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Abstract

How do large supply shocks in one financial market affect asset prices in other markets? We
develop a model in which capital moves quickly within an asset class, but slowly between asset
classes. While most investors specialize in a single asset class, a handful of generalists can gradually
re-allocate capital across markets. Upon arrival of a supply shock, prices of risk in the impacted
asset class become disconnected from those in others. Over the long-run, capital flows between
markets and prices of risk become more closely aligned. While prices in the impacted market
initially overreact to shocks, under plausible conditions, prices in related asset classes underreact.
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1 Introduction

How do large supply shocks in one financial market affect the pricing of assets in other markets? For
example, suppose that the Federal Reserve announces that it will sell a large portfolio of long-term
U.S. Treasury bonds. How would such an announcement impact yields in the Treasury market? How
should we expect the yields on corporate bonds and mortgage-backed securities, which are also exposed
to interest rate risk, to react? And how should the resulting price dynamics play out over time?

If markets for different asset classes are tightly integrated, then a shock that affects the pricing
of a risk factor in one asset class will have a similar effect on other asset classes exposed to the same
risk. When markets are more segmented, however, prices of risk in one market may be disconnected
from those in other markets. Segmentation arises because institutional and informational frictions lead
investors to specialize in a particular asset class or a narrow set of assets (Merton [1987], Grossman
and Miller [1988], Shleifer and Vishny [1997]). Although specialization can facilitate arbitrage across
securities within an asset class, it can impede arbitrage across asset classes. Following a large supply
shock, specialists’limited willingness to trade across markets may lead the pricing of risk to become
disconnected across markets.

The degree of segmentation between different financial markets depends on time horizon. Over the
long run, the forces of arbitrage ensure that capital will flow from underpriced markets to overpriced
markets. However, the process of market integration can be slow, because investors with the flexibility
to trade across asset classes do not do so immediately. For example, investment committees at pension
funds and endowments– who have the flexibility to allocate capital across asset classes– typically only
reallocate capital annually or biannually.

In this paper, we develop a dynamic model of financial markets in which capital moves quickly
between securities within a given asset class, but more slowly between different asset classes. Our key
contribution is to show how supply shocks in one market are reflected in prices, investor behavior,
and flows into neighboring markets. In particular, we show how the reaction of neighboring markets
depends on time horizon. We develop the model using a stylized depiction of fixed-income assets that
trade in partially segmented markets. As we explain below, fixed income markets are a natural setting
for this analysis, because bond yields naturally encode information about future risk premia. And,
from a practical perspective, the fault lines between different segments of the fixed-income markets
can be quite stark.

Consider two long-term risky assets trading in partially segmented markets, such as corporate
bonds and Treasury securities. Both assets are exposed to a common fundamental risk factor, making
them partial substitutes. This means that, absent frictions, their prices would be tightly linked by
cross-market arbitrage. To introduce market segmentation, we assume that there are two sets of risk-
averse market specialists, each of whom can flexibly trade one of the risky assets as well as a short-term
risk-free asset. Specialists are unable to allocate capital across the two markets. However, markets are
partially integrated by risk-averse generalist investors who periodically reevaluate their portfolios and
shift between the two risky assets. This setup is similar to Gromb and Vayanos (2002), except that
the cross-market arbitrageurs are slow-moving, much like in Duffi e (2010). Because of the gradual
nature of cross-market arbitrage, markets are more integrated in the long run than the short run.

In the setting we have just described, what happens when there is an unanticipated supply shock
in one market? Suppose, for concreteness, that the Federal Reserve announces that it will sell a large
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portfolio of long-term U.S. Treasury bonds, permanently expanding the amount of interest rate risk
that investors need to bear in equilibrium. Treasury market specialists react immediately to the shock,
absorbing the increased supply into their inventories. The risk premium on long-term Treasury bonds
will rise, lifting their yields. However, Treasury yields will overreact– the short-run price impact will
exceed the long-run impact– because the amount of capital that can initially accommodate the shock
is limited to specialists and a handful generalists. Over the long-run, generalist investors will allocate
additional capital to the Treasury market, muting the price impact of the supply shock at longer
horizons. Price dynamics of this sort are similar to those described in Duffi e (2010).

Our key contribution is to characterize how prices evolve in related markets that are not directly
impacted by the supply shock. Consider the question of how corporate bond prices (or stock prices
for that matter) will react to a shock to the supply of long-term Treasuries. Although this supply
shock does not directly impact the corporate bond market, this market is indirectly affected because
generalist investors will respond by increasing their holdings of long-term Treasuries and reducing
their holdings of long-term corporate bonds. These cross-market capital flows drive down the prices
of corporate bonds and push up corporate bond yields. In this way, the trading of generalist asset
allocators transmits supply shocks across markets, serving to increase market integration. While yields
in the Treasury market initially overreact to the supply shock, under plausible parameter values, we
show that corporate bond yields will underreact: the short-run price impact is less than the long-run
impact. The overreaction of Treasury yields and the underreaction of corporate yields are both driven
by the fact that generalists only reallocate capital slowly. As a result, it takes time for financial
markets to fully digest large supply shocks.

If all investors were generalists, the two markets would be fully integrated in the sense that expo-
sures to common risk factors would always have the same prices in the two markets. However, in the
more realistic case when markets are partially segmented, risk prices can differ across markets. This
occurs because risks cannot be easily unbundled from assets and because markets receive periodic sup-
ply shocks, making cross-market arbitrage risky for generalists, as in the model developed by Gromb
and Vayanos (2002). For example, interest rate risk may not be priced identically in the corporate
bond market and the Treasury market. Following a supply shock, the premia associated with similar
risk exposures can differ significantly between the two asset markets. As generalists react to pricing
discrepancies across markets, differences in risk premia will gradually narrow. However, the differences
will not vanish in the long run because of the permanent risks associated with cross-market arbitrage.
Put differently, partial segmentation creates a form of noise trader risk.

The price dynamics in our model depend critically on the fractions of specialists in each market,
the number of time periods it takes generalists to fully rebalance their portfolios, and the degree of
substitutability between the two asset markets. The fraction of specialists and generalist investors
play an especially important role. When there are a small number of slow-moving generalists, the
Treasury market overreacts while the corporate market underreacts to the shock to Treasury supply.
However, if there are many slow-moving generalists, markets are well-integrated and supply shocks
can result in short-run overreaction in both markets.

We also use the model to explore the impact of anticipated future supply shocks. For example,
suppose that the Fed announces it will sell long-term bonds starting in two years. How will the Trea-
sury and corporate bond yields react to the announcement, and how should prices adjust when the
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Fed actually starts selling? Although yields in both markets react immediately, both markets exhibit
significant underreaction: the short-run price impact is significantly less than the long-run impact.
Immediately upon the announcement, generalists begin to gradually adjust in the direction of the an-
ticipated shock, buying Treasuries and selling corporate bonds. Treasury specialists provide temporary
liquidity to these generalists, by selling their Treasury holdings, planning to replenish their inventories
once the supply shock actually lands in two years. The result is a protracted adjustment process
starting from the announcement and continuing until well after the supply shock lands. Longer delays
between the announcement and the arrival of the supply shock result in a more gradual adjustment
process.

In describing our model, we have made no distinction between a risky “asset”and the “market”
in which it trades. This distinction arises when we introduce multiple risky assets into each market.
Individual assets differ in their degree of exposure to common risk factors. For example, the “market"
for U.S. Treasury securities contains bonds of many different maturities, which have different exposures
to interest rate risk. Extending our model to allow for multiple securities per asset market, we show
that a conditional CAPM prices all assets in the first market and that another conditional CAPM–
with different prices of risk– prices all assets in the second market. Critically, these two market-
specific pricing models are linked over time by the cross-market arbitrage activities of slow-moving
asset allocators. For example, the pricing of interest rate risk for 2-year Treasuries is always perfectly
consistent with the pricing of interest rate risk for 10-year Treasuries. However, the pricing of interest
rate risk in the Treasury market may differ somewhat from that in the corporate bond market. And
these cross-market differences will be most pronounced following the arrival of major shocks that take
time for slow-moving generalists to digest.

The question of how asset prices adjust across partially segmented markets is of enormous practical
importance. Consider the recent large-scale purchases of long-term government bonds by central banks
in the United States, United Kingdom, Japan, and Europe, often referred to as “quantitative easing.”
A key question about these policies is whether they impact the prices of financial assets outside of the
market for government bonds. The favored methodology for answering this question has been to use
event studies of intraday or one-day price changes following central bank policy announcements. A
number of these studies have concluded that the effects of quantitative easing are most pronounced
in the market in which the central bank is transacting, with only modest spillovers to other related
markets (Woodford [2012] and Krishnamurthy and Vissing-Jorgensen [2013]). Others have suggested
that at longer horizons, the spillovers are more significant. Mamaysky (2014) suggests that if one
expands the measurement window by a few days or weeks, the effects in other markets may be much
larger. Feunou et al (2015) suggest that U.S. quantitative easing was transmitted to Canadian bond
markets over time via portfolio flows.

Our model suggests that the short-run price impact of a supply shock on different markets may not
accurately reveal the long-run impact, which is often of greater interest to policymakers. We illustrate
this idea by analyzing the statistical power of short-run event studies within our model. We show
that the horizon at which statistical power is maximized is often much shorter than the horizon at
which the long-run price impact is achieved. In summary, event study methodology is not well suited
to analyzing the impact of market supply shocks.

Our model is closely related to two strands of research in financial economics. The idea that front-
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line arbitrageurs in financial markets are highly specialized traces back to Merton (1987) and Grossman
and Miller (1988), and is a central tenet of the theory of limited arbitrage (De Long et al [1990], Shleifer
and Vishny [1997], and Gromb and Vayanos [2002]). A small literature in finance describes asset prices
and returns in segmented markets (Stapleton and Subrahmanyam [1977], Errunza and Losq [1985],
Merton [1987]). More recently, a number of researchers have demonstrated downward-sloping demand
curves for individual financial asset classes, which would be puzzling if markets were fully integrated
(Gabaix, Krishnamurthy, and Vigneron [2007], Gârleanu, Pedersen, and Poteshman [2009], Greenwood
and Vayanos [2014], and Hanson [2014]). These researchers have often motivated their analysis by
positing an extreme form of market segmentation in which a different pricing kernel is used to price
the securities in each distinct asset class. Our paper emphasizes how the actions of slow-moving
asset allocators serve to link these market-specific pricing kernels together, thereby offering a middle
ground between these models positing extreme segmentation and traditional models featuring perfect
integration.

Second, our paper is related to research on “slow-moving capital,”which is the idea that capital
does not flow as quickly towards attractive investment opportunities as textbook theories might suggest
(Mitchell, Pedersen, Pulvino [2007], Duffi e [2010], Acharya, Shin, and Yorulmazer [2013]). Here, our
model draws most heavily from Duffi e (2010), who studies the implications of slow moving capital for
price dynamics in a single asset market. Duffi e and Strulovici (2012) present a model of the movement
of capital across two partially segmented markets, but their focus is on the endogenous speed of capital
mobility, which we take as exogenous. Our key contribution here is to characterize the dynamics of
prices across related asset markets and to describe the patterns of cross-market arbitrage in response
to large supply or demand shocks.

2 Model

We develop the model in two steps. We first develop a tractable, benchmark model for pricing long-
term fixed-income assets that are exposed to both interest rate risk and default risk. The model builds
on the default-free term structure models in Vayanos and Vila (2009) and Greenwood and Vayanos
(2014) in which interest rate risk is priced by a set of specialized, risk-averse bond arbitrageurs, leading
to a downward-sloping aggregate demand curve for bond risk factors. In this first step, we develop a
simple way to incorporate default risk into this class of models. In the second step, we introduce a
second asset class and a richer institutional trading environment that contains both generalists and
specialists. In this richer environment, we describe how prices and investor positions in both markets
evolve following a supply shock that directly impacts only one market.

2.1 Single asset model

2.1.1 Defaultable perpetuities

Consider a homogenous portfolio of perpetual, defaultable bonds each of which promises to pay a
coupon of C each period. Let PL,t denote the the price of each long-term bond at time t. Suppose
that a random fraction ht+1 of the bonds default at t+ 1 and are worth (1−Lt+1) (PL,t+1 + C) where
0 ≤ Lt+1 < 1 is the (possibly random) loss-given-default as a fraction of market value. The remaining
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fraction (1 − ht+1) of the bonds do not default and are worth (PL,t+1 + C). Thus, the return on the
bond portfolio is

1 +RL,t+1 =
(1− Zt+1) (PL,t+1 + C)

PL,t
, (1)

where Zt+1 = ht+1Lt+1, satisfying 0 ≤ Zt+1 < 1, is the portfolio default realization at time t + 1.
If Zt+1 ≡ 0, the bonds are default-free. If Zt+1 is stochastic, the bonds are defaultable with high
realizations of Zt+1 corresponding to larger default losses at time t + 1. This formulation of default
risk follows Duffi e and Singleton’s (1999) “recovery of market value” assumption which has become
standard in the credit risk literature.

To generate a tractable linear model, we use a Campbell-Shiller (1988) log-linear approximation
to the return on this portfolio of defaultable perpetuities. Specifically, defining θ ≡ 1/ (1 + C) < 1,
the one-period log return on the bonds is

rL,t+1 ≡ ln
(
1 +RLt+1

)
≈

D︷ ︸︸ ︷
1

1− θyL,t −

D−1︷ ︸︸ ︷
θ

1− θyL,t+1 − zt+1, (2)

where yL,t is the log yield-to-maturity at time t,

D =
1

1− θ =
C + 1

C
(3)

is the Macaulay duration when the bonds are trading at par, and zt = − ln (1− Zt) is the log default
loss at time t.1

To derive this approximation note that the Campbell-Shiller (1988) approximation of the 1-period
log return is

rL,t+1 = ln (PL,t+1 + C)− pL.t − zt+1 (4)

≈ κ+ θpL.t+1 + (1− θ) c− pL.t − zt+1

where θ = 1/ (1 + exp (c− pL)) and κ = − log (θ) − (1− θ) log
(
θ−1 − 1

)
are parameters of the log-

linearization. Iterating equation (4) forward, we find that the log bond price is

pL,t = (1− θ)−1 κ+ c−
∑∞

i=0 θ
iEt [rL,t+i+1 + zt+i+1] . (5)

Applying this approximation to promised cashflows (i.e., zt+i+1 ≡ 0 for all i ≥ 0) and the yield-to-
maturity, defined as the constant return that equates bond price and the discounted value of promised
cashflows, we obtain

pL,t = (1− θ)−1 κ+ c− (1− θ)−1 yL,t. (6)

Equation (2) then follows by substituting the expression for pL,t in equation (6) into the Campbell-
Shiller return approximation in equation (4). Assuming the steady-state price of the bonds is par
(pL = 0), we have θ = 1/ (1 + C). Thus, bond duration isD = −∂pL,t/∂yL,t = (1− θ)−1 = (1 + C) /C.

