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Abstract

The problem of generating maps with mobile robots has
received considerable attention over the past years. How-
ever, most of the approaches assume that the environment
is static during the data-acquisition phase. In this paper
we consider the problem of creating maps with mobile
robots in populated environments. Our approach uses a
probabilistic method to track multiple people and to in-
corporate the results of the tracking technique into the
mapping process. The resulting maps are more accurate
since corrupted readings are treated accordingly during
the matching phase and since the number of spurious ob-
jects in the resulting maps is reduced. Our approach has
been implemented and tested on real robot systems in in-
door and outdoor scenarios. We present several experi-
ments illustrating the capabilities of our approach to gen-
erate accurate 2d and 3d maps.

1 Introduction

Learning maps with mobile robots has received consider-
able attention over the last two decades. This is because
maps often are inherently necessary for mobile robots to
perform their tasks. When mapping an environment, a
mobile robot generally has to cope with different kinds
of noise: noise in the odometry and noise in the sensor
data. Therefore, the map learning problem is a chicken-
and-egg problem. If the pose (we use the termposeto
refer to a robot’sx-y location and its heading directionθ)
of the robot was always known during mapping, building
maps is relatively easy. On the other hand, if a map was
available, determining the robot’s poses can be done effi-
ciently. In the literature, the mobile robot mapping prob-
lem is often referred to as thesimultaneous localization
and mapping problem (SLAM)[2, 4, 7].

Approaches to concurrent mapping and localization can
roughly be classified according to the kind of sensor data
processed and the matching algorithms used. For ex-
ample, the approaches described in [12, 2, 4, 7] extract
landmarks out of the data and match these landmarks to
localize the robot in the map being learned. The other
set of approaches such as [8, 6, 13] use raw sensor data
and perform a dense matching of the scans. Although

all approaches possess the ability to cope with a certain
amount of noise in the sensor data, they assume that the
environment is almost static during the mapping process.
Especially in populated environments, additional noise is
introduced to the sensor data which increases the risk of
localization errors. Additionally, people in the vicinity
of the robots appear as objects in the resulting maps and
therefore make the maps not usable for path planning etc.
Recently [15] presented a heuristic and feature-based ap-
proach to identify dynamic objects in range scans. The
corresponding measurements are then filtered out during
2d scan registration.

In this paper we present a probabilistic approach to filter-
ing people out of sensor data and techniques to incorpo-
rate the results of the filtering into the mapping process.
Our approach has several desirable properties. First, by
incorporating the results of the people tracker, the align-
ment of the scans becomes more robust. Additionally, the
resulting maps are more accurate, since measurements
corrupted by people walking by are filtered out. Com-
pared to [15] our approach uses a tracking technique and
therefore is able to predict the positions of the person’s
even in situations in which the corresponding features are
temporarily missing. Empirical results, described in this
paper, illustrate that our approach succeeds in learning
accurate large-scale 2d and 3d maps of populated envi-
ronments with range scanners even if several persons are
in the vicinity of the robot.

This paper is organized as follows. In the next section
we briefly present our approach to tracking multiple peo-
ple in range scans. The third and forth section describes
our mapping technique and how the results of the peo-
ple tracker are integrated into the mapping process. The
fifth section contains several experiments describing the
advantages of our approach to learning 2d and 3d maps
with range scanners.

2 Sample-based Joint Probabilistic Data Asso-
ciation Filters (SJPDAFs)

To detect people and track people in the vicinity of the
robot, our system applies a sample-based variant of Prob-
abilistic Data Association Filters (JPDAFs) [3]. Suppose



there areK persons and letXt = {xt
1, . . . , xt

K} be the
states of these persons at timet. Note that eachxt

i is a
random variable ranging over the state space of a single
person. Furthermore, letZ(t) = {z1(t), . . . , zmt

(t)} de-
note a feature set observed at timet, wherezj(t) is one
feature of such a set.Zt is the sequence of all feature
sets up to timet. The key question when tracking multi-
ple persons is how to assign the observed features to the
individual objects.

