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Abstract all approaches possess the ability to cope with a certain
amount of noise in the sensor data, they assume that the
The problem of generating maps with mobile robots has environment is almost static during the mapping process.
received considerable attention over the past years. How-Especially in populated environments, additional noise is
ever, most of the approaches assume that the environmerihtroduced to the sensor data which increases the risk of
is static during the data-acquisition phase. In this paper|ocalization errors. Additionally, people in the vicinity
we consider the problem of creating maps with mobile of the robots appear as objects in the resulting maps and
robots in populated environments. Our approach uses aherefore make the maps not usable for path planning etc.
probabilistic method to track multiple people and to in- Recently [15] presented a heuristic and feature-based ap-
corporate the results of the tracking technique into the proach to identify dynamic objects in range scans. The

mapping process. The resulting maps are more accurateorresponding measurements are then filtered out during
since corrupted readings are treated accordingly during2d scan registration.

the matching phase and since the number of spurious ob- _ ., . _— )

. ) ) . In this paper we present a probabilistic approach to filter-

jects in the resulting maps is reduced. Our approach has . .

. . ."Ing people out of sensor data and techniques to incorpo-

been implemented and tested on real robot systems in in- L :

: .rate the results of the filtering into the mapping process.

door and outdoor scenarios. We present several experi-

ments illustrating the capabilities of our approach to gen- Our approach has several desirable properties. First, by
9 P bp 9 incorporating the results of the people tracker, the align-
erate accurate 2d and 3d maps.

ment of the scans becomes more robust. Additionally, the
. resulting maps are more accurate, since measurements
1 Introduction corrupted by people walking by are filtered out. Com-

L . ith mobile robots h ved id pared to [15] our approach uses a tracking technique and
earning maps with mobli€ robols has received ConSIter-y, . otora is aple to predict the positions of the person’s

able attention over the last two decades. This is because

ft inh i ; bil bots t even in situations in which the corresponding features are
maps often are inherently necessary for mobiie robots 0temporarily missing. Empirical results, described in this
perform their tasks. When mapping an environment, a

X L . paper, illustrate that our approach succeeds in learning
H;Ob".e r.obot_ ge_ne:;llly Zas tot cope dW'th dlf_fertint Kinds accurate large-scale 2d and 3d maps of populated envi-
ornoise. naise In the odometry and NoISe In the SENSor ., jyants with range scanners even if several persons are
data. Therefore, the map learning problem is a chicken-

in the vicinity of the robot.

and-egg problem. If the pose (we use the tgroseto ) . ] .
refer to a robot's;-y location and its heading directiah) This paper is organized as follows. In 'the nex.t section
of the robot was always known during mapping, building We briefly present our approach to tracking multiple peo-
maps is relatively easy. On the other hand, if a map wasPle in range scans. The third and forth section describes
available, determining the robot's poses can be done effi-Our mapping technique and how the results of the peo-
ciently. In the literature, the mobile robot mapping prob- Ple tracker are integrated into the mapping process. The
lem is often referred to as tremultaneous localization  fifth section contains several experiments describing the
and mapping problem (SLANR, 4, 7]. advantages of our approach to learning 2d and 3d maps

. L with range scanners.
Approaches to concurrent mapping and localization can

roughly be classified according to the kind of sensor data

processed and the matching algorithms used. For ex-2 Sample-based Joint Probabilistic Data Asso-
ample, the approaches described in [12, 2, 4, 7] extract  ciation Filters (SJPDAFs)

landmarks out of the data and match these landmarks to

localize the robot in the map being learned. The other To detect people and track people in the vicinity of the
set of approaches such as [8, 6, 13] use raw sensor dataobot, our system applies a sample-based variant of Prob-
and perform a dense matching of the scans. Althoughabilistic Data Association Filters (JPDAFs) [3]. Suppose



there areK persons and leX! = {x{,...,x%} be the
states of these persons at timeNote that each! is a E
random variable ranging over the state space of a single| E= -
person. Furthermore, 1&(t) = {z;(t),...,zn,(t)} de- ‘
note a feature set observed at timevherez;(t) is one

