪Wk ∪ {u}, and prune Dk to Dp
k = Wk ∪ {u}.

For this construction, we can prove the following result:

Corollary 4.12 Let the partial derivatives at iteration k, ∂f
∂xj

(xk) for j ∈ J be available

and all nonzero. If ∇f(xk) exists, then the pruning operation yields a pruned set Dp
k with

n+ 1− |J | directions.

Proof. By the construction above, it is clear that B = Vk ∪Wk forms a basis for Rn, and
u = −

∑n
i=1 bi, where bi ∈ B, i = 1, 2, . . . , n. Thus Dk = B ∪ {u} forms a positive basis

for Rn with |Dk| = n + 1. Furthermore, since ∇f(xk) exists, for any vj ∈ Vk, we have
f ′(xk; vj) = ∇f(xk)

Tvj = ∇f(xk)
T sjej = | ∂f

∂xj
(xk)| > 0. Since Vk has |J | directions, the

result follows from Proposition 4.11.

The following example illustrates this result.

Example 4.13 Consider f : R3 → R with ∂f
∂x1

(xk) > 0 and ∂f
∂x2

(xk) < 0, where f is
continuously differentiable at xk. Then, with D = {−1, 0, 1}n, by defining Dk as

Dk =

 1 0 0 −1
0 −1 0 1
0 0 1 −1

 ,
the pruned set Dp

k can be constructed using only the two last columns of Dk.

The results derived in this section are compatible with the previous ones. Indeed, if the
full gradient is available, and if all its components are nonzero, then using D the pruned set
requires n+ 1− n = 1 direction, i.e., ρ(D) = 1 as in Theorem 4.5.

May 23, 2003 16

4.4 Pruning with linear constraints

A similar strategy can be used in the bound or linearly constrained case. Recall that X =
{x ∈ Rn : Ax ≤ b} defines the feasible region, where A ∈ Qm×n and b ∈ Rm. Set M =
{1, 2, . . . ,m} and let aT

j be the j-th row of A for j ∈M .

For ε > 0 and x ∈ X, define Aε(x) = {j ∈ M : aT
j x ≥ bj − ε}, the set of ε-active

constraints (as used in [24]). The set of positive spanning directions D is implicitly defined
to contain all tangent cone generators of all points on all faces of the polytope X. Obviously,
this set is never explicitly constructed. However, for any x ∈ X and for a given ε > 0, we
will need to construct, as suggested in [24], the set T (x) ⊂ D of tangent cone generators
to all the ε-active constraints. With this construction, if Dk ⊂ D is a positive spanning set
containing T (xk), then Dk will conform to the boundary of X for ε > 0.

If the gradient is known, then we can find a bound for the minimal cardinality of the
pruned set through the following approach and subsequent proposition.

Pruning Operation under Linear Constraints

For xk ∈ Rn with known gradient ∇f(xk),

• Let T (xk) be the set of tangent cone generators to all ε-active constraints.

• Set D′ = T (xk) ∪ {d ∈ D : ∇f(xk)
Td > 0}.

• If D′ positively spans Rn, set Dk = D′; otherwise, set Dk = D′∪{d̂}, where d̂ satisfies
properties (6)–(8).

• Prune Dk to Dp
k.

Proposition 4.14 Let ε > 0. If ∇f(xk) is known at iteration k, then the pruning operation
yields a pruned set Dp

k containing at most |T (xk)|+ 1 directions.

Proof. By construction, in the worst case, Dk = T (xk) ∪ {d̂} ∪ {d ∈ D : ∇f(xk)
Td > 0},

and Dp
k = T (xk) ∪ {d̂}, whose cardinality is |T (xk)|+ 1.

Again, this result is in agreement with previous ones: in the unconstrained case, or if
there are no ε-active constraints, then Aε(xk) is empty, reducing Dp

k to a singleton. Also,

when {d̂} is used, then d̂ points outside X for some boundary point within ε of xk and if the
trial point xk + ∆f d̂ does not belong to X, then f will not be evaluated at that trial point.