1This log-linear approximation for default-free coupon-bearing bonds appears in Chapter 10 of Campbell, Lo, and
MacKinlay (1997). Our approximation for defaultable bonds then follows trivially given the assumption that default
losses are a (random) fraction of market value.
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Since −∂pL,t/∂yL,t = − (∂PL,t/∂YL,t) ((1 + YL,t) /PL,t) = (Y :L,t+1)/YL,t this corresponds to Macaulay
duration when the bonds are trading at par (YL,t = C).

2.1.2 Risk factors

Investors in defaultable long-term bonds are exposed to three different types of risk: interest rate risk,
default risk, and supply risk. First, investors are exposed to interest rate risk. In our model, investors
face an exogenous short-term interest rate that evolves randomly over time and will suffer a capital
loss on their bond holdings if short-term rates rise unexpectedly. Second, investors face default risk :
the future period-by-period default realization is unknown and evolves randomly over time. Finally,
investors are exposed to supply risk : there are random supply shocks which impact the prices and
yields on long-term bonds, holding fixed the expected future path of short-term interest rates and
expected future defaults. Thus, using Campbell’s (1991) terminology, interest rate risk and default
risk are forms of fundamental “cash flow”risk, whereas supply risk is a form of “discount rate”risk.

We make the following concrete assumptions:

• Short-term interest rates: The log short-term riskless rate available to investors between
time t and t + 1, denoted rt, is known at time t. We assume that rt also follows an exogenous
AR(1) process

rt+1 = r + ρr (rt − r) + εr,t+1, (7)

where V art [εr,t+1] = σ2
r
. One can think of the short-term rate as being determined outside

the model either by monetary policy or by a stochastic short-term storage technology that is
available in perfectly elastic supply.

• Default losses: We assume that the default process zt follows

zt+1 = z + ρz (zt − z) + εz,t+1 (8)

where V art [εz,t+1] = σ2z.

• Supply: We assume that the perpetuity is available in an exogenous, time-varying supply st.
We assume that supply follows an AR(1) process

st+1 = s+ ρs (st − s) + εs,t+1, (9)

where V art [εs,t+1] = σ2s.

For simplicity, we will assume that εs,t+1, εr,t+1, and εz,t+1 are mutually orthogonal. However, it
is straightforward to relax this assumption.

2.1.3 Specialist demand and market clearing

There is a unit mass of specialized bond arbitrageurs, each with risk tolerance τ . Specialist arbitrageurs
can earn an uncertain future return of rL,t+1 from to t to t+1 by investing in the defaultable long-term
bond. Alternatively, they can earn a certain return of rt by investing at the short-term interest rate.
Specialist arbitrageurs are concerned with their interim wealth.
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Formally, we assume that at date t specialist arbitrageurs have mean-variance preferences over
their wealth at t+ 1. This means that arbitrageurs choose their holdings of the perpetuity to solve

max
bt

{
btEt [rxL,t+1]− (2τ)−1 (bt)

2 V art [rxL,t+1]
}
, (10)

where rxL,t+1 ≡ rL,t+1 − rt is the log excess returns on the defaultable long—term bond over the
short-term interest rate between t and t+ 1. Thus, arbitrageur demand for the risky bond is

bt = τ
Et [rxL,t+1]

V art [rxL,t+1]
. (11)

Equation (11) says that arbitrageurs borrow at the short-term rate and invest in risky long-term bonds
when the expected return on perpetuities exceeds that the short rate (Et [rxL,t+1] > 0). Conversely,
arbitrageurs sell short bonds and invest at the short rate when Et [rxL,t+1] < 0. And they respond
more aggressively to these movements in risk premia when they are more risk tolerant and when the
variance of excess bond returns is low.

Market clearing (b∗t = st) implies that the bond risk premium, Et [rxL,t+1] is given by

Et [rxL,t+1] = τ−1V
(1)
L st, (12)

where V (1)L = V art [(D − 1) yL,t+1 + zt+1] is the equilibrium variance of 1-period excess returns.
Thus, bond risk-premia are increasing in bond supply, st. When a positive supply shock arrives,

bond risk premia jump instantaneously. If the shock is almost permanent (ρs ≈ 1), the impact on the
risk premium will be long lived. If the shock is transient (0 < ρs � 1), supply will quickly revert to
steady-state (s) and risk premia will revert to their steady-state level, τ−1V (1)L s.

2.1.4 Solution and equilibrium yields

To solve the model, we conjecture that equilibrium bond yields take the linear form

yL,t = α0 + αr (rt − r) + αz (zt − z) + αs (st − s) . (13)

Using this conjecture, in the Internet Appendix we show that a linear equilibrium of this form ex-
ists so long as arbitrageurs are suffi ciently risk tolerant (i.e., if τ is large enough). We show that
the equilibrium variance of 1-period excess bond returns, V (1)L , must satisfy the following quadratic
equation

V
(1)
L =

(
θ

1− ρrθ
σr

)2
+

(
1

1− ρzθ
σz

)2
+

(
τ−1

θ

1− ρsθ
σs

)2 (
V
(1)
L

)2
. (14)
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The total risk premium can be decomposed into compensation for bearing interest rate risk, compen-
sation for bearing credit risk, and compensation for bearing supply risk:

Et [rxL,t+1] =

Interest rate risk premium︷ ︸︸ ︷
τ−1

(
θ

1− ρrθ
σr

)2
st +

Credit risk premium︷ ︸︸ ︷
τ−1

(
1

1− ρzθ
σz

)2
st (15)

+

Supply risk premium︷ ︸︸ ︷
τ−1

(
τ−1

θ

1− ρsθ
σs

)2 (
V
(1)
L

)2
st.

The level of supply (st) appears three times on the right hand side of equation (15) because all three
components of the total risk premium move in lock in our single asset model.

As in Greenwood and Vayanos (2014), when there is supply risk (σ2s > 0) a linear equilibrium only
exists if bond arbitrageurs are suffi ciently risk tolerant.2 If arbitrageurs are suffi ciently risk tolerant,
there are two possible solutions to (14): one in which yields are highly sensitive to supply shocks
and one in which yields are less sensitive. What is the intuition for the multiplicity of equilibria? If
yields are highly sensitive to supply shocks, then bonds become highly risky for arbitrageurs. Hence,
arbitrageurs absorb supply shocks only if they are compensated by large changes in yields, making
the high sensitivity of yields to shocks self-fulfilling. Conversely, if yields are less sensitive to supply
shocks, then bonds become less risky for arbitrageurs and arbitrageurs are willingly absorb supply
shocks even if they are only compensated by modest changes in yields. Equilibrium multiplicity of
this sort is common in overlapping generations models such as ours where arbitrageurs with short
investment horizons hold a long-lived asset that is subject to supply shocks (see e.g., DeLong, Shleifer,
Summers, and Waldmann [1990]).

Following Greenwood and Vayanos (2014), we focus on the well-behaved and economically relevant
equilibrium in which yields are less sensitive to supply shocks, which corresponds to the smaller root
of equation (14).3 It is then straightforward to show that V (1)L is increasing in σ2r , σ

2
z, σ

2
s, ρr, ρz,

ρs, and D [= (1− θ)−1] and decreasing in τ . Thus, for a given level of bond supply, the total risk
premium is larger when short-term rates are more volatile, when there is greater uncertainty about
future defaults, and when supply shocks are more volatile. Furthermore, the risk premium is larger
when each of these three processes is more persistent. Finally, the risk premium is increasing in the
duration of the perpetuity and is decreasing in arbitrageur risk tolerance.

Rewriting equation (2) as yL,t = Et [(1− θ) (rt + rxL,t+1 + zt+1) + θyL,t+1] and iterating forward,
we see that the equilibrium yield on the defaultable perpetuity is a weighted average of expected future
short rates, future default losses, and future risk premia

yL,t = (1− θ)
∑∞

i=0 θ
iEt[

Short rate︷︸︸︷
rt+i +

Defau lt loss︷ ︸︸ ︷
zt+i+1 +

Risk prem ium︷ ︸︸ ︷
τ−1V

(1)
L st+i]. (16)

2 If τ is too small and there are supply shocks (σ2s > 0), no linear equilibrium exits because bonds become extremely
risky for arbitrageurs and it is impossible to clear the market. See the Internet Appendix.

3As σ2s → 0, this smaller root converges to the solution for V (1)
L when σ2s = 0 (i.e., to

(
(θσ)r / (1− ρrθ)

)2
+

(σz/ (1− ρzθ))
2) whereas the larger root diverges to infinity as σ2s → 0. All of the relevant comparative statics on

V
(1)
L have the intuitive signs at the smaller root, but have the opposite signs at the larger root.
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Because of the coupon-bearing nature of the long-term bond, equation (16) shows that expected short
rates, default losses, and risk premia in the near future have a larger effect on bond yields than those
in the distant future.4 Making use of the assumed AR(1) dynamics for rt, zt, and st, we can express
the equilibrium yield as

yL,t =

Expected future short rates︷ ︸︸ ︷[
r +

1− θ
1− ρrθ

(rt − r)
]

+

Expected future default losses︷ ︸︸ ︷[
z +

1− θ
1− ρzθ

ρz (zt − z)
]

(17)

+

Risk premium︷ ︸︸ ︷[
τ−1V

(1)
L s+ τ−1V

(1)
L

1− θ
1− ρsθ

(st − s)
]
.

Equation (17) shows that the perpetuity yield is more sensitive to movements in short rates when
the short-rate process is more persistent and when bond duration is shorter (i.e., ∂2yL,t/∂rt∂ρr > 0

and ∂2yL,t/∂rt∂D < 0). Similarly, the yield is more sensitive to movements in current default losses
(zt ) when the default process is more persistent and when bond duration is shorter. Yields are more
sensitive to bond supply when short-rates are more volatile or more persistent or when defaults are
more volatile or more persistent. Finally, yields are also more sensitive to supply shocks when risk
tolerance is low, supply shocks are more volatile, or supply shocks are more persistent.5

2.2 Partially segmented markets

With this machinery in place, we now introduce a second risky asset and a richer trading environment,
to capture the idea that the two assets trade in partially segmented markets. Our goal is to study
how shocks to asset supply in one market are transmitted over time to the second market.

2.2.1 Asset markets

Suppose now that there are two portfolios of perpetual risky assets, A and B. A is default—free and
exposed only to interest rate risk. Borrowing notation from above, portfolio A pays a coupon of CA
each period, so the gross return on A is 1 + RA,t+1 = (PA,t+1 + CA) /PA,t. The log excess return on
the A portfolio over the short-term interest rate from time t to t+ 1 is

rxA,t+1 ≈
1

1− θA
yA,t −

θA
1− θA

yA,t+1 − rt, (18)

where θA = 1/ (1 + CA).
The second portfolio, B, is subject to default risk which makes it an imperfect substitute for asset

A. Specifically, the B portfolio carries a promised coupon payment of CB each period. However, the
gross return on the B portfolio from time t to t + 1 is 1 + RB,t+1 = (1− Zt+1) (PB,t+1 + CB) /PB,t

4This is similar to Campbell and Shiller’s (1988) analysis of the price of a dividend-paying stock.
5The sign of ∂2yL,t/∂st∂D is ambiguous since ∂V (1)

L /∂D > 0, but ∂ [(1− θ) / (1− ρsθ)] /∂D < 0. This corresponds to
the finding in Vayanos and Greenwood (2014) that, depending on the persistence of supply shocks, a current increase in
bond supply can have a greater impact on the yields of intermediate or long-dated bonds. Specifically, highly persistent
supply shocks have the greatest impact on long-dated yields, while transitory supply shocks have the greatest impact on
intermediate-dated yields.
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where 0 ≤ Zt+1 ≤ 1 is the default realization at time t+ 1. Therefore, the log excess return on B from
time t to t+ 1 is

rxB,t+1 ≈
1

1− θB
yB,t −

θB
1− θB

yB,t+1 − zt+1 − rt, (19)

where θB = 1/ (1 + CB). The additional zt+1 term in equation (19) reflects the time t + 1 default
realization that is specific to the B asset. The variance of zt+1 determines, in part, the degree of
substitutability between assets A and B.

We assume that the processes for the short rate rt and for default losses zt are as in equations
(7) and (8) above. However, we assume that the two asset markets are subject to different supply
shocks which also limits their substitutability for investors with shorter horizons. The net supply that
investors must hold of asset A evolves according to

sA,t+1 = sA + ρsA (sA,t − sA) + εsA,t+1, (20)

where V art [εsA,t+1] = σ2sA . Similarly, the net supply that investors must hold of asset B evolves as

sB,t+1 = sB + ρsB (sB,t − sB) + εsB ,t+1, (21)

where V art [εsB ,t+1] = σ2sB .We continue to assume that εr,t+1, εz,t+1, εsA,t+1, and εsB ,t+1 are mutually
orthogonal.

2.2.2 Market participants

There are three types of investors, all with identical risk tolerance τ . Investors are distinguished by
their ability to transact in different markets and by the frequency with which they can rebalance their
portfolios. Fast-moving A-specialists are free to adjust their holdings of the A asset and the riskless
short-term asset each period; however, A-specialists cannot hold the B asset. A-specialists are present
in mass qA and we denote their demand for A by bA,t. Analogously, fast-moving B-specialists can
freely adjust their holdings of the B asset and the riskless asset each period, but cannot hold the A
asset. B-specialists are present in mass qB and their demand for asset B is bB,t.

The third group of investors is a set of slow-moving generalists who can adjust their holdings of A
and B asset, as well as the riskless short-term asset, but can do so only every k periods. Generalists
are present in mass 1− qA− qB. Fraction 1/k of these generalists investors are active each period and
can reallocate their portfolios between the A and B assets. However, they must then maintain this
same portfolio allocation for the next k periods. As in Duffi e (2010), this is a reduced form way to
model the frictions that limit the speed of capital flows across markets.