feature of such a setZ! is the sequence of all feature Figure 1. Typical laser range finder scan. Two of the
sets up to timé. The key question when tracking multi- local minima are caused by people walking by the robot
ple persons is how to assign the observed features to theleft image). Features extracted from the scan, the grey-
individual objects. level represents the probability that a person’s legs are
In the JPDAF framework, a joint association everis a &t the position (center). Occlusion grid, the grey-level
set of pairs(j,i) € {0,...,m;} x {1,...,K}. Eachg represents the probability that the position is occluded
uniquely determines which feature is assigned to which (right image).
object. Please note, that in the JPDAF framework, the

featurezy(t) is used to model situations in which an ob- ————
ject has not been detected, i.e. no feature has been found ’
for object:. Let ©;; denote the set of all valid joint asso-
ciation events which assign featujd¢o the objecti. At
timet, the JPDAF considers the posterior probability that
featurej is caused by objeat

By = Y PO]Z 1)

0o, Figure 2: From left to right, top-down: the occupancy
map for the current scan, the occupancy map for the pre-
vious scan, the resulting difference map, and the fusion

L= (me—10]) 2.0 1 x). (2 of the difference map with the feature maps for the scan
bi 2 an I »z®1x). @ depicted in Figure 1

cEa -

According to [11], we can compute titg; as

0€©;; (7,9)€0

It remains to describe, how the beligféx}) about the  For this purpose we select every sample, with proba-
states of the individual objects are represented and Up-bility w? . ’

dated. In our approach [11], we use sample-based repre- .
sentations of the individual beliefs. The key idea underly- In our system we apply the SJPDAF to estimate the tra-

ing all particle filters is to represent the density’ | Z*) jectories of persons in range scans. Since the laser range

by a setS! of N weighted, random samples particles scanners mounted on our platforms are at a height of
s (n = ’1 .N). A san;ple set constitutes a discrete 2PPrOX- 40 cm, the beams are reflected by the legs of

agf)roximation of a probability distribution. Each sample the peoplhe wh||ch t?/p".:a”y appear as IOC?: rr:mma n t?eh
is a tuple(z} ,,, w; ,,) consisting of state} ,, and an im- ;?]?Dn;A-II; gse ?Cf? m(ljnlm_zé;\lre used ?SFt © ealturﬁs;) the
portance factow; ,,. The predictionstep is realized by | ' hee © anh m! bi N parthq h |gur§ - -nor
drawing samples from the set computed in the previoustgnate y, there are ot er o chts which produce patterns
iteration and by updating their state according to the pre- S|m|I.ar to people. To dlst|ngwsr_1 _these statlc.objects fro.m
moving people our system additionally considers the dif-

diction modelp(x; | Xf_l’ét)' In the correctionstep, a ferences between occupancy probability grids built from
feature sefZ(t) is integrated into the samples obtained . pancy p v L
consecutive scans. Static features are filtered out. This is

in the prediction step. Thereby we consider the aSSign_illustrated in Figure 2
ment probabilitieg?;;. In the sample-based variant, these '
quantities are obtained by integrating over all samples: Finally, we have to deal with possible occlusions. We
therefore compute a so-called “occlusion map” contain-
ing for each position in the vicinity of the robot the prob-

ability that the corresponding position is not visible given
the current range scan. See right part of Figure 1.

Given the assignment probabilities we now can compute
the weights of the samples

P %) = SopEn) ) @)

3 Computing Consistent Maps
my
Wi = @ Zﬁﬁp(zﬂ'(t) | i), (4) Our current system is able to learn 2d and 3d maps us-
=0 ing range scans recorded with a mobile robot. In both
wherea is a normalizer ensuring that the weights sum up cases, the approach is incremental. Mathematically, we
to one over all samples. Finally, we obtalhnew sam- calculate a sequence of podesls, ... and correspond-
ples from the current samples by bootstrap resampling.ing maps by maximizing the marginal likelihood of the



t-th pose and map relative to tlie— 1)-th pose and map: — o
[ = argmax{p(s, | L, (""", s Y)) o\ >\
i X =/ &/
Pl | w1, li-1)} 5)