In the JPDAF framework, a joint association eventθ is a
set of pairs(j, i) ∈ {0, . . . ,mt} × {1, . . . ,K}. Eachθ
uniquely determines which feature is assigned to which
object. Please note, that in the JPDAF framework, the
featurez0(t) is used to model situations in which an ob-
ject has not been detected, i.e. no feature has been found
for objecti. Let Θji denote the set of all valid joint asso-
ciation events which assign featurej to the objecti. At
time t, the JPDAF considers the posterior probability that
featurej is caused by objecti:

βji =
∑

θ∈Θji

P (θ | Zt). (1)

According to [11], we can compute theβji as

βji =
∑

θ∈Θji

α γ(mt−|θ|)
∏

(j,i)∈θ

p(zj(t) | xt
i). (2)

It remains to describe, how the beliefsp(xt
i) about the

states of the individual objects are represented and up-
dated. In our approach [11], we use sample-based repre-
sentations of the individual beliefs. The key idea underly-
ing all particle filters is to represent the densityp(xt

i | Zt)
by a setSt

i of N weighted, random samples orparticles
st

i,n(n = 1 . . . N). A sample set constitutes a discrete
approximation of a probability distribution. Each sample
is a tuple(xt

i,n, wt
i,n) consisting of statext

i,n and an im-
portance factorwt

i,n. Thepredictionstep is realized by
drawing samples from the set computed in the previous
iteration and by updating their state according to the pre-
diction modelp(xt

i | xt−1
i , δt). In thecorrectionstep, a

feature setZ(t) is integrated into the samples obtained
in the prediction step. Thereby we consider the assign-
ment probabilitiesβji. In the sample-based variant, these
quantities are obtained by integrating over all samples:

p(zj(t) | xt
i) =

1
N

N∑
n=1

p(zj(t) | xt
i,n). (3)

Given the assignment probabilities we now can compute
the weights of the samples

wt
i,n = α

mt∑
j=0

βjip(zj(t) | xt
i,n), (4)

whereα is a normalizer ensuring that the weights sum up
to one over all samples. Finally, we obtainN new sam-
ples from the current samples by bootstrap resampling.

Figure 1: Typical laser range finder scan. Two of the
local minima are caused by people walking by the robot
(left image). Features extracted from the scan, the grey-
level represents the probability that a person’s legs are
at the position (center). Occlusion grid, the grey-level
represents the probability that the position is occluded
(right image).

Figure 2: From left to right, top-down: the occupancy
map for the current scan, the occupancy map for the pre-
vious scan, the resulting difference map, and the fusion
of the difference map with the feature maps for the scan
depicted in Figure 1

For this purpose we select every samplext
i,n with proba-

bility wt
i,n.

In our system we apply the SJPDAF to estimate the tra-
jectories of persons in range scans. Since the laser range
scanners mounted on our platforms are at a height of
approx. 40 cm, the beams are reflected by the legs of
the people which typically appear as local minima in the
scans. These local minima are used as the features of the
SJPDAF. See left and middle part of Figure 1. Unfor-
tunately, there are other objects which produce patterns
similar to people. To distinguish these static objects from
moving people our system additionally considers the dif-
ferences between occupancy probability grids built from
consecutive scans. Static features are filtered out. This is
illustrated in Figure 2.

Finally, we have to deal with possible occlusions. We
therefore compute a so-called “occlusion map” contain-
ing for each position in the vicinity of the robot the prob-
ability that the corresponding position is not visible given
the current range scan. See right part of Figure 1.

3 Computing Consistent Maps

Our current system is able to learn 2d and 3d maps us-
ing range scans recorded with a mobile robot. In both
cases, the approach is incremental. Mathematically, we
calculate a sequence of posesl̂1, l̂2, . . . and correspond-
ing maps by maximizing the marginal likelihood of the



t-th pose and map relative to the(t−1)-th pose and map:

l̂t = argmax
lt

{p(st | lt, m̂(l̂t−1, st−1))

·p(lt | ut−1, l̂t−1)} (5)