The market structure we have described here is a natural way to capture the industrial organization
of real world asset management. Due to agency and informational problems, savers are only willing
to give delegated managers the discretion to adjust their portfolios quickly if the manager accepts a
narrow, specialized mandate. These same agency and informational frictions also mean that savers
are only willing to give managers the discretion to adjust quickly if the manager gives them an open-
ended claim (e.g., Stein (2005)). As a result, fast-moving investors often have endogenously short
horizons. By contrast, most institutions, such as endowments and pensions, that have longer horizons
and possess greater flexibility to re-allocate capital across asset classes are subject to governance
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mechanisms– themselves a response to informational and agency frictions– that limit the speed of
any such capital movement. In combination, we believe that a model with fast-moving specialists and
slow-moving generalists is a tractable, reduced-form way to capture real-world arbitrage frictions.

In this paper, we focus on a “medium-run”equilibrium in which the parameters governing market
structure (qA, qB, and k) are regarded as fixed and exogenously given. However, one could extend the
model to endogenize the market structure. In the resulting “very long-run”equilibrium, qA, qB, and
k would adjust so that A specialists, B specialists, and generalists all have the same expected utility
in the long-run.6

Fast-moving A-specialists and B-specialists have mean-variance preferences over 1-period portfolio
log returns. Thus, their demands are given by

bA,t = τ
Et [rxA,t+1]

V art [rxA,t+1]
, (22)

and

bB,t = τ
Et [rxB,t+1]

V art [rxB,t+1]
. (23)

Since they only rebalance their portfolios every k periods, slow-moving generalist investors have
mean-variance preferences over their k-period cumulative portfolio excess return. Defining rxA,t→t+k ≡∑k

i=1 rxA,t+i and rxB,t→t+k ≡
∑k

i=1 rxB,t+i as the cumulative k-period returns from t to t + k on A
and B, the k-period portfolio excess return of generalists who are active at t is7

rxdt,t→t+k = dA,t × rxA,t→t+k + dB,t × rxB,t→t+k. (24)

Thus, generalist investors who are active at time t choose their holdings of asset A and B, denoted
dA,t and dB,t, to solve

max
dA,t,dB,t

{
Et [rxdt,t→t+k]− (2τ)−1 (V art [rxdt,t→t+k])

}
. (25)

This implies that

[
dA,t

dB,t

]
=

τ

1−R2(k)AB

 Et[rxA,t→t+k]
V art[rxA,t→t+k]

− β(k)B|A
Et[rxB,t→t+k]
V art[rxB,t→t+k]

Et[rxB,t→t+k]
V art[rxB,t→t+k]

− β(k)A|B
Et[rxA,t→t+k]
V art[rxA,t→t+k]

 , (26)

where, for example, β(k)B|A is the coeffi cient from a linear regression of rxB,t→t+k on rxA,t→t+k and R
2(k)

AB

is the goodness of fit from this regression.8

6For instance, one could assume that A and B specialists must pay a cost to set up a specialized, fast-moving fund
and that generalists must pay a cost in order to adjust more quickly. qA, qB , and k would then need to adjust so that
(i) investors expect to earn the same long-run Sharpe ratio, net of costs, from all three structures and (ii) generalists’
marginal benefit from adjusting their portfolios more frequently equals the marginal cost of more frequent adjustment.

7Formally, this means we assume that slow-moving generalists re-invest all capital initially allocated to the A market
(B market) in the A market (B market) over their k-period investment horizon. Also, our implicit log-linearization of
the portfolio return omits the second-order Jensen’s inequality adjustments familiar from Campbell and Viceira (2002).
However, in the case of low-volatility fixed-income instruments, these adjustments are quantitatively small and do not
alter the core economic intuition of the model.

8We obtain similar results if we alter equation (25) to reflect the fact that the cumulative return from rolling over an
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Equation (26) says that, all else equal, generalist investors allocate more capital to market A
when asset A becomes more attractive from a narrow risk-reward standpoint (i.e., dA,t is increasing
in Et[

∑k
i=1 rxA,t+i]/V art[rxA,t→t+k]). Further, assuming B and A co-move positively (β(k)B|A > 0),

generalists allocate less capital to market A when asset B becomes more attractive from a risk-reward
standpoint (i.e., dA,t is decreasing in Et[

∑k
i=1 rxB,t+i]/V art[rxB,t→t+k]). In this way, the response

of generalist investors transmits supply shocks in the B market to the A market, promoting cross-
market integration over time. Cross-market capital flows become more responsive to differences in
risk-reward between markets when the two assets are closer substitutes (i.e., when R2

(k)

AB is higher).
In the limit as the two assets become perfect substitutes, R2

(k)

AB approaches 1 and generalist investors
become extremely aggressive in exploiting any cross-market pricing differences.

2.2.3 Equilibrium yields

In market A at time t, there is a mass qA of fast-moving specialists, each with demand bA,t, and a
mass (1− qA − qB) k−1 of active slow-moving generalists, each with demand dA,t. These investors must
accommodate the active supply, which is the total supply of sA,t less any supply held off the market
by inactive generalist investors, (1− qA − qB) k−1

∑k−1
j=1 dA,t−j . Thus, the market-clearing condition

for asset A is

Specialist

demand︷ ︸︸ ︷
qAbA,t +

Active generalist

demand︷ ︸︸ ︷
(1− qA − qB)k−1dA,t =

Total bond

supply︷︸︸︷
sA,t −

Inactive generalist

holdings︷ ︸︸ ︷
(1− qA − qB)(k−1

∑k−1

i=1
dA,t−i). (27)

The market-clearing condition for asset B is analogous.
We conjecture that equilibrium yields and generalist demands are linear functions of a state vector,

xt, that includes the steady-state deviations of the short-term interest rate, the default realization, the
supply of asset A, the supply of asset B, inactive generalist holdings of asset A, and inactive generalist
holdings of asset B. Formally, we conjecture that long-term yields in market A and B are

yA,t = αA0 +α′A1xt, (28)

yB,t = αB0 +α′B1xt, (29)

and that the demands of slow-moving generalists are

dA,t = δA0 + δ′A1xt, (30)

dB,t = δB0 + δ′B1xt, (31)

investment at the short-rate for k periods,
∑k−1
i=0 rt+i, is unknown at time t. As in Campbell and Viceira (2001), this adds

an I-CAPM-like hedging motive for holding long-duration assets that have high excess returns when
∑k−1
i=0 rt+i turns out

to be lower than expected. Formally, this means that generalists solve maxdA,t,dB,t
{
Et [rP,t→t+k]− 1

2τ
(V art [rP,t→t+k])

}
where rP,t→t+k = (

∑k−1
i=0 rt+i) + dA,t × (

∑k
i=1 rxA,t+i) + dB,t × (

∑k
i=1 rxB,t+i). The solution takes the same form as

(26), replacing Et[
∑k
i=1 rxA,t+i] with Et[

∑k
i=1 rxA,t+i]− τ

−1 Covt[
∑k
i=1 rx

A
t+i,

∑k−1
i=0 rt+i] and simiilarly for asset B.
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where the 2 (1 + k)× 1 dimensional state vector, xt, is given by

xt= [rt−r, zt−z, sA,t−sA, sB,t−sB, dA,t−1−δA0, · · · , dA,t−(k−1)−δA0, dB,t−1−δB0, · · · , dB,t−(k−1)−δB0]
′.

(32)
These assumptions imply that the state vector follows an AR(1) process

xt+1 = Γxt + εt+1, (33)

where the transition matrix Γ depends on generalist demands.
As we show in the Internet Appendix, equilibrium yields take the same basic form as in (17) with

only specialist investors. For market A, the yield is given by

yA,t =

Expected future short rates︷ ︸︸ ︷{
r +

(
1− θA

1− ρrθA

)
(rt − r)

}
(34)

+

Unconditional term premia︷ ︸︸ ︷[
(qAτ)−1 V

(1)
A (sA − (1− qA − qB) δA0)

]

+

Conditional term premia︷ ︸︸ ︷[
(qAτ)−1 V

(1)
A

(
1−θA

1−θAρsA
(sA,t − sA)

− (1− θA) (1− qA − qB) k−1
∑∞

i=0 θ
i
AEt[

∑k−1
j=0(dA,t+i−j − δA0)]

)]
,

where V (1)A = V art [rxA,t+1] is the equilibrium variance of 1-period excess returns on asset A. The
yield for asset B has an extra term relating to expected future defaults, but is otherwise similar

yB,t =

Expected future short rates︷ ︸︸ ︷{
r +

(
1− θB

1− ρrθB

)
(rt − r)

}
+

Expected future default losses︷ ︸︸ ︷{
z +

1− θ
1− ρzθ

ρz (zt − z)
}

(35)

+

Unconditional term/credit premia︷ ︸︸ ︷[
(qBτ)−1 V

(1)
B (sB − (1− qA − qB) δB0)

]

+

Conditional term/credit premia︷ ︸︸ ︷
(qBτ)−1 V

(1)
B

[
1−θB

1−θBρsB
(sB,t − sB)

− (1− θB) (1− qA − qB) k−1
∑∞

i=0 θ
i
BEt[

∑k−1
j=0(dB,t+i−j − δB0)]

]
.

Although equations (34) and (35) show that yields in markets A and B take a similar algebraic form,
the risk premia in the two markets will not be the same because of the different risks that market
specialists must bear in equilibrium.

As explained further in the Internet Appendix, solving the model involves finding a solution to a
system of 8k polynomial equations in 8k unknowns. Specifically, we need to determine the way that
equilibrium yields and active generalist demand in markets A and B respond to shifts in asset supply
in A and B: this generates 8 unknowns. We also need to determine how equilibrium yields and active
generalist demand in A and B respond to the holdings of inactive generalists: this generates 8 (k − 1)

unknowns.
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As in the single-asset case, in the presence of supply shocks, a solution only exists if investors are
suffi ciently risk tolerant (i.e., for τ suffi ciently large). And, there can be a multiplicity of equilibrium
solutions. However, as above, there is a unique solution that has well-behaved limiting behavior. And,
as we show below, this solution delivers comparative statics that accord with common sense.

What is the economic intuition for the multiplicity of equilibria? In our two-asset model with
slow-moving investors, there are three separate forces that give rise to equilibrium multiplicity:

1. Since specialists have short-horizons, a steeply-downward sloping demand curve creates a self-
fulfilling form of discount rate risk for specialists, just as in the single-asset model. However,
the relevant and well-behaved solution features a smaller equilibrium response of A yields to A
supply shocks, and similarly for asset B. As above, the solutions featuring a larger response to
supply shocks explode in the limiting case where supply risk vanishes.

2. Although generalists have longer investment horizons than specialists, their investment horizons
are still shorter than the maturity (perpetual) of the A and B assets. Since generalists are
concerned about the supply risk associated with cross-market arbitrage, the degree of equilibrium
segmentation between the A and B can be self-fulfilling. For instance, if yields in market B are
insensitive to shocks to the supply of A (and vice versa), cross-market arbitrage becomes very
risky for generalists. Hence, generalists will not aggressively integrate markets, making the
low sensitivity of B yields to A supply shocks self-fulfilling. Conversely, if generalists behave
as if markets are highly integrated, then cross-market arbitrage becomes less risky and, yields
in B will be more sensitive to A supply shocks (and vice versa). However, the relevant and
well-behaved solution always features more aggressive cross-market arbitrage and, thus, tighter
cross-market integration. The solutions with weak cross-market arbitrage explode in the limit
where supply risk vanishes: to induce generalists to absorb a A supply shock, the yields in B
must drop massively in response to a tiny rise in the supply of A.

3. The final source of multiplicity stems from the way that active generalists and, therefore, bond
yields react to the holdings of inactive generalists. In the unique, well-behaved equilibrium, active
generalists reduce their holdings less than one-for-one in response to abnormally large holdings
of inactive generalists. As a result, large holdings of inactive generalists reduce equilibrium
yields. However, there are also solutions in which active generalists “overreact”to the holdings
of inactive generalists, reducing their holding more than one-for-one. This can lead to situations
where large holdings of inactive generalists actually raises equilibrium yields. This solution
behaves oddly in the limit where the number of generalists grows vanishingly small, with a tiny
number of active generalists taking extremely large bets.

We solve this system of polynomial equations numerically in Python using the Powell hybrid
algorithm. This algorithm performs a quasi-Newton search to find roots of a system of nonlinear
equations starting from an initial guess vector. To find all of the roots, we apply this algorithm by
sampling over 10, 000 different initial conditions. As discussed above, we restrict attention to those
solutions where active generalists reduce their holdings less than one-for-one in response to abnormally
large holdings of inactive generalists. Of these, we focus on the single solution where the price of A
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(B) is less sensitive to shocks to the supply of A (B) and is more sensitive to shocks to the supply of
B (A).9

2.3 Defining market integration

What do we mean by “market integration”? We define markets as being integrated in the short-run
if, at each date, conditional risk premia in both markets reflect the same conditional prices of factor
risk. For example, the pricing of interest rate risk is conditionally integrated across markets if, at
each date, the expected return per unit of exposure to short-rate shocks is the same in markets A and
B. Similarly, we will say that markets are integrated in the long-run when average, or unconditional
risk premia in both markets reflect the same unconditional prices of risk. Unconditional integration
is therefore a weaker form of market integration than conditional integration.

Note that, in our model, market integration has nothing to do with the speed by which fundamental
cash flow news is reflected in asset prices. In our model, fundamental cash flow news is reflected
instantaneously in both markets. To see this, consider the terms in curly brackets in equations (34)
and (35) above. Both A and B share exposure to news about changes in future short rates and this
news is reflected identically in their yields.

In our model, the degree of market integration depends on which investors can bear risk at different
horizons and is driven by two parameters: (1− qA − qB) and k. The first parameter, (1− qA − qB),
is the population share of generalists. This parameter determines the degree of long-run integration
between markets. For instance, if (1− qA − qB) ≈ 1, markets will be well integrated in the long-run
even if k is large. The second parameter, k, indexes the speed with which generalist capital can
flow between markets. Thus, k determines the degree of short-run integration. Markets are perfectly
segmented if (1− qA − qB) = 0 or k →∞. If either of these conditions holds, the two markets operate
independently of each other.