If only incomplete derivative information is available, the gradient cannot be used as
strongly to prune the set of directions. Define D′ = T (xk) ∪ {d ∈ Vk : f ′(xk; d) > 0},
then construct Dk by completing (if necessary) D′ into a positive spanning set. As before,
Dp

k is obtained by pruning ascent directions from Dk. By construction, all directions in
{d ∈ Vk : f ′(xk; d) > 0} will get pruned, and some directions in T (xk) might get pruned.

May 23, 2003 17

5 Convergence Results

The convergence results for the above GPS algorithm with gradients requires only the fol-
lowing assumptions.

A1: A function fX = f + ψX : R→ R ∪ {+∞} is available.
A2: The constraint matrix A is rational.
A3: All iterates {xk} produced by the algorithm lie in a compact set.

Assumption A1 illustrates the lack of assumptions on f , which can be nondifferentiable
or even discontinuous or unbounded for some x in X. The strength of our convergence result
does depend on the local smoothness at the limit point. The algorithms presented above do
not require the gradient to be known (or even to exist) at each iterate xk. The algorithms
use gradient information only when it is available.

Assumption A2 is necessary for the proof that the mesh size parameter gets infinitely
fine since it is related to the conformity of the selection rule for Dk (see Definition 3.1).

Assumption A3 is a standard one for similar algorithms (see [6, 8, 14, 17, 18, 19]).
It ensures that the algorithm produces a limit point. It is implied by more restrictive
assumptions such as assuming that the level set {x ∈ X : f(x) ≤ f(x0)} is compact.

For completeness, we state the following theorem from [8]. The easy proof and a discus-
sion can be found there.

Theorem 5.1 Under assumptions A1 and A3, there exists at least one limit point of the
iteration sequence {xk}. If f is lower semicontinuous at such a limit point x̄, then limk f(xk)
exists and is greater than or equal to f(x̄). If f is continuous at every limit point of {xk},
then every limit point has the same function value.

The following result was first shown by Torczon [29] for unconstrained optimization. The
proof was adapted in [8] for our notation, and so it is not reproduced here since it is not
affected by the contributions of the present paper.

Proposition 5.2 The mesh size parameters satisfy lim inf
k→+∞

∆k = 0.

In [5], an example shows that this result cannot be strengthened to limk ∆k = 0 without
additional restrictions on the algorithm. Proposition 5.2 guarantees that there are infinitely
many iterations for which the incumbent is a mesh local optimizer since the mesh size
parameter shrinks only at such iterations. These iterations are the interesting ones as we
will now show.

Definition 5.3 A subsequence of the GPS iterates {xk}k∈K (for some subset of indices K)
consisting of mesh local optimizers is said to be a refining subsequence if {∆k}k∈K converges
to zero.

May 23, 2003 18

The existence of convergent refining subsequences follows trivially from Proposition 5.2
and from Assumption A3. We now show results about their limit x̂. Keep in mind that
the objective function f is not evaluated at infeasible trial points. The proof is similar to
that found in [8], but it is modified to take into account the iterations where the gradient is
available.

Theorem 5.4 Under assumptions A1–A3, if x̂ is any limit of a refining subsequence, and d
is any direction in D for which f at a poll step was evaluated or pruned by the gradient for
infinitely many iterates in the subsequence, and if f is Lipschitz near x̂, then the generalized
directional derivative of f at x̂ in the direction d is nonnegative, i.e., f ◦(x̂; d) ≥ 0.

Proof. Let {xk}k∈K be a refining subsequence with limit point x̂. Let d ∈ D be obtained as
in the statement of the Theorem (finiteness of D ensures the existence of d). The analysis
is divided in two cases.