In this equation the termp(st | lt, m̂(l̂t−1, st−1)) is the
probability of the most recent measurementst given the
poselt and the map̂m(l̂t−1, st−1) constructed so far. The
termp(lt | ut−1, l̂t−1) represents the probability that the
robot is at locationlt given the robot was previously at
position l̂t−1 and has carried out (or measured) the mo-
tion ut−1. The resulting posêlt is then used to generate
a new mapm̂ via the standard incremental map-updating
function presented in [9]:

m̂(l̂t, st) = argmax
m

p(m | l̂t, st) (6)

One disadvantage of the approach described above lies in
the fact, that the complexity of a single maximization step
is in O(t), since every measurement is compared with all
previous measurements. In our system, we therefore use
a map

m̂(l̂t−1,∆t, st−1,∆t) =

m̂(l̂t−1, . . . , l̂t−∆t, st−1, . . . , st−∆t) (7)

that is constructed based of the∆t most recent mea-
surements only. This is motivated by two observations.
First, proximity sensors have only a limited range so that
the system generally cannot cover the whole environment
with a single scan. Additionally, objects in the environ-
ment lead to occlusions so that many aspects of a given
area are invisible from other positions. Therefore, mea-
surements obtained at distant places often provide no in-
formation to maximize (5).

The overall approach can be summarized as follows: At
any pointt − 1 in time the robot is given an estimate of
its posel̂t−1 and a mapm̂(l̂t−1,∆t, st−1,∆t). After the
robot moved further on and after taking a new measure-
mentst, the robot determines the most likely new posel̂t.
It does this by trading off the consistency of the measure-
ment with the map (first term on the right-hand side in
(5)) and the consistency of the new pose with the control
action and the previous pose (second term on the right-
hand side in (5)). The map is then extended by the new
measurementst, using the posêlt as the pose at which
this measurement was taken.

It remains to describe how we actually maximize Equa-
tion (5). Our system applies two different approaches de-
pending on whether the underlying scans are 2d or 3d
scans.

3.1 Two-dimensional Scan Alignment

Our algorithm to 2d scan matching is an extension of the
approach presented in [14]. To align a scan relative to the

Figure 3: Two-dimensional scan alignment. Map created
out of the∆t most recent scans (left image), measurement
st obtained at timet (center image) and resulting align-
ment (right image).

∆t most recent scans, we first construct a local grid map
m̂(l̂t−1,∆t, st−1,∆t) out of the∆t most recent scans. Ad-
ditionally to [14] we integrate over small Gaussian errors
in the robot pose when computing the maps. This avoids
that many cells remain unknown especially if∆t is small,
increases the smoothness of the likelihood function to be
optimized and thus results in better alignments. The left
image of Figure 3 shows a typical map constructed out of
100 scans. The darker a location, the more likely it is that
the corresponding place in the environment is covered by
an obstacle. Please note that the map appears slightly
blurred according to the integration over small pose er-
rors. To maximize the likelihood of a scan with respect
to this map, we apply a hill climbing strategy. A typi-
cal scan is shown in the center of Figure 3. The optimal
alignment of this scan with respect to the map is shown
in the right image of Figure 3. As can be seen from the
figure, the alignment is quite accurate.

3.2 Aligning Three-dimensional Range Scans

Unfortunately, a three-dimensional variant of the maps
used for the 2d scan alignment would consume too much
memory in the case of three dimensions. Therefore this
approach is not applicable to 3d scan alignment. Instead,
we represent the 3d maps as triangle meshes constructed
from the individual scans. We create a triangle for three
neighboring scan points, if the maximum length of an
edge does not exceed a certain threshold which depends
on the length of the beams.

To compute the most likely position of a new 3d scan
with respect to the current 3d model, we apply an ap-
proximative physical model of the range scanning pro-
cess. Obviously, an ideal sensor would always measure
the correct distance to the closest obstacle in the sensing
direction. However, sensors and models generated out
of range scanners are noisy. Therefore, our systems in-
corporates measurement noise and random noise to deal
with errors typically found in 3d range scans. First, we
generally have normally distributed measurement errors
around the distance “expected” according to the current
position of the scanner and the given model of the envi-
ronment. Additionally, we observe randomly distributed
measurements because of errors in the model and because
of deviations in the angles between corresponding beams



Figure 4: The probabilistic measurement model given as
a mixture of a Gaussian and a uniform distribution and
its approximation by piecewise linear functions.

in consecutive scans. Therefore, our model consists of a
mixture of a Gaussian with a uniform distribution. The
mode of the Gaussian corresponds to the expected dis-
tance given the current map. Additionally, we use a uni-
form distribution to deal with maximum range readings.
To save computation time, we approximate the resulting
distribution by a mixture of triangular distributions.