Formally, collect all of the 1-period returns in a vector rxt+1 and the asset supplies in a vector st.
Letting rxMt,t+1 = s′trxt+1, markets are integrated in the short-run if

Et [rxt+1] = τ−1V art [rxt+1] st (36)

= βt [rxt+1, rxMt,t+1]Et [rxMt,t+1]

where βt [rxt+1, rxMt,t+1] = V art [rxt+1] st/ (s′tV art [rxt→t+j ] st) and Et [rxMt,t+1] = s′tEt [rxt+1]. In
other words, markets are integrated in the short-run if, at each date, a conditional-CAPM based on
the current market portfolio (rxMt,t+1 = s′trxt+1) prices both the A and B assets. In our model,
markets are integrated in the short-run if and only if (1− qA − qB) = 1 and k = 1.10

9Specifically, we select solution vectors that satisfy the restrictions −1 <
∑k−1
i=1 δA1[dA,t−i] < 0 and −1 <∑k−1

i=1 δB1[dB,t−i] < 0, where δA1[dA,t−i] denotes the element of the δA1 solution vector that captures the way that
active generalists’demands for A responds to inactive generalists’holdings of A in period t− i. We then pick the single
solution among the remaining with the smallest value of αA1[sA] and αB1[sB ].
10 In our setting, a conditional-CAPM holds if and only if the conditional prices of factor risk are the same in both

markets at each date. To see this, write rxA,t+1 − Et [rxA,t+1] = φ′Aεt+1 where εt+1 are the (four) factor innovations
and φA are the factor loadings for asset A. Proceeding similarly for market B and stacking these equations, we have
rxt+1 − Et [rxt+1] = Φεt+1 where Φ = [φA φB ]

′. Therefore, when (1− pA − pB) = 1 and k = 1, we have Et [rxt+1] =
τ−1V art [rxt+1] st = Φ

(
τ−1ΣΦ′st

)
= Φλt where λt =

(
τ−1ΣΦ′st

)
are the (four) conditional prices of factor risk at

time t. By contrast, when (1− pA − pB) 6= 1 and k 6= 1, there is no conditional CAPM that will price the 1-period
returns on the A and B assets.
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Similarly, markets are integrated in the long-run if

E [rxt→t+k] = τ−1V art [rxt→t+k]E [st] (37)

= β[rxt→t+k, rxM,t→t+k]E[rxM,t→t+k],

where β[rxt→t+k, rxM,t→t+k] = V art [rxt→t+k]E [st] / (E [s′t]V art [rxt→t+k]E [st]) and E[rxM,t→t+k] =

E [s′t]E [rxt→t+k]. In other words, markets are integrated in the long-run if the same unconditional-
CAPM based on the average market portfolio (rxM,t→t+k = E [s′t] rxt→t+k) prices both the A and B
assets on average. In our model, markets are integrated in the long-run if and only if (1− qA − qB) = 1,
irrespective of k.

Economically, the reason markets are not integrated is because cross-market arbitrage is risky for
generalists, much like in Gromb and Vayanos (2002). Unless (1− qA − qB) = 1 and k = 1, short-run
integration fails because generalists demand compensation for the risk associated with the short-run
trades they place to exploit the cross-market pricing differences that arise following supply shocks.
Similarly, unless (1− qA − qB) = 1, long-run integration fails because generalists are engaged in a
risky “cross-market arbitrage” trade even in the long run and must be compensated for its risks.
Specifically, when (1− qA − qB) < 1, generalists will not hold the market portfolio in the steady-state
(i.e., E [dA,t] 6= E [sA,t] and E [dB,t] 6= E [sB,t]). Relative to the market portfolio, generalists’portfolio
will incorporate a tilt that reflects cross-market pricing differences. And, generalists will demand
compensation for bearing the risks stemming from this portfolio tilt.11 Thus, in the general case
where (1− qA − qB) < 1 and k > 1, we obtain neither short-run nor long-run market integration.

How should one think about the relevant values for (1− qA − qB) and k empirically? Clearly, the
relevant values of (1− qA − qB) and k depend crucially on the two markets being considered. For
instance, U.S. Treasury and U.S. Agency bonds are often overseen by the same portfolio manager
within a large institution. As a result, we would expect (1− qA − qB) to be near 1 and k to be low,
so the two markets would be tightly integrated even in the short-run: Treasury supply shocks would
be rapidly transmitted to Agency debt markets and vice versa. However, in other cases, such as U.S.
Treasury bonds and corporate bonds, or the fixed-income market and the equity market, it is natural
to think that (1− qA − qB) is well below 1 and that k > 1. Although different asset classes are often
held by the same generalists– e.g., pension funds or endowments, most of these investors are quite
slow to reallocate capital.

3 Market integration following large supply shocks

How do prices adjust across different asset markets following large supply shocks? Here we use our
model to explore asset price dynamics following shocks. We are interested in understanding how these
dynamics depend on the model’s underlying parameters, especially (1− qA − qB) and k.

Table 1 lists the illustrative set of parameter values that we use in these numerical exercises. For
the purposes of these illustrations, it may be helpful to think of market A as the U.S. Treasury market

11 In the symetric case where qA = qB and sA = sB , we have δB0 > δA0. The reason is that the B asset is riskier than
the A asset since the former is exposed to cash-flow risk. As a result, B-specialists will hold less of the B-asset than
A -specialists hold of the A-asset. Relative to the market portfolio, this means that generalists will be overweight the B
asset and underweight the A asset.
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and market B as the corporate bond market. We use annualized values so that one period in our
numerical exercises corresponds to one year. The total average supply of assets in each market is
normalized to be one unit.

We begin our analysis by choosing k = 4 years and qA = qB = 45%, but later show comparative
statics for these parameters. Based on these values, our simulations assume that most of the capital
in each market is operated by specialists, with 10% being controlled by flexible generalist investors,
one-fourth of whom re-allocate their portfolios each year. Our choice of k = 4 is somewhat arbitrary,
but we think of this as capturing the empirically relevant case of pension funds or endowments who
typically review their asset allocations on an annual or biannual basis and, even then, only sluggishly
adjust their portfolios towards some evolving target.

3.1 Unanticipated supply shocks

Baseline example We first consider the impact of an unanticipated supply shock that increases
the supply of asset A (Treasuries) by 50% in period 10. To make the intuition as stark as possible,
we focus on the case of a near-permanent supply shock and set ρsA = 0.999. Specifically, Figure 1
illustrates the price impact of this shock, plotting the evolution of expected annual returns and bond
yields in market A (Treasuries) and market B (corporate bonds). Figure 2 shows how specialists and
generalist investors adjust their holdings in response to the shock. Finally, Figure 3 plots the yield
spread between the B asset (corporate bonds) and the A asset (Treasuries).

Prior to the supply shock in period 10, Figure 1 shows that the risk premium in market B (corporate
bonds) is 0.64% per annum versus a risk premium of 0.48% in market A (Treasuries). The additional
risk premium of 0.16% obtains because market B (corporate bonds) is subject to default risk, which
exposes investors to an additional source of cash flow risk and amplifies the supply risk facing corporate
bond holders. The initial yield in market B is 4.84% per annum versus a yield of 4.48% in market A.
The steady-state yield in market A equals the average short-term riskfree rate of r = 4.00% plus the
steady-state risk premia of 0.48%. The 0.36% steady-state yield spread between the B and A markets
equals the difference in steady-state risk premia of 0.16% plus the market B’s expected default losses
of z = 0.20% per annum.

When the supply shock hits the market A in period 10, expected returns and yields in both markets
react immediately. Figure 1.A shows that expected returns in market A overreact and reach a peak of
0.70% before ultimately falling back to a long-run level of 0.64%. The overreaction of expected returns
for asset A illustrates a general property of models that feature slow-moving capital such as Duffi e
(2010), namely, the relative steepness of short-run demand curves and relative flatness of long-run
demand curves.

In contrast, Figure 1.A shows the key novel implication of our model: expected returns in market
B actually underreact to the shock to the supply of A, rising slowly from 0.64% to a new long-run
level of 0.72%. Why does market A overreact to the supply shock while market B underreacts? Figure
2.A shows how the positions of different market participants evolve over time. Following the initial
supply shock in market A, both specialist demand in A (bA,t) and active generalist demand in A (dA,t)
spike upwards. As a partial hedge against their increased holdings of A, active generalists reduce
their holdings in market B (dB,t). This reduction in generalists’B holdings is motivated by a need
to reduce the common short-rate risk (and supply risk) across their holdings in both markets. To fill
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the void left by the generalists, specialists in market B must hold more of the B asset (bB,t). As time
passes and more generalists reallocate their portfolios in response to the shock, the active demands
for A (bA,t and dA,t) decline slowly towards their new long-run levels.

In our model, the dynamics of bond risk premia are tied to the dynamics of the “active supply”of
A and B that must be absorbed by active market participants each period. By active supply we mean
the total supply less the assets that are being held off the market by inactive generalists, corresponding
to the right-hand side of equation (27). The evolution of the active supplies is shown in Figure 2.B.
The dynamics of active supply mirror those for bond risk premia shown in Figure 1.A. The initial
supply shock to A in period 10 immediately increases the active supply in A but has no immediate
effect on the active supply of B. This is because slow-moving generalists have yet to reduce their
holdings in market B. Over the ensuing periods, generalists gradually increase their holdings of A
and reduce their holdings of B. Therefore, the active supply in A gradually declines while the active
supply in B gradually rises.

Recall that k = 4 in this example, so by period 13 all generalist investors have re-allocated their
portfolios in response to the supply shock in period 10. However, the gradual adjustment of gen-
eralists gives rise to modest echo effects after period 13, generating a series of damping oscillations
that converge to the new long-run equilibrium. As in Duffi e (2010), these oscillations arise because
generalists who reallocate soon after the supply shock hits take large opportunistic positions. These
large positions temporarily reduce the active supply of A (and increase the supply of B) and then
need to be absorbed in later periods.

In market A, conditional risk premia are the sum of risk premia related to interest rate risk,
the supply of A, and the supply of B. Changes in total risk premia are driven primarily by the
pricing of interest rate risk. Conditional risk premia in market B can be similarly decomposed into
its components, which also include a premium for cash flow risk. Following the supply shock, the
premia associated with interest rate risk differs significantly between the two asset markets. As
generalists react to this pricing discrepancy, the difference in interest rate risk premia between the two
markets gradually narrows. However, the difference does will not vanish in the long run because of
the permanent risks associated with cross-market arbitrage.

Because markets are partially segmented, large supply shocks can have surprising effects on seem-
ingly unrelated risk premia in our model. For example, because it triggers significant cross-market
capital flows, the shock to the supply of asset A (Treasuries) actually raises the risk premium that
corporate bond investors earn for bearing default risk in market B (corporate bonds), even though
Treasury bonds themselves have no exposure to default risk. In this way, our model may shed light
on the otherwise puzzling finding that central bank purchases of long-term government bonds appear
to have reduced credit risk premia (Krishnamurthy and Vissing-Jorgensen [2011]).

Figure 1.B shows the reactions of bond yields in both markets. The overreaction of the A market
and the underreaction of the B market is more muted in yield space than in risk premium space. This
is natural since bond yields reflect weighted averages of future bond risk premia.12 Market A yield
overreacts by 11% of the total long-run impact and market B yield underreacts by 19% of the total
long-run impact.

12Specifically, generalizing (16) we have yA,t = (1− θA)
∑∞
i=0 θ

i
AEt[rt+i + τ−1V

(1)
A bA,t+i] and yB,t =

(1− θB)
∑∞
i=0 θ

i
BEt[rt+i + zt+i+1 + τ−1V

(1)
B bB,t+i].
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We can assess the evolution of market segmentation over time by examining the dynamics of yield
spreads. Figure 3 shows that the yield spread between the two markets, yB − yA, compresses due to
the increased supply of asset A. However, because yield A overreacts and yield B underreacts, the
yield spread overreacts even more (31%) than the A market yield.

Comparative statics In Table 2, we perform a variety of comparative statics exercises to illustrate
how the price dynamics following supply shocks depend on the parameters of our model. We focus on
the parameters governing market structure: the population share of generalist investors (1− qA − qB)
and the frequency at which generalists can rebalance (k).

For a given set of model parameters, we summarize the impact of the supply shock on both the
A and B markets by listing the yields and expected annual returns in (i) the period before the shock
arrives (labeled as “pre-shock level”), (ii) the period when the shock arrives (labeled as “short-run
∆”), and (iii) in 2k periods after the shock arrives (labeled as “long-run ∆”).

We define the degree to which bond yields over- or underreact as the difference between the short-
run change and the long-run change, expressed as a percentage of the long-run change13

%Over-Reaction(y) ≡ (yt − yt−1)− (yt+2k − yt−1)
(yt+2k − yt−1)

.

Our measure of over-reaction for risk premia, %Over-Reaction(E [rx]), is defined analogously. Ac-
cording to this definition, using our baseline set of parameters, yields in market A overreact by ap-
proximately 11%, while yields in market B underreact by 19%.

The second row in Table 2 shows that, if market participants are more risk tolerant, this reduces the
price impact of the supply shock on both market A and market B. Changing investor risk tolerance
has a similar impact on the short- and long-run response of yields to shocks. Thus, the degree of
overreaction or underreaction in each market is unchanged in percentage terms.

We next change the mix between generalist and specialist investors. qA and qB indicate the relative
fraction of specialists in market A and B, respectively. In row 3, we set qA = qB = 0.5 so there are
no generalists and the two markets are completely segmented: a supply shock in the market A is not
transmitted to the market B and vice versa.

In contrast, in the case of many generalists and few specialists, the markets are well integrated, so
that both the A and B markets overreact to a supply shock that directly hits only the A market. In
this case, shown in row 4 which sets qA = qB = 0.2, the two markets behave as essentially one and the
result is similar to the single-market case with slow-moving capital studied in Duffi e (2010).

