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Abstract ment are assumed to be independently drawn from a mix-
ture of multinomials. The mixing proportions are randomly
drawn for each document; the mixture components, or top-
ics, are shared by all documents. Thus, each document
reflects the components with different proportions. These
models are a powerful method of dimensionality reduction
for large collections of unstructured documents. Moreover
posterior inference at the document level is useful forrinfo
mation retrieval, classification, and topic-directed bsew

A family of probabilistic time series models is
developed to analyze the time evolution of topics
in large document collections. The approach is
to use state space models on the natural param-
eters of the multinomial distributions that repre-
sent the topics. Variational approximations based
on Kalman filters and nonparametric wavelet re-
gression are developed to carry out approximate

posterior inference over the latent topics. In addi- Ing.

tion to giving quantitative, predictive models of a Treating words exchangeably is a simplification that it is
sequential corpus, dynamic topic models provide  consistent with the goal of identifying the semantic themes
a qualitative window into the contents of a large within each document. For many collections of interest,
document collection. The models are demon- however, the implicit assumption of exchangeabitsc-
strated by analyzing the OCR’ed archives of the  umentsis inappropriate. Document collections such as
journal Scienceérom 1880 through 2000. scholarly journals, email, news articles, and search query

logs all reflect evolving content. For example, ®&ence

article “The Brain of Professor Laborde” may be on the

1 Introducti same scientific path as the article “Reshaping the Corti-
- Introduction cal Motor Map by Unmasking Latent Intracortical Connec-

Managing the explosion of electronic document archivedions,” but the study of neuroscience looked much different
requires new tools for automatica”y Organizing’ searghin in 1903 than it did in 1991. The themes in a document col-
indexing, and browsing large collections. Recent researclfction evolve over time, and it is of interest to explicitly
in machine learning and statistics has developed new tectinodel the dynamics of the underlying topics.

niques for finding patterns of words in document collec-| this paper, we develop a dynamic topic model which
tions using hierarchical probabilistic m_odels (Blei et, a_I. captures the evolution of topics in a sequentially orgahize
2003; McCallum et al., 2004; Rosen-Zvi et al., 2004; Grif- corpys of documents. We demonstrate its applicability by
fiths and Steyvers, 2004; Buntine and Jakulin, 2004; Bleh)y7ing over 100 years of OCR’ed articles from the jour-
and Lafferty, 2006). These models are called “topic mod-,5 Science which was founded in 1880 by Thomas Edi-
els” because the discovered patterns often reflect the undefy, and has been published through the present. Under this
lying topics which combined to form the documents. SUChmodeI, articles are grouped by year, and each year's arti-

hierarchical probabilistic models are easily generalimed e arise from a set of topics that have evolved from the
other kinds of data; for example, topic models have beefg; year's topics.
used to analyze images (Fei-Fei and Perona, 2005; Sivic
et al., 2005), biological data (Pritchard et al., 2000), andn the subsequent sections, we extend classical state space
survey data (Erosheva, 2002). models to specify a statistical model tdpic evolution

] We then develop efficient approximate posterior inference
In an exchangeable topic model, the words of each docUgchniques for determining the evolving topics from a se-

Appearing inProceedings of the3™ International Conference gugntlal collection of documents. Finally, W? pres.ent qual
on Machine LearningPittsburgh, PA, 2006. Copyright 2006 by itative results that demonstrate how dynamic topic models
the author(s)/owner(s). allow the exploration of a large document collection in new
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ways, and quantitative results that demonstrate greager pr o /\a Q
dictive accuracy when compared with static topic models. Q '\/ Q
' v '

2. Dynamic Topic M odels QH Q o Qe
While traditional time series modeling has focused on con- ' 2 ' 2 . P
tinuous data, topic models are designed for categorical ? CP CP
data. Our approach is to use state space models on the nat-
ural parameter space of the underlying topic multinomials, Qw Qw Qw
as well as on the natural parameters for the logistic nor- Mo N, N A
mal distributions used for modeling the document-specific
topic proportions. Q O O

B B B K

First, we review the underlying statistical assumptions of

a static topic model, such as latent Dirichlet allocation rigyre 1.Graphical representation of a dynamic topic model (for
(LDA) (Blei et al., 2003). Lets.x be K topics, each of  three time slices). Each topic's natural parametérs evolve
which is a distribution over a fixed vocabulary. In a static over time, together with the mean parametersof the logistic
topic model, each document is assumed drawn from th@ormal distribution for the topic proportions.

following generative process:

tion (Aitchison, 1982) to time-series simplex data (West

1. Choose topic proportion® from a distribution over
PIC proport! 1S TIDUH v and Harrison, 1997).

the (K — 1)-simplex, such as a Dirichlet.