Whereas this approach saves memory, it requires more
computation time than the technique for 2d scan align-
ment. However, in practical experiments we found out
that this technique has two major advantages over the
Iterative Closest Point (ICP) algorithm [1, 5] and other
scan-matching techniques which are crucial in the con-
text of 3d mapping. First, it exploits the fact that each
laser beam is a ray that does not go through surfaces and
therefore does not require special heuristics for dealing
with occlusions. Second, our approach also exploits the
information provided by maximum range readings since
beams going through surfaces in the map reduce the like-
lihood of an alignment.

To compute the likelihood of a beamb given the current
mapm̂(l̂t−1,∆t, st−1,∆t), we first determine the expected
distancee(b, m̂(l̂t−1,∆t, st−1,∆t)) to the closest obstacle
in the measurement direction. This is efficiently carried
out using ray-tracing techniques based on a spatial tiling
and indexing [10] of the current map.

Then we compute the likelihood of the measured distance
given the expected distance, i.e. we determine the quan-
tity p(b | e(b, m̂(l̂t−1,∆t, st−1,∆t))) using the mixture
computed fore(b, m̂(l̂t−1,∆t, st−1,∆t)). Assuming that
the beams contained inst are independent, we compute
the likelihood of the whole scan as

p(st | lt, m̂(l̂t−1,∆t, st−1,∆t)) =∏
b∈st

p(b | e(b, m̂(l̂t−1,∆t, st−1,∆t))). (8)

To maximize Equation 5 we again apply a hill climbing
technique.

4 Integrating People Tracking Results into the
Map Building Process

The goal of integrating the results of the people tracker
into a mapping process can be divided in two subjects:

1. to improve the alignment between the scans and

2. to filter out corrupted measurements originating
from people walking in the vicinity of the robot.

To consider the estimated states of the persons during
the scan alignment, we need to know the probability
P (hitx,y|Xt) that a beam ending at position〈x, y〉 is re-
flected by a person. In our current implementation, we
consider the individual persons independently:

P (hitx,y|Xt) = 1 −
K∏

i=1

(
1 − P (hitx,y|xt

i)
)

(9)

whereP (hitx,y|xt
i) is the likelihood that a beam ending at

position〈x, y〉 is reflected by a person, given the statext
i.

To compute this quantity, we construct a two-dimensional
histogram by counting how many samples ofSt

i repre-
senting the belief ofxt

i fall into each bin. We then normal-
ize the histogram and compute the probabilityP (hitb|xt

i)
that a beamb is reflected by a particular personxt

i as
the probability contained in the histogram bin〈xb, yb〉 in
which the beam ends. Accordingly, we have

P (hitb|Xt) = P (hitxb,yb
|Xt). (10)

During the scan alignment we then weight each beam by
the probability1 − P (hitb|Xt).

The second task is to filter out beams reflected by per-
sons to avoid spurious objects in the resulting maps. In
our current system we compute a bounding box for each
sample setSt

i and integrate only those beams whose end-
point does not lie in any of the bounding boxes. To cope
with the possible time delay of the trackers, we also ig-
nore corresponding beams of several previous and next
scans before and after the person was detected. Please
note, that one generally can be more conservative during
the map generation process, because the robot generally
scans every part of the environment quite often. However,
during scan alignment, a too conservative strategy results
in too few remaining beams which reduces the accuracy
of the estimated positions.

5 Experiments

The approach described above has been implemented and
tested on different robotic platforms and based on ex-
tensive off-line experiments carried out with recorded
data. The goal of the experiments described in this sec-
tion is to illustrate that the integration of people detec-
tion techniques into the mapping process leads to bet-
ter maps since the resulting alignments are more accu-
rate and since beams reflected by persons are filtered out



(a) (b) (c) (d)

Figure 5: Maps created without (a and c) and with (b and d) people filtering.