First, consider the case where the gradient is evaluated only a finite number of times
in the subsequence {xk}k∈K . Then these finite number of iterates may be ignored, and
therefore, for k sufficiently large all the poll steps in the direction d, xk + ∆kd, are feasible.
If they had not been, then fX would have been infinite there and so f would not have been
evaluated (recall that if x 6∈ X, then fX(x) is set at +∞ and f(x) is not evaluated). Note
that since f is Lipschitz near x̂, it must be finite near x̂. Thus, we have that infinitely many
of the right hand quotients of Clarke’s generalized directional derivative definition [13]

f ◦(x̂; d) ≡ lim sup
y→x̂, t↓0

f(y + td)− f(y)

t
≥ lim sup

k∈K

f(xk + ∆kd)− f(xk)

∆k

. (13)

are defined, and in fact they are the same as for fX . This allows us to conclude that all of
them must be nonnegative or else the corresponding poll step would have been successful in
identifying an improved mesh point (recall that refining subsequences are constructed from
mesh local optimizers).

Second, consider the case where the gradient is used in an infinite number of iterates in
the subsequence. Then there is a subsequence that converges to x̂ for which dT∇f(xk) > 0
and thus the right hand side of (13) is bounded below by zero.

The following corollary to this key result strengthens Torczon’s unconstrained result. In
this corollary, we will assume still that f is Lipschitz near x̂, and in addition, we will assume
that the generalized gradient of f at x̂ is a singleton. This is equivalent to assuming that f
is strictly differentiable at x̂, i.e., that ∇f(x) exists and lim

y→x,t↓0
f(y+tw)−f(y)

t
= wT∇f(x) for

all w ∈ Rn (see [13], Proposition 2.2.1 or Proposition 2.2.4). The proof is omitted since it is
identical to that in [8].

Theorem 5.5 Under assumptions A1 and A3, let X = Rn and x̂ be any limit of a refining
subsequence. If f is strictly differentiable at x̂, then ∇f(x̂) = 0.

May 23, 2003 19

For linearly constrained optimization we get the following result, whose proof can be
found in [8].

Theorem 5.6 Under assumptions A1-A3, if f is strictly differentiable at a limit point x̂ of a
refining subsequence, and if the rule for selecting the positive spanning sets Dk = D(k, xk) ⊆
D conforms to X for an ε > 0, then ∇f(x̂)Tw ≥ 0 for all w ∈ TX(x̂), and −∇f(x̂) ∈ NX(x̂).
Thus, x̂ is a KKT point.

6 Numerical experiments

The algorithm described in Section 3 was programmed in Matlab [2] and applied to 20
problems from the cute [9] collection. Most of these problems have multiple first-order
stationary points, which is important if we are to compare the solutions found by various
strategies used by the algorithm. For each problem, performance of the algorithm is com-
pared using seven different poll strategies. No search method is employed, which means
that the algorithm does not use its full potential to identify deeper basins (this is why the
values presented are sometimes higher than the best known values). All runs terminated
either because ∆k ≤ 10−4 or 50,000 function evaluations have been performed. (The latter
was the reasonable limit for the Matlab NOMADm code.) The initial mesh size parameter
was set to ∆0 = 1, and was multiplied by 2 when an improved mesh point was identified,
and divided by 2 at mesh local optimizers.

Table 1 shows objective function value attained, number of function evaluations, and
number of gradient evaluations for each problem. An asterisk appearing after the problem
name indicates that the problem has at least one bound constraint (none had more general
linear constraints). The seven poll strategies identified in the column headings of Table 1
differ in their choice of directions and are described as follows:

• Stand2n: standard 2n directions, D = [I,−I] with no gradient-pruning.

• Standn+1: standard n + 1 directions, D = [I,−e] with no gradient-pruning, where e
is the vector of ones.

• Grad2n: gradient-pruned subset of the standard 2n directions.

• Gradn+1: gradient-pruned subset of the standard n+ 1 directions.

• Grad
(1)
3n : gradient-pruned subset of D = {−1, 0, 1}n, pruned by d(1).

• Grad
(2)
3n : gradient-pruned subset of D = {−1, 0, 1}n, pruned by d(2).

• Grad
(∞)
3n : gradient-pruned subset of D = {−1, 0, 1}n, pruned by d(∞).

May 23, 2003 20

• Grad
(2)
3n,2n: the union of the sets of Grad

(2)
3n and Grad2n, explored in that order.