We next change the mix between market A specialists and market B specialists, holding fixed the
overall mix between generalists and specialists. Row 5 of Table 2 shows that if we hold the total
number of specialists the same at qA + qB = 0.9, then as we increase the proportion of specialists in B
and decrease the proportion of specialists in A, we get more over-reaction in A. The B market is only
modestly affected by this change because the supply shock is primarily being absorbed by generalists

13Since our supply shock is not quite permanent, we subtract off the constant (1− ρ2kSA)/ρ
2k
SA

from %Over-Reaction to
ensure that our measure is zero the case of perfectly conditionally-integrated (1−pA−pB = k = 1) or perfectly segmented
markets (1 − pA − pB = 0) in which there is no “over-reaction” but only “reaction.”This is because in these limiting
cases we have [(yt − yt−1)− (yt+2k − yt−1)] / [yt+2k − yt−1] =

[
αsAsA,t − αsAsA,tρ2ksA

]
/αsAsA,tρ

2k
sA
= (1−ρ2ksA)/ρ

2k
sA
. For

k = 4 and ρsA = 0.999, this constant is 0.8%.
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anyway.
Recall that k is the number of periods it takes for generalists to fully reallocate their portfolios

and that k = 4 in our base case. In row 6 we instead set k = 2, so half the generalists reallocate their
portfolio each period, and the other half reallocate in the next period. Naturally, this smaller value of
k reduces the over-reaction in market A and the under-reaction in market B. Similarly, when we set
k = 6 in row 7, there is more over-reaction in market A, and more under-reaction in market B.

Note that k also affects the unconditional risk premium that investors earn over the long run.
As we increase k, there are two competing effects on unconditional risk premium. On the one hand,
generalists with longer horizons worry less about a fixed amount of transitory discount rate risk,
leading to a decline in the unconditional price of discount rate risk.14 On the other hand, the steady
state quantity of discount rate risk that investors must bear actually grows with generalist horizons
k.15 As shown in Table 2, the latter effect generally tends to dominate.16 In summary, as we increase
k, supply shocks have a larger impact on conditional risk premia and this increase in supply risk tends
to raise unconditional risk premia.

In row 8, we ask how our results depend on the relative sizes of the A and B markets. Relative
to our base case of two equally sized markets, we find that generalists are better able to integrate a
small market with a larger market. We keep sA + sB = 2 and qA + qB = 0.9, but we now assume that
sA = 5/3 and sB = 1/3 so average supply in market A is 5× that in market B. We also assume that
qA = 0.45× sA and qB = 0.45× sB as in the baseline, which implies qA = 0.75 and qB = 0.15. As in
our baseline, we consider a shock that raises the supply of A by 0.5. Row 8 shows that A over-reacts
less and that B under-react less to the shock than under our baseline. The explanation is that market
B is now much smaller relative to total generalist risk tolerance. As a result, a cross-market arbitrage
position of a given size is better able to keep prices in market B close to those in market B.

Finally, we ask whether the supply shock scenario we have considered has symmetric effects if it is
delivered in market B. Row 9 of the table shows that the answer is yes: the price impact on market A
when the supply shock hits market B is exactly the same as the price impact on market B when the
supply shock hits A. This symmetry of cross-market price impact is natural and is a general property
of our model under certain conditions.17

Row 10 in Table 2 shows that the degree of market integration depends on the amount of default

14Since mean-reverting supply shocks generate negative serial correlation in returns, the variance ratio
V art[rxA,t→t+k]/k will be decreasing in k holding fixed the endogenous parameters that govern the return generating
process. Thus, as in Campbell and Viceira (2002), longer-horizon investors worry less about transitory supply (discount
rate) risk, leading them to take larger positions in risky assets.
15Formally, as we increase k, the endogenous parameters that govern the return generating process are not held fixed.

Since fewer long-horizon investors are active in a given period, the short-term price impact of supply shocks grows,
leading to an rise in the quantity of discount rate risk.
16Formally, let E[rxAt+1] = (pAτ)

−1 (sA − (1− pA − pB) δA0)V (1)
A denote the unconditional risk premium. We have

∂E[rxAt+1]

∂k
= (pAτ)

−1

[
∂V

(1)
A

∂k

(
sA − (1− pA − pB) δA0

)
− V (1)

A (1− pA − pB)
∂δA0
∂k

]

When σ2sA ,σ
2
sB = 0, ∂V

(1)
A /∂k = ∂δA0/∂k = 0 and unconditional risk premia are independent of k. When σ2sA ,σ

2
sB > 0, we

have ∂V (1)
A /∂k > 0 and ∂δA0/∂k > 0. In general, we find that the former effect tends to dominate, so that unconditional

risk premia are increasing in k.
17Specifically, the cross-market price impact is symmetric in expected return space so long as ρsA = ρsB and is

symmetric is yield space so long as ρsA = ρsB and θA = θB .
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risk in market B. As we increase σ2z from row 8 to row 9, we have less long-run and short-run
integration between the two markets, because A and B are more distant substitutes, consistent with
the logic of Wurgler and Zhuravskaya (2002). If B-specific risk is large, then the market with the
shock will have a larger peak because generalists are less willing to integrate the markets. However,
there is not much effect on under-reaction in the market that does not receive the shock.

As we reduce the amount default risk in market B, shocks to the supply of B have a larger price
impact on market A because the two assets are closer substitutes and cross-market arbitrage is less
risky. In the limit when σ2z = 0, the markets would be perfect substitutes and thus perfectly integrated:
conditional risk premia would be identical in the two markets.

3.2 Anticipated supply shocks

We next study asset price dynamics following the announcement of a large future change in asset sup-
ply. As an example of a large pre-announced supply change, consider the Large Scale Asset Purchase
programs initiated by the Federal Reserve between 2008 and 2013. The Fed’s initial announcement
of long-term bond purchases occurred on November 25, 2008, but asset purchases did not begin until
January 2009 and continued in the months thereafter.

To mimic the announcement of a future increase in the supply of asset A, we assume that sA,t
jumps up at some time t and we simultaneously increase the demands of inactive generalist investors
for A such that the active supply of asset A does not change at time t. This means that, unlike the
case of an unanticipated supply shock, it would be possible to clear the market at time t without any
increase in the holdings of A specialists or active generalists. Thus, the only reason that prices change
when a future supply change is announced is because the announcement leads active long-horizon
generalists to opportunistically increase their current holdings of A.

Formally, letting εt [Xt] = Xt−Et−1 [Xt] denote the time t innovation or surprise to some random
process Xt, an anticipated supply shock is defined so that the innovation to the right-hand of equation
(27) is zero when it is announced at time t:

εt [sA,t]− (1− qA − qB) k−1
∑k−1

j=1
εt[dA,t−j ] = 0. (38)

Furthermore, if we vary {εt [dA,t−j ]}k−1j=1 holding fixed
∑k−1

j=1εt [dA,t−j ] = (k/ (1− qA − qB)) εt [sA,t],
we can alter the announced timing of a supply change holding fixed the announced size of the cu-
mulative change. As we discuss shortly, exercises of this sort can be used to evaluate different asset
purchase strategies for a central bank seeking to affect the level of long-term interest rates or for share
repurchasing firm seeking to give boost to its stock price.

We begin with the simple case of the pre-announcement of a one-time, near-permanent jump in
the supply of asset A. Specifically, Figure 4 shows the dynamics of risk premia and bond yields when
k = 4 and market participants learn in period 5 that the supply of asset A will increase by 50% in
period 8. Figure 4.A shows that annual risk premia in market A actually decline slightly after the
announcement in period 5 and before the supply rises in period 8. And risk premia in market A still
jump up when bond supply actually jumps to its new level in period 8. The risk premium in market
B , which is only indirectly affected due to cross-market arbitrage by generalists, rises gradually over
time.
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What drives these dynamics? Upon the announcement, generalists begin to gradually adjust in
the direction of the anticipated shock, buying asset A and selling asset B. Risk premia decline in
market A because A specialists provide temporary liquidity to generalists, planning to replenish their
inventories once the supply shock actually lands.

Figure 4.B shows the evolution of bond yields in response to the anticipated supply shock. Yields
in both market A and market B rise gradually to their new steady-state levels. The yields in market
A underreact by 51% and the yields in market B underreact by 45%. Why do A yields rise gradually
when the supply shock is pre-announced but over-reacted in Figure 1 when the same shock was
unanticipated? First, risk premia in the near future have a larger effect on bond yields than those in
the distant future. Second, risk-premia in the A market are only expected to rise significantly once
the supply actually increases at time 8. In combination, these two facts imply that yields in market
A must rise gradually over time.

Figure 5 shows how the positions of market participants evolve over time in response to this
announced supply increase. Figure 5.A shows that active generalists opportunistically increase their
holdings of A (dA) and decrease their holdings of B (dA) when the shock is announced at time 5.18

The gradual build up of generalist demand in A is responsible for the slight decline in annual A
market risk premia from periods 5 to 7 before the upward jump in period 8. Similarly, the gradual
reduction of generalists’demand for B results in a slow rise in B market risk premia. In contrast
to the generalists, the specialists’demand in market A (bA) decreases initially then increases. This
is because specialists can adjust quickly, and thus they have the ability to front-run the anticipated
change in supply– specialists reduce their portfolio holdings of A just before the positive supply shock
and increase holding of A immediately after the shock.

Figure 6 compares the dynamics of prices in the case of anticipated versus unanticipated increase
in supply. In both cases, the supply of asset A increases by 50% at time 8. In the anticipated case,
this supply increase is pre-announced at time 5, while in the unanticipated case, the shock is not
pre-announced and is a surprise at time 8. Whether or not a shock is anticipated, the long-run impact
on yields and risk premia is the same. However, the short-run effects can be quite different. When
the shock is a surprise, yields and risk premia in the A market overreact more strongly at time 8.
Pre-announcing the supply shock mobilizes slow-moving generalists before the supply of A actually
rises at time 8. This early mobilization reduces the active supply of asset A that must be absorbed
when the shock lands at time 8, damping the overreaction of market A. While introducing a delay
between announcement and the increase in supply limits overreaction, this also lengthens the amount
of time it takes for the full impact to be reflected in prices. This tension may be relevant for central
bankers designing asset purchase programs: allowing for a long period of time between a purchase
announcement and implementation results in less profits for market specialists and, therefore, less
short-term cost of policy implementation. Of course, pre-announcement necessarily delays the desired

18Why do generalists buy A bonds in advance of the supply increase? Generalists have long-horizons (k = 4 in
this example), but can only adjust their portfolios slowly. Although generalists expect A bond yields to rise over the
next 4 periods and, therefore, expect to suffer a capital loss on A bonds, they expect this capital loss to be more
than offset by an increase in income from holding A bonds. As a result, the expected cumulative 4-period excess
return from holding A bonds rises when a future supply increase is announced at t. Formally, since Et [rxA,t→t+4] =
{
∑3
i=0Et[yA,t+i − rt+i]} − {(θA/ (1− θA))Et[yA,t+4 − yA,t]}, this means that change in the first term in curly braces

outweighs the second term in curly braces. Using equation (26), the significant rise in Et [rxA,t→t+4] then translates to
an increase in dA,t and decline in dB,t.
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impact on asset prices.
We can also use the model to describe more complex paths of supply shocks. Consider the effects

of an announcement that asset purchases are going to be made over multiple periods, much like the
Federal Reserve did when it announced in 2013 that it would purchase $40 billion of MBS each month
in QE3. In Figure 7, asset sales are announced in period 5 and carried out from period 6 to 8. Figure
7.A shows that risk premia rise gradually over the period of policy implementation. Figure 7.B shows
that yields also rise gradually over the implementation period from time 6 to 8. In summary, we
observe substantial under-reactions in returns and yields in both markets at the time of the policy
announcement in period 5. An event study during the time of the initial announcement would capture
some of the market reaction, but it could significantly understate the long-run impact.

In Figure 8, we show how generalists and specialist holdings react following the announcement in
period 5 that the supply of A will rise by 50% from period 6 to period 8. Generalists and specialists
both increase their demands for A in order to accommodate the overall increase in supply. Generalists
also reduce their demand for B to partially hedge against their purchase of A. However, this market
integration occurs at a slow pace since only one-fourth of the generalists can reallocate between the
two markets each period. Lastly, specialists in B increase their demand (bB) to fill the gap left by
generalists.

3.3 Temporary supply shocks

Thus far, we have only considered the price impact of permanent supply shocks. However, many
supply shocks may be more temporary in nature. For example, Hanson (2014) shows that shocks to the
effective duration of US mortgage-backed securities have a half-life of just six months, generating highly
transient shocks to the supply of interest rate risk in US fixed income markets. Similarly, presumably
investors did not interpret the Federal Reserve’s initial announcement that it would purchase large
quantities of long-term bonds as a permanent reduction in supply: investors expected Quantitative
Easing to be a temporary policy, generating a temporary supply shock that was expected to revert
over time (Greenwood, Hanson, and Vayanos [2015]).

In Figure 9, we show the impact on bond risk premia of unanticipated shocks to the supply of
asset A which have varying degrees of persistence as governed by ρsA . In Figure 9, the supply shocks
arrives at time 1 and, as above, this experiment assumes that k = 4. Unsurprisingly, when the supply
shock reverts more quickly, the effect on risk premia on both markets decays more quickly over time.
This decaying effect on risk premia simply mirrors the decaying supply shock and would obtain even
if markets were perfectly integrated period by period (i.e., if qA = qB = 0 and k = 1).

More interestingly, Figure 9 shows that slow-moving generalists play a less active role in integrating
markets when the shock is expected to be more temporary. This can be seen most easily by comparing
the ratio of the impact on Et [rxB,t+1] to the impact on Et [rxA,t+1]. Slow-moving generalists trade
less aggressively when shocks are expected to be short-lived because they cannot move quickly enough
to capture the transient difference in expected return between the two markets. This more muted
cross-market arbitrage response reduces the impact of the supply shock on the B market. As a result,
in a world with slow-moving capital, temporary supply shocks have a more localized impact on prices
than more persist shocks.
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4 Multiple assets per market

We now explore how the main results of our model carry over to a more complex setting in which there
are multiple risky assets trading in each market. Subject to some mild conditions which guarantee
that cross-market arbitrage remains risky, we show that the intuitions from the two risky asset model
carry over to this richer setting. Specifically, we show that a particular conditional CAPM prices all
assets in the first market and that a different conditional CAPM prices all assets in the second market.
These two market-specific pricing models are linked over time by the cross-market arbitrage activities
of slow-moving asset allocators, who take steps to equalize the price of risk in the two markets. Much
like before, the degree of market integration depends on the risks faced by cross-market arbitrageurs.