Figure 6: Number of maps with translational error larger than
200cm computed without people filtering (light grey) and using
people filtering (dark grey) for different additional noises.

which reduces the number of spurious objects. Our im-
plementation can detect people in real-time, so that the
time to map an environment is not influenced by using
this information.

5.1 Learning 2d Maps

The first experiments were carried out using an RWI B21
and a Pioneer I robot in a 25m x 4m large corridor envi-
ronment and in the 30m x 45m large hallway of a mu-
seum. In both experiments several people were walk-
ing through the environment leading to a huge amount
of corrupted readings. Figures 5(a) and 5(c) depict the
maps obtained by integration all the input data. As can
be seen from the figures, there are a lot of beams that
were reflected by the persons. The maps resulting from
our system after filtering out people are illustrated in Fig-
ures 5 (b) and 5 (d). Apparently, the number of cor-
rupted readings is reduced considerably. Please note that
there were 15 people walking through the museum hall-
way while the robot was mapping it. Some of the people
were forming an almost static crowd so that they could
not be detected by our people tracker. Additionally, the
columns in this hallway produce similar features as hu-
mans do. Nevertheless, our approach could seriously re-
duce the number of readings corrupted by people.

5.2 Improved Robustness

Besides the fact that the resulting maps are better, filtering
people increases the robustness of the mapping process.
To demonstrate this we have carried out a series of ex-
periments in which we added random noise to the poses
in the input data and compared the performance of our

Figure 7: Pioneer 2 AT robot used for 3d mapping (left) and
typical situation in which people walk through the scene during
mapping (right).

Figure 8: Spurious objects caused by people.

mapping strategy with and without people filtering. We
performed 50 experiments for each noise level. Figure 6
shows the numbers of maps containing a translational er-
ror larger than 200cm for the different noise values. As
can bee seen by this statistic, using the information of the
people tracker significantly increases the accuracy of the
position estimation during the mapping process.

5.3 Learning 3d Maps

The last experiment was carried out to analyze the per-
formance of our system when learning three-dimensional
maps. For this experiment we used the Pioneer 2 AT
platform (see left image of Figure 7) equipped with two
laser range-scanners. Whereas the first scanner, that is
mounted in front of the robot, is used for tracking peo-
ple, the second scanner, that is mounted on an AMTEC
wrist module, is used to scan the 3d structure of the en-
vironment. The right image of Figure 7 shows a typical
scenario during this experiment performed on our univer-
sity campus. Here, several people were walking through
the scene while the robot was scanning it. Figure 9 (left)
depicts the model obtained after aligning two scans of
the same environment. In this model, the people appear
as three-dimensional curves. Figure 8 contains a mag-



Figure 9: Three-dimensional map of a building (left) and people filtered (right).

nified view of the corresponding portion of the map. If
we integrate the information obtained from the people
tracker, however, these spurious objects are completely
removed (see right image of Figure 9). The number of
triangles in these models are 416.800 without filtering
and 412.500 with filtering. Please note, that this exper-
iment also illustrates the advantage of using a tracking
system over a pure feature-based approach. Due to the
displacement of the scanners, people are not always visi-
ble in both scanners. Accordingly, a purely feature-based
approach like [15] will add objects to the 3d model when-
ever they are not detected by the first scanner. Our sys-
tem, however, can predict positions of persons in the case
of occlusions and thus can filter out the corresponding
readings even if the features are missing.

6 Conclusions

In this paper we presented a probabilistic approach to
mapping in populated environments. The key idea of this
technique is to use a joint probabilistic data association
filter to track people in the data obtained with the sensors
of the robot. The results of the people tracking are inte-
grated into the scan alignment process and into the map
generation process. This leads to two different improve-
ments. First, the resulting pose estimates are better and
second, the resulting maps contain less spurious objects
than the maps created without filtering people.

Our technique has been implemented and tested on differ-
ent robotic platforms and for generating 2d and 3d maps.
The experiments demonstrate that our approach can se-
riously reduce the number of beams corrupted by people
walking through the environment. Additionally, exten-
sive simulation experiments illustrate that the pose esti-
mates are significantly better if the results of the tracking
system are incorporated during the pose estimation.
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