Although no search step was employed in our test runs (because we wanted to have
a fair comparison of poll steps), we include the following simple example to illustrate the
value of even a very basic search step.

Example 6.1 We ran NOMADm on the problem,

min
x,y

f(x, y) = x3 + y3 − 10(x2 + y2)

s.t. −5 ≤ x ≤ 10, −5 ≤ y ≤ 10

with an initial point of x0 = (0.5, 0.5). The results were:

• Stand2n found x̂ = (6.666,−5) with f(x̂) = −523 in 94 evaluations of f and no
evaluations of ∇f .

• Grad
(∞)
3n found x̂ = (6.666, 6.666) with f(x̂) = −296 in 33 evaluations of f and 17

evaluations of ∇f .

• Grad
(∞)
3n with only a two point feasible random search found x̂ = (−5,−5) with

f(x̂) = −750 in 85 evaluations of f and 5 evaluations of ∇f .

Thus, Stand2n finds a good local minimizer, and Grad
(∞)
3n without a search finds a higher

local minimum, but requires fewer function evaluations to do so. But, when a 2-point random
search is added to each iteration of Grad

(∞)
3n , the global minimum is found, despite requiring

fewer function evaluations than Stand2n.

For the cute problem results given in Table 1, numbers appearing in parentheses indicate
that a second set of runs was performed for that problem, but with a slightly perturbed
initial point. In these cases, if a particular entry contains no number in parentheses, then
that value remained unchanged in the second run. The initial point was perturbed whenever
the number of required function evaluations for a run was very small. This occurs when the
choices of initial point and poll directions quickly drive the algorithm to an exact stationary
point (i.e., ∇f(xk) = 0). Since this phenomenon is not common in practice, we didn’t want
to make a particular strategy to appear gratuitously advantageous over another.

It should be noted that three problems, ALLINIT, ALLINITU, and EXPFIT do not
have starting points associated with them. Since ALLINIT is the constrained version of
ALLINITU, we chose the same reasonable and feasible initial point for both problems, while
the vector of ones was chosen for EXPFIT. Also, the problem OSLBQP has an infeasible
starting point with respect to one of its lower bounds. Our NOMADm software automatically
restores any such variable to its nearest bound before proceeding with the algorithm. (In
the case of general linear constraints, our software shifts an infeasible starting point to the
nearest feasible point with respect to the Euclidean norm.)

May 23, 2003 21

Table 1: Numerical results for selected cute test problems.

ALLINIT∗, n = 4 Stand2n Standn+1 Grad2n Gradn+1 Grad
(1)
3n Grad

(2)
3n Grad

(∞)
3n Grad

(2)
3n,2n

Optimal f -value 26.7643 26.7643 26.7643 26.7643 26.7643 26.7643 26.7643 26.7643
Function evaluations 85 85 47 47 47 56 47 56
Gradient evaluations 0 0 10 10 10 10 10 10

ALLINITU, n = 4 Stand2n Standn+1 Grad2n Gradn+1 Grad
(1)
3n Grad

(2)
3n Grad

(∞)
3n Grad

(2)
3n,2n

Optimal f -value 6.9288 5.7444 6.9288 5.7661 5.8006 5.7812 9.2523 6.9293
Function evaluations 1628 425 846 133 30 65 25 650
Gradient evaluations 0 0 140 20 7 14 7 65

BARD, n = 3 Stand2n Standn+1 Grad2n Gradn+1 Grad
(1)
3n Grad

(2)
3n Grad

(∞)
3n Grad

(2)
3n,2n

Optimal f -value 0.0082 0.0122 0.0082 0.0089 0.0089 0.0083 0.0091 0.0082
Function evaluations 11061 50000+ 5963 50000+ 2430 7799 1263 4871
Gradient evaluations 0 0 1640 16384 1018 2474 636 722