4.1 Markets and assets

Suppose there are N bonds in market A, denoted A1, A2, ..., AN . As above, we assume that the
A-market bonds are default—free and are only exposed to interest rate risk.19 However, the bonds
have different durations. Specifically, asset An has duration DAn . As in equation (2), the log excess
return on bond An over the short-term interest rate from time t to t+ 1 is

rxAn,t+1 ≈

DAn︷ ︸︸ ︷
1

1− θAn
yAn,t −

DAn−1︷ ︸︸ ︷
θAn

1− θAn
yAn,t+1 − rt, (39)

where θAn = 1− 1/DAn .
We also assume that there are N defaultable bonds in market B, denoted B1, B2, ...., BN . The

return on bond Bn from time t to t+ 1 takes the form

1 +RBn,t+1 = (1− Zt+1)ψBn (1− UBn,t+1)
(δBNPBn,t+1 + CBn)

PBn,t
, (40)

where Zt+1 is a default process common to all bonds in the B market, ψBn is the exposure of perpetuity
Bn to this systematic default factor, and UBn,t+1 is an idiosyncratic default process that is specific to
bond Bn. Therefore, the log excess return on bond Bn from time t to t+ 1 is

rxBn,t+1 ≈

DBn︷ ︸︸ ︷
1

1− θBn
yBn,t −

DBn−1︷ ︸︸ ︷
θBn

1− θBn
yBn,t+1 − ψBnzt+1 − uBn,t+1 − rt, (41)

19 In order to have perpetuities with different durations, we introduce a set of “geometrically decaying perpetuities.”
Specifically, consider a perpetuity that promises to pay a decaying stream C, δC, δ2C, δ3C, ... where (1− δ) ∈ [0, 1]
denotes the geometric decay rate. Thus, δ = 0 corresponds to 1-period debt and δ = 1 is a consol bond. Assuming a
yield of YL,t, the price of this security is PL,t =

∑∞
j=1 (1 + YL,t)

−j δj−1C = C/ (1 + YL,t − δ) which implies a Macaulay
duration of −∂pL,t/∂yL,t = (1 + YL,t) / (1 + YL,t − δ). Suppose the perpetuity’s price is PL = 1 and its yield is Y L in
the steady-state. This implies a coupon of C = 1 − δ + Y L and a steady-state duration of −∂pL,t/∂yL,t = (C + δ) /C
which is increasing in δ.
Using the same steps as above, the log return on the decaying perpetuity from t to t + 1 is approximately rL,t+1 =

log[(δPL,t+1 + C) /PL,t] ≈ (1− θ)−1 yL,t − θ (1− θ)−1 yL,t+1. where θ = δ/ (δ + exp (c− pL)). Since the steady-state
price is par, we have θ = δ/ (δ + C). Thus, bond duration is −∂pL,t/∂yL,t = (1− θ)−1 = (δ + C) /C which corresponds to
the Macaulay duration when the perpetuity is trading at par. Thus, we assume that security An has a geometric decay rate
if δAn and a coupon of CAn = 1−δAn+Y An , implying a duration ofDAn = (1− θAn)−1 =

(
1 + Y An

)
/
(
1 + Y An − δAn

)
.
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where θBn = 1−1/DBn and uBn,t+1 = − ln (1− UBn,t+1). Given this formulation for default losses it is
perhaps most natural to think of bond Bn as corresponding to a portfolio of defaultable bonds, albeit
one that imperfectly diversified and is therefore exposed to idiosyncratic default losses. For instance,
one could think of Bn as representing a portfolio of all bonds in a certain industry with some specified
credit rating and some specified maturity.

We assume that the processes for the short rate rt and for the common default process zt are as
in equations (7) and (8) earlier. We assume that idiosyncratic default process for bond Bn follows

uBn,t+1 = uBn + ρu
Bn

(uBn,t − uBn) + εuBn ,t+1. (42)

We assume the net supplies that investors must hold in the A assets are

sA,t = sA0 + sA1 × sA,t (43)

where sA,t follows
sA,t+1 = ρsAsA,t + εsA,t+1. (44)

Similarly, the net supplies that investors must hold in the B assets are

sB,t = sB0 + sB1 × sB,t,

where where sB,t follows
sB,t+1 = ρsBsB,t + εsB ,t+1. (45)

We assume that εr,t+1, εz,t+1, εsA,t+1, εsB ,t+1, εuB1 ,t+1, εuB2 ,t+1, ...., εuBN ,t+1 are mutually orthogonal.

4.2 Market participants

As above, there are three-types of investors, each with risk tolerance τ . A-specialists are present in
mass qA, B-specialists are present in mass qB, and generalists are present in mass (1− qA − qB).

Fast-moving A-specialists are free to adjust their holdings of all assets in the A market (and the
riskless short-term asset) each period, but cannot hold the B assets. Let bAn,t denote the demand
of A specialists for asset An and let bA,t denote the N × 1 vector of their holdings of each of the N
assets in market A. Collecting the excess returns on these N assets in a vector, the excess return on
A-specialists portfolio is thus rxAt,t+1 = (bA,t)

′rxA,t+1.
A-specialists have mean-variance preferences over 1-period portfolio returns and solve

max
bA,t

{
Et [rxAt,t+1]− (2τ)−1 V art [rxAt,t+1]

}
= max

bA,t

{
b′A,tEt [rxA,t+1]− (2τ)−1 b′A,tV art [rxA,t+1] bA,t

}
.

Thus, the demands of A-specialists are given by

bA,t = τ (V art [rxA,t+1])
−1Et [rxA,t+1] .

Since this implies V art [rxAt,t+1] = τEt [rxAt,t+1], we have

Et [rxA,t+1] = τ−1V art [rxA,t+1] bA,t = βt [rxA,t+1, rxAt,t+1]Et [rxAt,t+1]
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where βt [rxA,t+1, rxAt,t+1] = Covt [rxA,t+1, rxAt,t+1] /V art [rxAt,t+1]. Thus, the 1-period returns on
all A-market assets will be priced by a local conditional-CAPM that is specific to the A-market–
i.e., where the relevant “market portfolio” is the time t portfolio of A-market specialists, rxAt,t+1 =

(bA,t)
′rxA,t+1.

Since a symmetric analysis hold for the N assets in market B, we will have two conditional-CAPMs:
one for the assets in market A and another for the assets in market B. The key question is how these
two conditional-CAPMs will be linked together in equilibrium by the cross-market arbitrage activities
of generalist. As above, slow-moving generalists are present in mass 1 − qA − qB. Fraction 1/k of
generalists investors are active each period and choose the portfolios of assets from the A and B

markets that they will hold over the following k periods.

4.3 The risk of cross-market arbitrage

With multiple assets, the key question concerns the risks that generalists face when they undertake
cross-market arbitrage. Note that assets in market A are exposed to exogenous shocks to three state
variables: rt+1, sA,t+1, and sB,t+1. Assets in market B are exposed to exogenous shocks to rt+1, sA,t+1,
and sB,t+1 as well as exogenous shocks to zt+1. In addition, each asset Bn is potentially exposed to
idiosyncratic shocks to uBn,t+1.

An interesting complication arises if generalists are able to freely choose their holdings of the N
assets in market A and the N assets in market B. In this case, it may be possible to use A assets
to construct a “factor-mimicking portfolio” that is only exposed to shocks to rt+1 and to construct
a similar factor-mimicking portfolio using only B assets. If this is possible then, unless the risks
associated with shocks to rt+1 are being priced the same in the A and B markets at each date,
generalists will have a riskless arbitrage opportunity.

In general, it is possible to construct (nearly-perfectly) factor-mimicking portfolios if both A and
B markets contain many redundant assets. But even if it is possible to construct factor-mimicking
portfolios in both A and B markets, this may not be feasible for slow-moving generalists. For instance,
generalists may lack the expertise to construct these complicated (long-short) mimicking portfolios or
may face institutional frictions that make this infeasible. We can distinguish between at least three
cases:

1. Case 1: It is possible to construct factor-mimicking portfolios in both markets A and B for
each of the common risk factors.

2. Case 2: It is not possible to construct factor-mimicking portfolios in this way.

3. Case 3: It is possible to construct factor-mimicking portfolio in this way, but generalists are
not capable of doing so: generalists function as coarse asset-allocators as opposed to granular
cross-market arbitrageurs.

We discuss each of these three cases in greater detail.

Case 1: It is possible to construct factor-mimicking portfolios To begin, suppose that the
B assets are not exposed to idiosyncratic shocks. As explained in the Internet Appendix, k-period
returns in this case will satisfy a linear factor model with 2 (1 + k) independent factors (recall that the
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model’s state vector, xt, contains 2 (1 + k) elements). Specifically, there are 2 factors that correspond
to innovations to fundamentals, rt and zt, and k factors corresponding to innovations to each of the
supply factors at different horizons.20

Suppose generalists can freely choose positions in all 2N assets where N ≥ 2 (1 + k) and all assets
are non-redundant (their factor loadings must be linearly independent). In this case, it will be possible
to construct factor-mimicking portfolios for shocks to rt, zt, sA,t, and shocks to sB,t using only A assets
and using only B assets.21 As a result, the active generalists will work to perfectly integrate factor
pricing between the A and B markets in the short-run. Intuitively, because cross asset-class arbitrage
is riskless in this case, the same risk factor prices will always prevail in all asset markets– i.e., the two
markets will perfectly integrated in the short run (conditionally) and the long run (unconditionally).
Of course, because generalists are slow-moving, the risk factor prices that prevail in both the A and B
markets will be subject to slow-moving capital effects, e.g., risk factor prices will overreact to shocks
to the supply of that risk factor.

Even if the B market assets are subject to idiosyncratic default shocks, this outcome will obtain
in the limit where we hold constant the total supply of A and B assets but allow N → ∞. In this
case, investors’portfolios will become arbitrarily granular, implying that it will be easy for generalist
investors to diversify away these idiosyncratic shocks when constructing factor-mimicking portfolios.
This is essentially the intuition behind Ross’s (1976) Arbitrage Pricing Theory. Thus, if generalists
can freely choose positions in all 2N assets, Case 1 will be a good approximation in the case when N
is large relative to the number of common risk factors in the A and B markets.

Case 2: It is not possible to construct factor-mimicking portfolios Next suppose generalists
can freely choose positions in all 2N assets. However, suppose that N is not large, so it is not possible
to construct accurate factor-mimicking portfolios. If the B assets are not exposed to idiosyncratic
shocks, cross-market arbitrage remains risky for generalists so long as N < 2 (1 + k). And, assuming
that the B assets are exposed to idiosyncratic shocks, cross-market arbitrage will remain risky even
when N ≥ 2 (1 + k). Specifically, the N assets in market B are exposed to N +2 (k + 1) risk factors–
2 (k + 1) that are common and N that are asset-specific. A factor-mimicking portfolio is a set of N
unknown positions in the B assets that must satisfy N + 2 (k + 1) linear equations. In general, there
is no such solution. And, if N is small and idiosyncratic volatility is large, then any portfolio will do
a poor job of mimicking each common factor. As a result, cross-market arbitrage will remain risky for
generalists, so cross-market integration will be imperfect, both in the short-run and the long-run. This
case will be empirically relevant, if the “idiosyncratic risks”are not asset specific, but are shared by a
large subset of assets in a market (e.g., industry default factors). In this case, cross-market arbitrage
will always entail some amount of “basis risk,”rendering it risky for generalists.

Case 3: Generalists are unable to construct factor-mimicking portfolios Finally, suppose
it is possible to construct accurate factor-mimicking portfolios. However, suppose that generalists

20Specifically, k-period returns for all securities in markets A and B will load linearly on
∑k
i=1 εr,t+i and k-period

returns on all B-market securities will load linearly on
∑k
i=1 εz,t+i. However, the k-period returns on securities with

different durations will load differently on supply shocks in the near versus distant future. Thus, all k-period returns
satisfy a linear factor model in (

∑k
i=1 εr,t+i,

∑k
i=1 εz,t+i, {εsA,t+i}

k
i=1, {εsB ,t+i}ki=1).

21 If N = 2 (k + 1), there will be a unique set of factor-mimicking portfolios using B market securities. If N > 2 (k + 1),
there will be multiple possible factor-mimicking portfolios.
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cannot freely choose positions in all 2N assets. For instance, generalists may lack the expertise to
construct the complicated factor-mimicking portfolios or may face institutional frictions that make this
infeasible. In this case, generalists function as coarse asset-allocators and not granular cross-market
arbitrageurs: their degrees of freedom for within market asset allocation are less than the number
of common risk factors (2 (1 + k)). Under these conditions, the markets for A and B will again by
imperfectly integrated in both the short- and long-run, because cross-market arbitrage is risky for
generalists with granular portfolios of this sort.

To give a concrete example, we might suppose that generalists only have one-degree of freedom
within each market: how much to allocate to a baseline portfolio in each market and cannot vary
their allocation at all within markets. Specifically, one could assume that dA,t = sA0 × dA,t and
dB,t = sB0× dB,t, so that choosing different values of dA,t and dB,t only moves the baseline portfolios,
sA,0 and sB,0, up and down.

The bottom line is that, under plausible conditions, cross-market arbitrage will expose generalists
to risk. As a result, the key insights of our simpler two asset model will carry over to the more general
case where multiple assets trade in two partially segmented markets. Below we develop and solve an
example for two markets and two assets in each market to illustrate the basic intuition.

4.4 Example: Two assets in each market

We now illustrate the impact of a supply shock on two different markets that each contain multiple
assets. Specifically, we numerically solve the model in the case where generalists re-allocate their
portfolios every k = 2 periods and with N = 2 assets in both the A and B markets. The two assets
in each market differ solely in their durations. The short-term bonds, denoted A1 and B1, have a
duration of 2 years (i.e., DA1 = DB1 = 2). The long-term bonds, denoted A2 and B2, have duration
of 10 years (i.e., DA2 = DB2 = 10). As before, the two bonds in market A are default free whereas
the two bonds in market B are exposed to default risk.22

Figure 10 shows the evolution of risk premia following an unexpected shock at time 10 which
permanently increases the supply of long-term default-free bonds (A2) and reduces the supply of
short-term default-free bonds (A1) by an equal amount. This scenario corresponds to a “reverse
Operation Twist” in which the Federal Reserve sells long-term Treasuries and reinvests the proceeds
in short-term Treasuries.