In this equation the term(s; | I, m(i*~1,s~1)) is the
probability of the most recent measuremengiven the
posel; and the mapin(I*~, s'~!) constructed so far. The
termp(l; | up—1, ft,l) represents the probability that the
robot is at locatiori; given the robot was previously at
position/,_; and has carried out (or measured) the mo-
tion u;_;. The resulting posé is then used to generate At most recent scans, we first construct a local grid map
anew maph via the standard incremental map-updating 45, (jt-1.4tt=1.At) gyt of theAt most recent scans. Ad-
function presented in [9]: ditionally to [14] we integrate over small Gaussian errors
S P in the robot pose when computing the maps. This avoids
m(l',s") = argnr?aXp(m &) (6) that many ceﬁls remain unkngwn e?speciall&i is small,
increases the smoothness of the likelihood function to be
One disadvantage of the approach described above lies iroptimized and thus results in better alignments. The left
the fact, that the complexity of a single maximization step image of Figure 3 shows a typical map constructed out of
isin O(t), since every measurement is compared with all 100 scans. The darker a location, the more likely it is that
previous measurements. In our system, we therefore usehe corresponding place in the environment is covered by
a map an obstacle. Please note that the map appears slightly
blurred according to the integration over small pose er-
rors. To maximize the likelihood of a scan with respect
m(ly—1,. .. le—nesSe—1,...,se-at)  (7)  to this map, we apply a hill climbing strategy. A typi-
) cal scan is shown in the center of Figure 3. The optimal
that is constructed based of tilet most recent mea-  gjlignment of this scan with respect to the map is shown

surements only. This is motivated by two observations. , the right image of Figure 3. As can be seen from the
First, proximity sensors have only a limited range so that figure, the alignment is quite accurate.

the system generally cannot cover the whole environment
with a single scan. Additionally, objects in the environ- 3.2 Aligning Three-dimensional Range Scans
ment lead to occlusions so that many aspects of a given
area are invisible from other positions. Therefore, mea-
surements obtained at distant places often provide no in-
formation to maximize (5).

Figure 3: Two-dimensional scan alignment. Map created
out of theAt most recent scans (leftimage), measurement
s; obtained at time (center image) and resulting align-
ment (right image).

m(it—l,At’ St—l,At)

Unfortunately, a three-dimensional variant of the maps
used for the 2d scan alignment would consume too much
memory in the case of three dimensions. Therefore this
approach is not applicable to 3d scan alignment. Instead,
The overall approach can be summarized as follows: At we represent the 3d maps as triangle meshes constructed
any point¢ — 1 in time the robot is given an estimate of from the individual scans. We create a triangle for three
its posel;_; and a maph (I’ 1A%, ' LAY After the  neighboring scan points, if the maximum length of an
robot moved further on and after taking a new measure-edge does not exceed a certain threshold which depends
ments,, the robot determines the most likely new padse  on the length of the beams.

It does this by trading off the consistency of the measure-
ment with the map (first term on the right-hand side in
(5)) and the consistency of the new pose with the control
action and the previous pose (second term on the right-
hand side in (5)). The map is then extended by the new
measuremend,, using the posé, as the pose at which
this measurement was taken.

To compute the most likely position of a new 3d scan
with respect to the current 3d model, we apply an ap-
proximative physical model of the range scanning pro-
cess. Obviously, an ideal sensor would always measure
the correct distance to the closest obstacle in the sensing
direction. However, sensors and models generated out
of range scanners are noisy. Therefore, our systems in-
It remains to describe how we actually maximize Equa- corporates measurement noise and random noise to deal
tion (5). Our system applies two different approaches de- with errors typically found in 3d range scans. First, we
pending on whether the underlying scans are 2d or 3dgenerally have normally distributed measurement errors
scans. around the distance “expected” according to the current
position of the scanner and the given model of the envi-
ronment. Additionally, we observe randomly distributed
Our algorithm to 2d scan matching is an extension of the measurements because of errors in the model and because
approach presented in [14]. To align a scan relative to theof deviations in the angles between corresponding beams

3.1 Two-dimensional Scan Alignment



4 Integrating People Tracking Results into the
Map Building Process

The goal of integrating the results of the people tracker
into a mapping process can be divided in two subjects:

1. to improve the alignment between the scans and

expected max

2. to filter out corrupted measurements originating

Figure 4: The probabilistic measurement model given as from people walking in the vicinity of the robot.
a mixture of a Gaussian and a uniform distribution and

its approximation by piecewise linear functions. To consider the estimated states of the persons during

the scan alignment, we need to know the probability
P(hit, ,|X") that a beam ending at positidm, y) is re-

. . . flected by a person. In our current implementation, we
in consecutive scans. Therefore, our model consists of a

mixture of a Gaussian with a uniform distribution. The consider the individual persons independently:
mode of the Gaussian corresponds to the expected dis- ) )
tance given the current map. Additionally, we use a uni-  P(Nitz y[X") =1 - [T (1= Phit, X)) 9)
form distribution to deal with maximum range readings. i=1

To save computation time, we approximate the resulting whereP(hit,, ,|x¢) is the likelihood that a beam ending at
distribution by a mixture of triangular distributions. position(z, y) is reflected by a person, given the stee

Whereas this approach saves memory, it requires moreTF’ compute this quamity, we construct a two-dimensional
computation time than the technique for 2d scan align- histogram by counting how many samplesSjfrepre-
ment. However, in practical experiments we found out Senting the belief of; fall into each bin. We then normal-
that this technique has two major advantages over theiZ€ the histogram and compute the probabilthit; | x;)
lterative Closest Point (ICP) algorithm [1, 5] and other that a beand is reflected by a particular persoq as
scan-matching techniques which are crucial in the con- the probability contained in the histogram Hiry, y;) in

text of 3d mapping. First, it exploits the fact that each Which the beam ends. Accordingly, we have

laser beam is a ray that does not go through surfaces and P(hity|X*) = P(hit,, ,, |X"). (10)
therefore does not require special heuristics for dealing ‘

with occlusions. Second, our approach also exploits the During the scan alignment we then weight each beam by
information provided by maximum range readings since the probabilityl — P(hit,[X").

beams going through surfaces in the map reduce the like-The second task is to filter out beams reflected by per-
lihood of an alignment. sons to avoid spurious objects in the resulting maps. In
To compute the likelihood of a beabrgiven the current ~ OUr current system we compute a bounding box for each
mapm(ﬁ*LAt, st=L.A) e first determine the expected sample se§; anq ir_1tegrate only those _beams whose end-
distances(b, (1"~ 1A, st=1:A1)) to the closest obstacle  POINt does not lie in any of the bounding boxes. To cope
in the measurement direction. This is efficiently carried With the possible time delay of the trackers, we also ig-

out using ray-tracing techniques based on a spatial tiling "°'® corresponding beams of several previous and next
and indexing [10] of the current map. scans before and after the person was detected. Please

. . note, that one generally can be more conservative during
T_hz'; meecgmzléiéhde' “tkae:?eoqde()f tzedrgtee?sﬁ;eedtg:tan;f_the map generation process, because the robot generally
gv xpecied distance, |.&. we d Ine the quancans every part of the environment quite often. However,
tity p(b | e(b,m (""", s"72%))) using the mixture g, ring scan alignment, a too conservative strategy results

A TE—1,A —1,A H . .. .
computed fore(b, in(i'~21, s'~1:21)). Assuming that i to0 few remaining beams which reduces the accuracy
the beams contained i are independent, we compute ¢ the estimated positions.

the likelihood of the whole scan as

K

5 Experiments

p(si | 1y Th([t_l’At =180 _ The approa(_:h described gbove has been implemented and
’ o tested on different robotic platforms and based on ex-
[T p® | e®,m(=4",s""14)). (8)  tensive off-line experiments carried out with recorded
bEs; data. The goal of the experiments described in this sec-
tion is to illustrate that the integration of people detec-
tion techniques into the mapping process leads to bet-
To maximize Equation 5 we again apply a hill climbing ter maps since the resulting alignments are more accu-

technique. rate and since beams reflected by persons are filtered out

S
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‘[hdj L Figure 7: Pioneer 2 AT robot used for 3d mapping (left) and
o ' ' 2 o ° typical situation in which people walk through the scene during

. . . mapping (right).
Figure 6: Number of maps with translational error larger than

200cm computed without people filtering (light grey) and using
people filtering (dark grey) for different additional noises.