BOX2, n = 3 Stand2n Standn+1 Grad2n Gradn+1 Grad
(1)
3n Grad

(2)
3n Grad

(∞)
3n Grad

(2)
3n,2n

Optimal f -value 0 0 0 0 0 0 0 0
Function evaluations 61 48 31 32 25 25 25 56
Gradient evaluations 0 0 2 2 8 8 8 4

BOX3, n = 3 Stand2n Standn+1 Grad2n Gradn+1 Grad
(1)
3n Grad

(2)
3n Grad

(∞)
3n Grad

(2)
3n,2n

Optimal f -value 0 0 0 0 0.5656 0.2253 0.5656 0
Function evaluations 91 63 46 32 17 32 17 62
Gradient evaluations 0 0 2 2 2 2 2 2

DENSCHNA, n = 2 Stand2n Standn+1 Grad2n Gradn+1 Grad
(1)
3n Grad

(2)
3n Grad

(∞)
3n Grad

(2)
3n,2n

Optimal f -value 0 0 0 0 0 0 0 0
Function evaluations 73(148) 47(156) 67(86) 47(92) 5(56) 2(23) 2(23) 2(83)
Gradient evaluations 0 0 4(22) 2(30) 3(20) 2(8) 2(8) 2(14)

DENSCHNB, n = 2 Stand2n Standn+1 Grad2n Gradn+1 Grad
(1)
3n Grad

(2)
3n Grad

(∞)
3n Grad

(2)
3n,2n

Optimal f -value 0 0 0 0 0 0 0 0
Function evaluations 68(119) 130(95) 68(66) 87(53) 6(50) 4(28) 4(27) 4(71)
Gradient evaluations 0 0 3(15) 29(16) 3(16) 3(11) 3(10) 3(10)

DENSCHNC, n = 2 Stand2n Standn+1 Grad2n Gradn+1 Grad
(1)
3n Grad

(2)
3n Grad

(∞)
3n Grad

(2)
3n,2n

Optimal f -value 0 0(0.0001) 0 0(0.001) 0 0 0 0
Function evaluations 75(119) 54(662) 67(68) 50(384) 7(87) 5(103) 4(62) 16(98)
Gradient evaluations 0 0 5(15) 4(168) 4(31) 3(33) 3(28) 5(16)

EXPFIT, n = 2 Stand2n Standn+1 Grad2n Gradn+1 Grad
(1)
3n Grad

(2)
3n Grad

(∞)
3n Grad

(2)
3n,2n

Optimal f -value 0.2405 0.2406 0.2405 0.2406 0.2405 0.2405 0.2405 0.2405
Function evaluations 300 999 191 524 164 163 81 198
Gradient evaluations 0 0 66 251 66 69 37 47

MARATOSB, n = 2 Stand2n Standn+1 Grad2n Gradn+1 Grad
(1)
3n Grad

(2)
3n Grad

(∞)
3n Grad

(2)
3n,2n

Optimal f -value -1 0 -0.0041 0 -1 -1 -1 -1
Function evaluations 66 50 42 34 17 17 17 17
Gradient evaluations 0 0 3 3 2 2 2 2

May 23, 2003 22

MDHOLE∗, n = 2 Stand2n Standn+1 Grad2n Gradn+1 Grad
(1)
3n Grad

(2)
3n Grad

(∞)
3n Grad

(2)
3n,2n

Optimal f -value 0 0 8130.9 0.0196 11127.6 8130.9 11127.6 8130.9
Function evaluations 37610 48 31 5043 15 31 15 46
Gradient evaluations 0 0 2 1516 1 2 1 2

MEXHAT, n = 2 Stand2n Standn+1 Grad2n Gradn+1 Grad
(1)
3n Grad

(2)
3n Grad

(∞)
3n Grad

(2)
3n,2n

Optimal f -value -0.0401 -0.0393 -0.0401 -0.0401 -0.0401 -0.0401 -0.0401 -0.0401
Function evaluations 350 69 203 31 32 35 20 285
Gradient evaluations 0 0 54 7 4 4 4 53