Since this supply shock increases the total amount of interest rate risk than investors must bear,
Figure 10 shows that the risk premia for all four assets rise after impact. Furthermore, this supply
shock has a larger impact on the risk premium for long-maturity bonds in each market, leading both
the A and B yield curves to steepen (since the shock is permanent). These patterns are consistent
with those generated by existing models of bond supply shocks (e.g., Greenwood and Vayanos [2014]
and Greenwood, Hanson, and Vayanos [2015]). However, since markets are partially segmented in our
example, it takes time for the slow-moving generalists to integrate the A and B markets following the
shock, leading the risk premia of the two A assets to initially over-react and the risk premia of the two
B assets to initially underreact in Figure 10. Furthermore, because cross-market arbitrage is risky for

22For simplicity, we assume that B1 and B2 have the same exposure to the common default process, zt– i.e., we assume
that ψB1 = ψB2 in equation (41). We also assume that there is no idiosyncratic default risk– i.e., uB1,t = uB2,t ≡ 0.
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generalists, market integration remains imperfect even in the long run. Specifically, even many period
after the supply shock, Figure 10 shows that the yield curve in market A has steepened more than the
yield curve in market B.

Figure 11 shows the evolution of investor bond holdings in response to the supply shock. At each
date, Figure 11 plots the difference between investor holdings and their pre-shock holdings. At time
10, active generalists take the other side of the supply shock that hits market A, increasing their
holdings of A2 (long-maturity) and decreasing their holdings of A1 (short-maturity). Naturally, active
generalists utilize the B market to hedge out their increased exposure to interest rate risk, thereby
transmitting the supply shock from market A to market B. Specifically, active generalists reduce
their holdings of B2 (long-maturity) and increase their holdings of B1 (short-maturity) at time 10.
Although there are some minor oscillations after time 11, both markets have largely “digested” the
shock by time 11 since all generalists have had the opportunity to rebalance their portfolios.

5 Discussion and Applications

5.1 Event studies and assessment of Quantitative Easing programs

In response to a rapidly evolving financial crisis and worldwide recession, in late 2008 and early
2009, central banks around the world announced their intention to aggressively purchase government
bonds and other long-term debt securities. On November 25, 2008, the Federal Reserve announced
its intention to buy $100 billion in GSE debt and $500 billion in mortgage-backed securities (MBS),
and followed up four months later with a significantly expanded purchase program that also included
Treasuries. The Bank of England followed in quick succession, announcing £ 50 billion of private
asset purchases in January 2009 and expanding the purchase program to include government bonds
in March 2009. The Bank of Japan, already engaged in an asset purchase program since earlier in the
decade, announced in December 2008 that the quantity of its monthly purchases of JGB securities
would increase. By December 2013, global central banks presided over massive portfolios of long-term
securities.

A crucial question in assessing the effectiveness of central bank asset purchase programs is whether
they impacted securities prices beyond government bonds. Suppose, for example, that the impact of
asset purchase programs was limited to markets in which the purchases were being made (Treasury
bonds and MBS), perhaps because these markets are highly segmented from other financial markets.
Such a finding should dampen central bankers’enthusiasm for these programs, and cast doubt that
asset purchases could affect broader economic activity.

Our model provides a natural framework for understanding how these asset purchase programs
should spill across different financial markets over time. According to our model, the largest short-run
effects of these programs should be in the securities being purchased. In the long run, however, changes
in risk premia in the market being targeted should spill over to non-targeted markets. Differences
between the short-run and long-run price impact should reflect the degree to which the programs were
anticipated, the length of time between the announcement date and implementation, and the effective
degree of segmentation between different financial markets.

Most empirical studies of these purchase programs have used an event study methodology, focusing
on the 1-day or even intraday impact on bond yields following announcements of future asset purchases.
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In one of the first of these event studies, Gagnon, Raskin, Remache, and Sack (2011) report interest rate
changes around a set of Federal Reserve announcement days between November 2008 and January 2010.
Cumulating over all announcement dates associated with the Fed’s first round of quantitative easing
(QE1), they report a 62 basis points decline in 10-year US Treasury yields, a 123 basis points decline in
agency MBS yields, and a 74 basis points decline in Baa-rated corporate bond yields. Krishnamurthy
and Vissing-Jorgensen (2011) extend this analysis to the Fed’s second round of quantitative easing
(QE2) and also discuss the impact on other assets, including high yield corporate bonds. After
controlling for other factors, Krishnamurthy and Vissing-Jorgensen conclude that the effects of asset
purchases were most pronounced among the assets being purchased (MBS and Treasuries in QE1
and Treasuries in QE2), suggesting a high degree of segmentation between different fixed income
markets. Neeley (2013) shows that the average cumulative change in 10-year government bond yields in
Australia, Canada, Germany, Japan, and the UK immediately following major Fed QE announcements
was 53 basis points, compared to the 107 basis points change in the yield on US 10-year notes. Neeley
finds no significant impact on major stock market indices outside the US. In summary, at short
horizons, there is modest evidence that asset purchases impacted other fixed income markets, and
almost no evidence that they had any impact on the equity markets.

At the same time, some researchers have recognized that short horizon announcement returns may
not capture the full impact of these asset purchase programs. In their empirical assessment of the Bank
of England’s quantitative easing program, Joyce, Lasoasa, Stevens and Tong (2010) suggest that it may
have impacted corporate bonds and equities, although “these effects might be expected to take time
to feed through, as it will take time for investors and asset managers to rebalance their portfolios.”
They further suggest that the impact on QE may subsequently be reflected in corporate issuance.
Fratzcher, Lo Duca, and Straub (2013) suggest that the Fed’s QE programs triggered portfolio flows
that ultimately impacted emerging market asset prices and foreign exchange rates. Feunou et al
(2015) present evidence that QE stimulated portfolio flows into Canada and had a large ultimate
impact on Canadian bond yields. Mamaysky (2014) suggests that QE might ultimately spill into the
asset markets through portfolio allocation, but notes that “it is unlikely that such portfolio flows can
take place quickly.”

Researchers have used different approaches to measure the long-run effects of QE. Joyce, Lasoasa,
Stevens and Tong (2010) report the cumulative change in asset prices for the longer period between
March 4, 2009 and May 31, 2010 in addition to 1-day announcement returns. They show that corporate
bond yields fall by a cumulative 70 basis points around asset purchase announcements, but by 400
basis points over the longer period. Mamaysky (2014) takes a more tailored approach to each asset
market: he chooses an announcement window that maximizes the statistical power of the measured
return. Using this approach, he shows that the impact of QE on both equity and high yield bond
markets is much larger after 15 days than what one would measure using a 1-day window. But even
this approach may significantly understate the long-run effect, because, as we have noted, the full
impact of supply shocks may easily take quarters or years to be felt.

In Figure 12, we reproduce and extend the main results from Mamaysky’s study. We start with
the set of QE announcement dates identified by Fawley and Neely (2013). We then limit the analysis
to major announcement dates on which the 10-year Treasury yield changed by more than 10 basis
points in absolute value. After applying this filter, we are left with eight announcement dates spread
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across QE1, QE2 and QE3. For these announcement days, we compute the cumulative response of (i)
10-year Treasury yields, (ii) returns on the S&P 500, (iii) the VIX, and (iv) and high-yield corporate
bond yields. We compute the response up to 20 trading days after the announcement date.

To assess statistical significance of these long horizon responses, we compare the response following
actual QE announcement dates with the counterfactual “response”following a set of eight randomly
chosen dates (drawn without replacement) from November 2008 to September 2012. This comparison
allows us to gauge whether the responses following actual QE announcement dates were statistically
“unusual” in any sense. We adjust for overlapping event windows using the same methodology as
Mamaysky (2014). This procedure is repeated 5,000 times to generate a benchmark distribution of
the cumulative response following these counterfactual announcement dates. Finally, we compute a
one-sided p-value, for each outcome variable and at every horizon, as the fraction of counterfactual
“responses” that are more extreme than the response following the actual QE announcements. For
instance, a p-value of 5% on the S&P 500 index 10 days after the announcement indicates that the
average return following QE announcements is greater than 95% of the counterfactual responses with
randomly chosen announcement dates.

Figure 12 shows the response of different financial market prices as measured by the p-values defined
above. 10-year Treasury yields immediately react to QE announcements. Treasury yields continue
to outperform for an extended period following the initial announcement, reflecting the direct impact
of the shocks on this market. High yield bonds and the stock market (the S&P 500) do not react
as strongly upon announcement: 1-day announcement returns on high yield bonds and equities are
not statistically significant, only outperforming 80% of simulated draws on initial impact. However,
equities and high yield bonds continue to rally for more than a week following the announcement. By
day 11 following announcements, these markets outperform 99% of the simulated responses.

Figure 12 also shows the VIX, which measures the implied volatility on S&P 500 index options
and is often seen as a broad barometer of the pricing of risk across many different markets. The VIX
shows almost no abnormal reaction on announcement. The VIX slowly declines in the week following
announcement and the result is highly significant by day 11 following announcements.23

Our model clarifies the broader issue at stake: event studies are a useful methodology for detecting
short-run price changes, but often lack the statistical power to detect price impact at longer horizons.
However, if markets are segmented, the true long-run effects of supply and demand shocks may take
time to materialize.24 For instance, consider the effects of σz– the volatility of fundamental cash-
flow shocks in market B– on our ability to detect the impact on prices in market B stemming from
a supply shock that hits market A . When σz is large relative to σr, our model suggests that the
econometrician may have little power to detect this gradual shift in risk premia in market B: there is
simply too much B-specific fundamental news to reliably detect cross-market spillovers using a handful
of announcement events. The statistical power would increase with the number of events, but power
is nonetheless decreasing in σz. Thus, our model suggests that short-run event studies may have a
hard time detecting spillover effects on markets, such as equities and high yield bonds, where there
can be significant news about cash flow fundamentals. More generally, our framework suggests that
event studies are an inappropriate methodology for measuring cross-market price impact, at least in

23We have found a similar reaction in the interest rate volatility implied by swaption prices.
24The event study methodology was originally developed in the 1970s to tackle questions of informational effi ciency

of stock prices, not changes in risk premia.
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the short run.
Figure 13 illustrates the potential inability of event studies to detect cross-market spillover effects

from an unanticipated supply shock in market A. In an environment with low short-rate volatility, a
supply shock to market A can have statistically significant impact on market A (Treasuries) but not
on market B (corporate bonds).25 Even though the shock to the supply of A impacts yields in the B
market, the short-term effect is not statistically significant– e.g., the confidence interval for the 1-day
change includes zero– and, thus, it would not be detected by conventional event study techniques. In
addition, the long-term effect, while economically meaningful, is also statistically insignificant.

In summary, our model suggests that we should be extremely cautious in using event studies to
assess the long-run impact of supply shocks on market prices and risk premia. However, measuring
the long-run impact of supply shocks across markets is inherently diffi cult because the full economic
impact may occur over such a long time that it is swamped by other factors.

5.2 Corporate Arbitrage

In our model, generalist “asset allocators” play a critical role in integrating prices across markets.
Earlier we suggested that these investors were best thought of as pension funds or endowments, who
adjust asset allocation at an annual frequency. But generalists could also be nonfinancial corporations
who continually access different financial markets in order to raise capital. Corporations have flexibility
over which securities to issue, and can thus execute a form of arbitrage between otherwise segmented
securities markets.

Consider a firm with financing needs who has the choice of issuing in the equity or debt markets.
Suppose that debt markets have just received a large positive demand shock. For example, perhaps
bond mutual funds experienced large inflows, causing a reduction in corporate bond yields. How should
a nonfinancial firm respond? While the firm may have preferences over its capital structure, attractive
pricing in the debt market would lead the firm to satisfy a greater fraction of its total financing needs
by issuing debt that it would not otherwise.

A growing literature in behavioral corporate finance has suggested that nonfinancial corporations
may have advantages vis a vis professional arbitrageurs in conducting cross-market arbitrage at low
frequencies (Stein [2005] and Ma [2015]). The advantage of nonfinancial firms arises because arbi-
trageurs use investment vehicles– mutual funds or hedge funds– where capital can easily be with-
drawn in response to poor temporary performance. This “open-ended”structure limits arbitrageurs’
willingness to place the kinds of big, slow-to-converge bets required when trying to profit from asset-
class level dislocations. By contrast, nonfinancial firms– with access to patient capital that cannot be
withdrawn– can respond aggressively to dislocations at the asset-class level.

Is it reasonable to think of corporations as slow-moving generalists in the sense implied by our
model? Several recent papers in behavioral corporate finance speak to the slow-moving nature of cor-
porate arbitrage. Greenwood, Hanson, and Stein (2010) suggest, for example, that corporations adjust
the maturity of their debt issuance in response to shifts in government debt maturity, a phenomenon
they dub “gap filling.”They show that when corporate issuance is measured annually, there is only a

25The parameter values used to generate Figure 13 reflect the low interest rate volatility during QE when short rates
were pinned down at zero and supply risk was low. In addition, arbitrageur risk tolerance (τ) was small during this
period.
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modest correlation between government supply shocks and the maturity of corporate issuance. How-
ever, at horizons of two years or longer, or when the data are measured in levels rather than issuance,
the evidence is much stronger. Graham, Leary, and Roberts (2014) show similar results in their study
of corporate leverage between 1920 and 2010. Corporate leverage tends to rise when government debt
falls, suggesting that corporations respond to supply shocks. But this result is stronger when the
authors study the level of corporate leverage, rather than annual changes. Ma (2015) studies cross-
market arbitrage by corporations directly. She shows that, at low frequencies, firms actively substitute
between equity and debt markets in an attempt to exploit valuation differences across these markets.
Liao (2016) provides evidence that cross-market arbitrage by corporations plays an important role in
integrating credit markets in different currencies– e.g., the dollar-denominated credit market and the
Euros-denominated credit market.

6 Conclusion

Modern financial markets are highly specialized. While specialization brings many benefits, the bound-
aries of securities markets are tested when there are large shocks to the supply of an entire asset class.
In this paper, we develop a model to describe securities prices when shocks must draw in arbitrageurs
from other related asset markets. We use the model to study the process by which capital flows across
markets, and how quickly and by what magnitude prices adjust in different markets. Unlike textbook
theories in which asset prices are determined solely by the stock of risky assets supplied, our approach
suggests that supply flows– i.e., the rate at which the supply stock is changing– also matter in the
short run. Even when a large amount of capital is mobile in the long run, different asset markets need
not be fully integrated because market segmentation creates risks for arbitrageurs.