0

which reduces the number of spurious objects. Our im-
plementation can detect people in real-time, so that the
time to map an environment is not influenced by using
this information.

5.1 Learning 2d Maps

The first experiments were carried out using an RWI B21 Figure 8: Spurious objects caused by people.
and a Pioneer | robot in a 25m x 4m large corridor envi-

ronment and in the 30m x 45m large hallway of a mu- mapping strategy with and without people filtering. We
seum. In both experiments several people were walk- nerformed 50 experiments for each noise level. Figure 6
ing through the environment leading to a huge amount gp s the numbers of maps containing a translational er-
of corrupted readings. Figures 5(a) and 5(c) depict the 1o |arger than 200cm for the different noise values. As
maps obtained by integration all the input data. As can ¢ap pee seen by this statistic, using the information of the

be seen from the figures, there are a lot of beams thatyegple tracker significantly increases the accuracy of the
were reflected by thg persons. The maps result|r_1g fr_omposition estimation during the mapping process.
our system after filtering out people are illustrated in Fig-

ures 5 (b) and 5 (d). Apparently, the number of cor- 5.3 Learning 3d Maps

rupted readings is reduced_considerably. Please note tha’ﬁ‘he last experiment was carried out to analyze the per-
i were 15 people walking .thro.ugh ihe museum hail formance of our system when learning three-dimensional
way while Fhe robot was mapping it. Some of the people maps. For this experiment we used the Pioneer 2 AT
were forming an almost static crowd so tha_t 'they could platform (see left image of Figure 7) equipped with two
not be detected by our people tracker. Additionally, the laser range-scanners. Whereas the first scanner, that is

columns in this hallway produce similar features as hu- mounted in front of the robot, is used for tracking peo-

mans do. Nevertheless, our approach could seriously re'ple, the second scanner, that is mounted on an AMTEC
duce the number of readings corrupted by people.

wrist module, is used to scan the 3d structure of the en-
vironment. The right image of Figure 7 shows a typical
scenario during this experiment performed on our univer-
Besides the fact that the resulting maps are better, filteringsity campus. Here, several people were walking through
people increases the robustness of the mapping procesghe scene while the robot was scanning it. Figure 9 (left)
To demonstrate this we have carried out a series of ex-depicts the model obtained after aligning two scans of
periments in which we added random noise to the posesthe same environment. In this model, the people appear
in the input data and compared the performance of ouras three-dimensional curves. Figure 8 contains a mag-

5.2 Improved Robustness



Figure 9: Three-dimensional map of a building (left) and people filtered (right).

nified view of the corresponding portion of the map. If References

we integrate the information obtained from the people [1
tracker, however, these spurious objects are completely
removed (see right image of Figure 9). The number of [2]
triangles in these models are 416.800 without filtering
and 412.500 with filtering. Please note, that this exper-
iment also illustrates the advantage of using a tracking (3
system over a pure feature-based approach. Due to the
displacement of the scanners, people are not always visi-
ble in both scanners. Accordingly, a purely feature-based [4]
approach like [15] will add objects to the 3d model when-
ever they are not detected by the first scanner. Our sys-
tem, however, can predict positions of persons in the caseys)
of occlusions and thus can filter out the corresponding

readings even if the features are missing.

6 Conclusions

In this paper we presented a probabilistic approach to
mapping in populated environments. The key idea of this
technigue is to use a joint probabilistic data association [g]
filter to track people in the data obtained with the sensors
of the robot. The results of the people tracking are inte- [°]
grated into the scan alignment process and into the ma
generation process. This leads to two different improve-
ments. First, the resulting pose estimates are better anﬂ1
second, the resulting maps contain less spurious objects

than the maps created without filtering people.

Our technique has been implemented and tested on differs ,,
ent robotic platforms and for generating 2d and 3d maps.
The experiments demonstrate that our approach can se-
riously reduce the number of beams corrupted by peopld13]
walking through the environment. Additionally, exten-
sive simulation experiments illustrate that the pose esti
mates are significantly better if the results of the tracking

system are incorporated during the pose estimation.
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