MEYER3, n = 3 Stand2n Standn+1 Grad2n Gradn+1 Grad
(1)
3n Grad

(2)
3n Grad

(∞)
3n Grad

(2)
3n,2n

Optimal f -value 146888 374774 146888 146888 1947047 302439 1919139 152238
Function evaluations 15102 18926 8561 5207 2214 5252 2266 12596
Gradient evaluations 0 0 2206 1644 1099 1903 1128 2527

OSBORNEA, n = 5 Stand2n Standn+1 Grad2n Gradn+1 Grad
(1)
3n Grad

(2)
3n Grad

(∞)
3n Grad

(2)
3n,2n

Optimal f -value 0.00106 0.00029 0.00106 0.00029 0.00185 0.00015 0.00089 0.00012
Function evaluations 2263 13300 1222 7783 496 1455 542 1770
Gradient evaluations 0 0 183 2042 286 528 314 237

OSBORNEB, n = 11 Stand2n Standn+1 Grad2n Gradn+1 Grad
(1)
3n Grad

(2)
3n Grad

(∞)
3n Grad

(2)
3n,2n

Optimal f -value 0.04014 0.15192 0.04014 0.12229 0.04131 0.04088 0.0404 0.04014
Function evaluations 23191 50000+ 11755 50000+ 1606 3866 975 6574
Gradient evaluations 0 0 736 6479 777 1245 481 355

OSLBQP∗, n = 8 Stand2n Standn+1 Grad2n Gradn+1 Grad
(1)
3n Grad

(2)
3n Grad

(∞)
3n Grad

(2)
3n,2n

Optimal f -value 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25
Function evaluations 167 1355 115 472 5 5 5 8
Gradient evaluations 0 0 7 101 5 5 5 6

PALMER1∗, n = 3 Stand2n Standn+1 Grad2n Gradn+1 Grad
(1)
3n Grad

(2)
3n Grad

(∞)
3n Grad

(2)
3n,2n

Optimal f -value 11760 21166 11760 21166 43904 43904 43904 11760
Function evaluations 1498 438 730 208 31 30 31 1013
Gradient evaluations 0 0 160 64 11 11 13 161

PALMER1A∗, n = 4 Stand2n Standn+1 Grad2n Gradn+1 Grad
(1)
3n Grad

(2)
3n Grad

(∞)
3n Grad

(2)
3n,2n

Optimal f -value 116.6 7965.8 41.3 393.8 2262.7 4989.1 729.3 45.9
Function evaluations 50000+ 50000+ 50000+ 50000+ 50000+ 50000+ 50000+ 50000+
Gradient evaluations 0 0 5636 9213 20128 17752 24999 4360

PALMER1B∗, n = 2 Stand2n Standn+1 Grad2n Gradn+1 Grad
(1)
3n Grad

(2)
3n Grad

(∞)
3n Grad

(2)
3n,2n

Optimal f -value 4.0137 9010.0 3.4682 6.3366 9080.6 13474.1 5135.9 3.4671
Function evaluations 50000+ 50000+ 43899 50000+ 50000+ 50000+ 50000+ 44127
Gradient evaluations 0 0 7684 11450 20441 25001 25001 5149

PALMER1C, n = 8 Stand2n Standn+1 Grad2n Gradn+1 Grad
(1)
3n Grad

(2)
3n Grad

(∞)
3n Grad

(2)
3n,2n

Optimal f -value 16948398 30078 12514913 30078 39201 39859 41284 799100
Function evaluations 50000+ 36077 50000+ 5483 2752 3788 252 50000+
Gradient evaluations 0 0 5535 2491 1033 1140 120 4230

May 23, 2003 23

In general, the gradient-pruned GPS poll-only methods converged in fewer function
evaluations than the standard GPS poll-only methods, but they sometimes terminated at a
point with a higher function value, particularly if only one gradient-pruned descent direction
was used in the poll step. In fact, in no case did a standard method require fewer function
evaluations than a “3n” gradient method, and in only one case (MDHOLE, Standn+1) did
a standard method require fewer function evaluations than its gradient-pruned counterpart
with the same poll directions (e.g., Stand2n versus Grad2n, Standn+1 versus Gradn+1). Also,

Grad
(2)
3n,2n was always at least as fast as Stand2n.