Our model explores the consequences of specialization when markets are hit with large shocks.
However, we have taken the existence of specialists as given. But why are some asset classes dominated
by specialists while others are widely held in the portfolios of generalists? And what determines
the boundaries of specialists’ expertise and, hence, the fault lines between different asset classes?
Answering these questions remains an important task for future research.
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Figure 1: Price impact of an unanticipated shock to the supply of asset A. This figure shows 
the impact on annual bond risk premia and bond yields of an unanticipated shock that 
increases the supply of asset A by 50% in period 10. Panel A shows the evolution of annual 
bond risk premia in market A, Et[rxA,t+1], and market B, Et[rxB,t+1], over time. Panel B shows 
the evolution of bond yields in market A, yA,t, and market B, yB,t, over time. 
 
 
Panel A: Annual bond risk premia 

 
 
Panel B: Bond yields 
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Figure 2: Portfolio adjustments in response to an unanticipated shock to the supply of asset A. 
This figure shows the impact on investor positions and active asset supplies of an unexpected 
shock that increases the supply of asset A by 50% in period 10. Panel A shows the evolution of 
specialists holdings in markets A and B (bA,t and bB,t) as well as the positions of active generalists 

(dA,t and dB,t). Panel B shows the evolution of the “active supplies” of assets A and B. The active 

supply of A is ݏ஺,௧ െ ሺ1 െ ஺ݍ െ ஻ሻ݇ିଵݍ ∑ ݀஺,௧ି௜
௞ିଵ
௜ୀଵ  and the active supply of B is defined 

analogously.  
 
 
Panel A: Specialist holdings and positions of active generalists 

 
 
Panel B: Active asset supply 
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Figure 3: Yield spread impact of an unanticipated shock to the supply of asset A. This figure 
shows the impact on the yield spread between asset B and asset A, yB,t -yA,t, of an 
unanticipated shock that increases the supply of asset A by 50% in period 10. 
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Figure 4: Price impact of an anticipated shock to the supply of asset A. This figure shows 
the impact on annual bond risk premia and bond yields of an anticipated supply shock: there 
is an announcemement in period 5 that the supply of asset A will jump by 50% in period 8. 
Panel A shows the evolution of annual bond risk premia in market A, Et[rxA,t+1], and market 
B, Et[rxB,t+1], over time. Panel B shows the evolution of bond yields in market A, yA,t, and 
market B, yB,t, over time. 
 
 
Panel A: Annual bond risk premia 

 
 
Panel B: Bond yields 
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Figure 5: Portfolio adjustments in response to an anticipated shock to the supply of asset A. 
This figure shows the impact on investor positions and active asset supplies of an anticipated 
supply shock: there is an announcemement in period 5 that the supply of asset A will jump by 
50% in period 8. Panel A shows the evolution of specialists holdings in markets A and B (bA,t 
and bB,t) as well as the positions of active generalists (dA,t and dB,t). Panel B shows the evolution 

of the “active supplies” of assets A and B. The active supply of A is  

஺,௧ݏ െ ሺ1 െ ஺ݍ െ ஻ሻ݇ିଵݍ ∑ ݀஺,௧ି௜
௞ିଵ
௜ୀଵ  and the active supply of B is defined analogously.  

 
 
Panel A: Specialist holdings and positions of active generalists 

 
 
Panel B: Active asset supply 
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Figure 6: Comparison of anticipated and unanticipated shocks to the supply of asset A. This 
figure compares the price impact of anticipated and unanticipated supply shocks. The yield 
dynamics depicted in Figure 1.B and Figure 4.B and are presented here side by side for ease 
of comparison. In both cases, the supply of A asset increases by 50%. The solid lines show 
the yield dynamics when the supply shock is pre-announced in period 5 and arrives in period 
8. The dashed lines show the yield dynamics when the supply shock unexpectedly arrives in 
period 8 without any prior announcement. Panel A shows yields in market A, Panel B shows 
yields in market B, and Panel C shows the yield spread, yB - yA. 
 
Panel A: Yield of bond A 

 
 

Panel B: Yield of bond B  

 
 

Panel C: Yield spread between bonds B and A 
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Figure 7: Price impact of an anticipated gradual rise in the supply of asset A. This figure 
shows the impact on annual bond risk premia and bond yields of an anticipated gradual 
supply shock: there is an announcemement in period 5 that the supply of asset A will increase 
by 50% with the increase spread out equallly between time 6 and time 8. Panel A shows the 
evolution of annual bond risk premia in market A, Et[rxA,t+1], and market B, Et[rxB,t+1], over 
time. Panel B shows the evolution of bond yields in market A, yA,t, and market B, yB,t, over 
time. 
 
 
Panel A: Annual bond risk premia 

 
 
Panel B: Bond yields 
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Figure 8: Portfolio adjustments in response to an anticipated gradual rise in the supply of A. 
This figure shows the impact on investor positions and active asset supplies of an anticipated 
gradual supply shock: there is an announcemement in period 5 that the supply of asset A will 
increase by 50% with the increase spread out equallly between time 6 and time 8. Panel A shows 
the evolution of specialists holdings in markets A and B (bA,t and bB,t) as well as the positions of 

active generalists (dA,t and dB,t). Panel B shows the evolution of the “active supplies” of assets A 

and B. The active supply of A is ݏ஺,௧ െ ሺ1 െ ஺ݍ െ ஻ሻ݇ିଵݍ ∑ ݀஺,௧ି௜
௞ିଵ
௜ୀଵ  and the active supply of B is 

defined analogously. 

 
 
Panel A: Specialist holdings and positions of active generalists 

 
 
Panel B: Active asset supply 
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Figure 9: Price impact of a temporary shock to the supply of asset A. This figure shows the 
impact on bond risk premia of an unexpected supply shock with varying degrees of 
persistence. The supply of asset A increases by 50% in period 1. Panel A shows the evolution 
of conditional risk premia in market A, Et[rxA,t+1] - E0[rxA,1], and Panel B shows the evolution 
of conditional risk premia in market B, Et[rxB,t+1] - E0[rxB,1], over time. 
 

Panel A: Changes in market A bond risk premia 

 
 
Panel B: Changes in market B bond risk premia 



45 
 

 
Figure 10: Price impact with multiple securities in each market. This figure shows the impact 
on bond risk premia of an unexpected supply shock that permanently increases the supply 

of long-term default-free bond (2ܣ) and decreases the supply of short-term bond (1ܣ) by an 
equal amount at time 10. Panel A shows the evolution of risk premia for short-term securities 

in each market (1ܣ and 1ܤ). Panel B shows the evolution of risk premia for long-term 

securities in each market (2ܣ and 2ܤ). 

Panel A: Risk premia for short-maturity bonds in each market 

 
Panel B: Risk premia for long-maturity bonds in each market 
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Figure 11: Portfolio adjustments with multiple securities in each market. This figure shows 

the impact on investor positions of an unexpected supply shock that permanently increases 

the supply of long-term default-free bonds (2ܣ) and reduces the supply of short-term default-

free bonds (1ܣ) by an equal amount at time 10. The four panels shows the holdings of 

specialists and active generalists for short-maturity bonds in market A (1ܣ), long-maturity 

bonds in market A (2ܣሻ, short-maturity bonds in market B (1ܤ), and long-maturity bonds 

in market B (2ܤሻ. For simplicity, at each date, we plot the difference between investor 
holdings and their pre-shock holdings. 

 
:2ܣ Short-maturity bonds in market A :1ܣ Long-maturity bonds in market A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Long-maturity bonds in market B :2ܤ Short-maturity bonds in market B :1ܤ
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Figure 12: Responses to Federal Reserve Quantitative Easing announcements. This figure 
shows the response in the days following major Federal Reserve Quantitative Easing (QE) 
announcements of (i) the 10-year US Treasury yield, (ii) the return on the S&P 500, (iii) the 
VIX, and (iv) the yield on the Bank of America Merrill Lynch US High-Yield Index. For 
each financial market price, we calculate the average response following eight major QE 
announcements: 11/25/2008 (QE1), 12/1/2008 (QE1), 12/16/2008 (QE1), 1/28/2009 (QE1), 
3/18/2009 (QE1), 8/27/2010 (QE2), 9/21/2010 (QE2), and 8/22/2012 (QE3). We calculate 
this response at a 1-day horizon (labeled as day 0 below), a 2-day horizon (labeled as day 1 
below), and so on up to a 21-day horizon (labeled as day 20). The average response following 
these eight dates is compared against a benchmark distribution obtained by randomly 
drawing eight dates from November 2008 to September 2012 as counterfactual announcement 
dates. We use 5,000 simulated draws to generate this benchmark distribution. The p-value 
is then the fraction of simulated counterfactual responses that are more extreme than the 
response to the actual Federal Reserve QE announcement dates. For ease of comparison, the 
p-values are signed such that a low p-value for a fixed income instrument or the VIX 
indicates a decline in yield or volatility that is statistically significant based on the 
benchmark distribution. By contrast, a low p-value for the S&P 500 indicates a positive 
return that is statistically significant relative to the benchmark distribution. 
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Figure 13: Event study confidence interval following an unanticipated shock to the supply 
of asset A. The yields of markets A and B and their respective 95% confidence intervals are 
shown. An unanticipated shock that doubles the supply of asset A is delievered in period 10. 

The following parameters are used: ߬ ൌ 0.5, ܣݏߪ ൌ ܤݏߪ ൌ 0, ௥ߪ ൌ ௭ߪ ൌ 0.2%. All other 

parameters are the same as those listed in Table 1. For period t > 9, we compute the model-
implied confidence interval for the cumulative changes in yields for market A and B from 
period 9, yA,t - yA,9 and yB,t - yB,9, assuming that all shocks are normally distributed. These 
confidence intervals are shaded in gray.  
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Table 1: Illustrative model parameters. This table presents the illustrative model parameters 
that we use throughout our numerical exercises. We use annualized values so that one period 
corresponds to one year. 
 
 

Parameter Description Value 

,஺ݍ  ஻ Percentage of investors that are specialists in A and B 45%ݍ

݇ Number of periods between generalist portfolio rebalancing 4 

 Average short-term riskless rate 4% ݎ̅

 ௥ Volatility of annual shocks to short-term riskless rate 1.3%ߪ

 ௥ Annual persistence of short-term riskless rate 0.85ߩ

 Expected default losses per annum on asset B 0.2% ̅ݖ

 ௭ Volatility of annual shocks to default losses on asset B 0.7%ߪ

 ௭ Annual persistence of default losses on asset B 0.85ߩ

,஺ݏ̅  ஻ Average asset supplies 1ݏ̅

,௦ಲߪ  ௦ಳ Volatility of annual supply shocks 0.6ߪ

,௦ಲߩ  ௦ಳ Annual persistence of supply shocks 0.999ߩ

,஺ܦ ஺ߠ ஻ Macaulay duration in years (impliesܦ ൌ  ஻=0.8) 5 yearsߠ

߬ Investor risk tolerance 50 
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Table 2: Model comparative statics. This table shows how the price impact of the same supply shock — an unanticipated shock that increases asset 
supply by 50% — varies as we change key model parameters one at a time. All other parameters are held constant at the values listed in Table 1. For 
a given set of model parameters, we summarize the impact of the supply shock on both the A and B markets by listing (i) the yields and expected 
annual returns in the period before the shock arrives (labeled as "pre-shock level"), (ii) the changes in yields and expected annual returns in the period 

when the shock arrives (labeled as "short-run "), and (iii) in 2k periods after the shock arrives (labeled as "long-run "). Finally, we report the 
degree to which bond yields over- or underreact as the difference between the short-run change and the long-run change, expressed as a percentage of 
the long-run change 

1 2 1

2 1

( ) ( )
% - ( )=

( )
t t t k t

t k t

y y y yOver Reaction y
y y
  

 

  


. 

Our measure of over-reaction for risk premia is defined analogously. 
 

  Market A Market B 

  Risk premia, Et[rxA,t+1] Yields, yA,t Risk premia, Et[rxB,t+1] Yields, yB,t 

  Pre
shock
level 

Short

run  

Long

run  

Over-
react 

Pre
shock
level 

Short

run  

Long 

run  

Over-
react 

Pre
shock
level 

Short

run  

Long

run  

Over-
react 

Pre
shock
level 

Short

run  

Long

run  

Over- 
react 

Supply shock hits market A    

(1) Base case  0.48 0.23 0.17 35% 4.48 0.19 0.17 11% 0.64 0.02 0.07 -65% 4.84 0.06 0.07 -19% 

(2) More risk tolerant ߬ ൌ 60 0.39 0.18 0.14 35% 4.39 0.15 0.14 11% 0.52 0.02 0.06 -65% 4.72 0.05 0.06 -19% 

(3) No Generalists ݍ஺ ൌ ஻ݍ ൌ 0.5 0.47 0.24 0.23 0% 4.47 0.23 0.23 0% 0.73 0.00 0.00 NA 4.93 0.00 0.00 NA 

(4) More Generalists ݍ஺ ൌ ஻ݍ ൌ 0.2 0.46 0.35 0.12 180% 4.46 0.18 0.12 47% 0.58 0.13 0.11 20% 4.78 0.12 0.11 14% 

(5) More B specialists ݍ஺ ൌ ஻ݍ ,0.3 ൌ 0.6 0.59 0.34 0.22 56% 4.59 0.26 0.22 17% 0.56 0.03 0.07 -64% 4.76 0.06 0.07 -18% 

(6) Fast-adjusting Generalists ݇ ൌ 2 0.47 0.20 0.17 21% 4.47 0.17 0.17 4% 0.64 0.04 0.07 -39% 4.84 0.06 0.07 -6% 

(7) Slow-adjusting Generalists ݇ ൌ 6 0.48 0.24 0.17 40% 4.48 0.20 0.17 17% 0.65 0.02 0.07 -76% 4.85 0.05 0.07 -30% 

(8) Larger A, smaller B market ̅ݏ஺ ൌ 5/3, ஻ݏ̅ ൌ 1/3, 
	
஺ݍ ൌ 0.75, ஻ݍ ൌ 0.15 

0.38 0.11 0.10 14% 4.38 0.10 0.10 4% 0.55 0.03 0.07 -60% 4.75 0.06 0.07 -16% 

Supply shock hits market B 
 

                    

(9) Base case  0.48 0.02 0.07 -65% 4.48 0.06 0.07 -19% 0.64 0.34 0.25 35% 4.84 0.28 0.25 11% 

(10) More default risk ߪ௭ ൌ 1.4% 0.51 0.02 0.06 -69% 4.51 0.04 0.05 -21% 1.52 0.88 0.70 26% 5.72 0.76 0.69 8% 
 
 