However, the problems ALLINITU, MARATOSB, MEXHAT, and OSBORNEA are ex-
amples of cases where a gradient-pruned method converged to a lower point than a standard
poll. In fact, Grad

(2)
3n (with only one function evaluation per iteration) achieved a lower

function value for OSBORNEA than both standard poll methods despite fewer function
evaluations.

The problem PALMER1 is an interesting example with unflattering behavior. The three
highly-pruned Grad3n strategies converge the quickest, but to the much poorer solution of
43904 than the other methods. The methods that use the most directions, Stand2n, Grad2n,
and Grad

(2)
3n,2n, converge to the best solution of 11760, with Grad2n saving a considerable

number of function evaluations over Stand2n. The two n + 1 direction methods converge
to a solution of 21166, with gradient-pruning again saving a significant number of function
evaluations. Finally, the Grad

(2)
3n,2n strategy achieves the best optimal value faster than

Stand2n, but it was not able to match Grad2n in function evaluations, perhaps because it
requires slightly more function evaluations per poll step.

7 Discussion

We have presented a GPS algorithm that uses any available derivative information to reduce
the size of the poll set. Numerical results with a GPS poll-only method applied to problems
from the cute test collection suggest that the use of gradient information in the poll
step often requires fewer function evaluations to terminate than a standard poll-only GPS
algorithm that does not uses gradient information. We emphasize that we envision this new
poll step being used with a search step with a global reach as explained in Section 3.1.
The new approach does not necessarily save computational time if the time for computing a
gradient is expensive, as for example, when it costs n times the cost to evaluate the objective
function as in a finite difference gradient. Moreover, the two approaches often converge to
different minimizers with different objective function values.

Acknowledgments: The authors would like to thank a pair of anonymous referees for their
constructive reports, and in particular for the proof of Proposition 4.4 which is much shorter
and simpler than the one we had in the initial version of the paper.

May 23, 2003 24

References

[1] Abramson, M.A. (2002): Mixed variable optimization of a load-bearing thermal insu-
lation system, Technical Report TR02-13, Department of Computational and Applied
Mathematics, Rice University, Houston Texas.

[2] Abramson, M.A. (2002): Nonlinear optimization with mixed variables and Deriva-
tives–Matlab

c©
(NOMADm). Software. Available for download at

http://www.caam.rice.edu/∼abramson/NOMADm.html.

[3] Abramson, M.A. (2002): Pattern search algorithms for mixed variable general con-
strained optimization problems, PhD thesis, Rice University, Department of Compu-
tational and Applied Mathematics, Houston, Texas. Also appears as CAAM Technical
Report TR-02-11.

[4] Alexandrov, N., Dennis, J.E. Jr, Lewis, R., Torczon, V. (1998): A trust region frame-
work for managing the use of approximation models in optimization, Struct. Optim.
15, 16–23.

[5] Audet C. (2002): Convergence results for pattern search algorithms are tight, Technical
Report G-2002-56, Les Cahiers du GERAD, Montréal, Canada.

[6] Audet, C., Dennis, J.E. Jr (2000): Pattern search algorithms for mixed variable pro-
gramming, SIAM J. Optim., 11, 573–594.

[7] Audet, C., Dennis, J.E. Jr (2000): A pattern search filter method for nonlinear pro-
gramming without derivatives, Technical Report TR00-09, Department of Computa-
tional and Applied Mathematics, Rice University, Houston Texas.

[8] Audet, C., Dennis, J.E. Jr (2003): Analysis of generalized pattern searches, SIAM J.
Optim., 13, 889–903.

[9] Bongartz, I., Conn, A.R., Gould, N., Toint, Ph.L. (1995): CUTE: Constrained and
unconstrained testing environment, ACM Trans. Math. Software, 21, 123–160.

[10] Booker, A.J., Dennis, J.E. Jr, Frank, P.D., Serafini, D.B., Torczon, V., Trosset M.W.
(1999): A rigorous framework for optimization of expensive functions by surrogates,
Struct. Optim., 17, 1–13.

[11] Booker, A.J., Dennis, J.E. Jr, Frank, P.D., Moore, D.W., Serafini, D.B. (1999): Man-
aging surrogate objectives to optimize a helicopter rotor design – further experiments,
AIAA Paper 98-4717, St. Louis, September 1998.

[12] Byrd, R.H., Tapia R.A. (1975): An extension of Curry’s theorem to steepest descent
in normed linear spaces, Math. Programming, 9, 247–254.

May 23, 2003 25

[13] Clarke, F.H. (1990): Optimization and Nonsmooth Analysis, SIAM Classics in Applied
Mathematics, Vol. 5, Philadelphia.

[14] Conn, A.R., Gould, N.I.M., Toint, Ph.L. (1991): A globally convergent augmented
Lagrangian algorithm for optimization with general constraints and simple bounds,
SIAM J. Numer. Anal., 28, 545–572.

[15] Davis, C. (1954): Theory of positive linear dependence, Amer. J. Math., 76, 733–746.

[16] Dennis, J.E. Jr, Torczon, V. (1991): Direct search methods on parallel machines, SIAM
J. Optim. 1, 448–474.

[17] Fletcher, R., Leyffer, S. (2002): Nonlinear programming without a penalty function,
Math. Programming, 91, 239–269.

[18] Fletcher, R, Leyffer, S., Toint, Ph.L. (1998): On the global convergence of an SLP-filter
algorithm, Report NA/183, Dundee University, Dept. of Mathematics.

[19] Fletcher, R, Gould, N.I.M., Leyffer, S., Toint, Ph.L. (1999): On the global convergence
of trust-region SQP-filter algorithms for general nonlinear programming, Report 99/03,
Department of Mathematics, FUNDP, Namur (B).

[20] Kokkolaras, M., Audet, C., Dennis, J.E. Jr (2001): Mixed variable optimization of
the number and composition of heat intercepts in a thermal insulation system, Optim.
Engin., 2, 5–29.

[21] Lewis, R.M., Torczon V. (1996): Rank ordering and positive basis in pattern search
algorithms, Technical Report TR-96-71, ICASE NASA Langley Research Center.

[22] Lewis, R.M., Torczon, V. (2002): A globally convergent augmented Lagrangian pattern
search algorithm for optimization with general constraints and simple bounds, SIAM
J. Optim., 12, 1075–1089.

[23] Lewis, R.M., Torczon, V. (1999): Pattern search algorithms for bound constrained
minimization, SIAM J. Optim., 9, 1082–1099.

[24] Lewis, R.M., Torczon, V. (2000): Pattern search methods for linearly constrained
minimization, SIAM J. Optim., 10, 917–941.

[25] McKay, M.D., Conover, W.J., Beckman, R.J. (1979): A comparison of three methods
for selecting values of input variables in the analysis of output from a computer code,
Technometrics, 21, 239–245.

[26] Mohammadi, B., Pironneau, O. (2001): Applied Shape Optimization for Fluids, Oxford
University Press, Oxford.

May 23, 2003 26

[27] Soto, O., Löhner, R. (2001): CFD optimization using an incomplete–gradient adjoint
formulation, Int. J. for Num. Methods in Engin., 51, 735–753.

[28] Stein, M (1987): Large sample properties of simulations using Latin hypercube sam-
pling, Technometrics, 29, 143–151.

[29] Torczon, V. (1997): On the convergence of pattern search algorithms, SIAM J. Optim.,
7, 1–25.

	Introduction
	Positive Spanning Sets
	Description of pattern search algorithms
	The search step
	The poll step
	Generalized pattern search algorithm with a pruned poll set

	Using derivative information to prune well
	Pruning with the gradient
	Pruning with an approximation of the gradient
	Pruning with incomplete derivative information
	Pruning with linear constraints

	Convergence Results
	Numerical experiments
	Discussion