2. For each word: In LDA, the document-specific topic proportiorts are
(a) Choose a topic assignmefit~ Mult (). drawn from a Dirichlet distribution. In the dynamic topic
(b) Choose a wordl’ ~ Mult(8.) model, we use a logistic normal with meanto express

uncertainty over proportions. The sequential structure be

. L ween models i in red with impl nami
This process implicitly assumes that the documents ar(ta ee odels is again captured with a simple dynamic

drawnexchangeabl§rom the same set of topics. For many model IN: 521 5
collections, however, the order of the documents reflects | a1 ~ N(ag-1,0°1). @)

an evolving set of topics. In a dynamic topic model, we oy simplicity, we do not model the dynamics of topic cor-

suppose that the data is divided by time slice, for examplgg|ation, as was done for static models by Blei and Lafferty
by year. We model the documents of each slice witi-a  (2006).

component topic model, where the topics associated with

slicet evolve from the topics associated with slice 1. By chaining together topics and topic proportion distribu-
tions, we have sequentially tied a collection of topic mod-

For a K-component model with” terms, letj, .. denote  g|s. The generative process for sliaef a sequential corpus
the V-vector of natural parameters for topicin slicet. s thus as follows:

The usual representation of a multinomial distributionyis b
its mean parameterization. If we denote the mean param- .
eter of aV/-dimensional multinomial byr, the ith com- 1. Draw topicsf, | 51 NN(/B;*“UQI)'
ponent of thenatural parametetis given by the mapping 2+ Drawai |a;1 ~ N(a;-1,6°1).
B; = log(m;/my). In typical language modeling applica- 3. For each document:
tions, Dirichlet distributions are used to model uncettain (@) Drawn ~ N (ay,a®I)
about the distributions over words. However, the Dirichlet (b) For each word:
is not amenable to sequential modeling. Instead, we chain .

4 i. Draw Z ~ Mult(7(n)).
the natural parameters of each topic; in a state space .
model that evolves with Gaussian noise; the simplest ver- ii. Draw Wy an ~ Mult(7(5;.2)).
sion of such a model is

Note thatr maps the multinomial natural parameters to the

Bee | Bi—1 e ~ N (Be—1,k,0°1). (1) mean parameters|Sy. ), = %

Our approach is thus to model sequences of compositiondlhe graphical model for this generative process is shown in
random variables by chaining Gaussian distributions in @igure 1. When the horizontal arrows are removed, break-
dynamic model and mapping the emitted values to the siming the time dynamics, the graphical model reduces to a set
plex. This is an extension of the logistic normal distribu- of independent topic models. With time dynamics, ftie
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Q)
Q)
Q)

topic at slicet has smoothly evolved from thih topic at
slicet — 1.

VAN
For clarity of presentation, we now focus on a model with o
K dynamic topics evolving as in (1), and where the topic
proportion model is fixed at a Dirichlet. The technical is-
sues associated with modeling the topic proportions in a

~
time series as in (2) are essentially the same as those for C:) CWV)
chaining the topics together. P P
w w
N N
(]) ?
NV

3. Approximate I nference

Working with time series over the natural parameters en-
ables the use of Gaussian models for the time dynamics;
however, due to the nonconjugacy of the Gaussian and
multinomial models, posterior inference is intractable. |
this section, we present a variational method for approx-
imate posterior inference. We use variational methods as 3 vg Vg
deterministic alternatives to stochastic simulation, in o
der to handle the large data sets typical of text analysisrigure 2.A graphical representation of the variational approxima-
While Gibbs sampling has been effectively used for statidion for the time series topic model of Figure 1. The variational
topic models (Griffiths and Steyvers, 2004), nonconjugacyparameters? and & are thought of as the outputs of a Kalman
makes sampling methods more difficult for this dynamicfilter, or as observed data in a nonparametric regression setting.
model.

K

The idea behind variational methods is to optimize the free
parameters of a distribution over the latent variables ab th yariables follows the same form as in Blei et al. (2003).

the distribution is close in Kullback-Liebler (KL) diver- Each propor“on Vectcﬂ't d is endowed with a free Dirichlet
gence to the true posterior; this distribution can then prarameteryt 4 €ach topic indicatot, 4., is endowed with
used as a substitute for the true posterior. In the dynamig free multinomial parameter, 4 ., and optimization pro-
topic model, the latent variables are the topigs, mixture  ceeds by coordinate ascent. The updates for the document-
proportions, 4, and topic indicators, 4 ,. The variational |eve| variational parameters have a closed form; we use
distribution reflects the group structure of the latent-vari the Conjugate gradient method to Optimize the topic_|eve|
ables. There are variational parameters for each topi€’s sgariational observations. The resulting variational appr

quence of multinomial parameters, and variational paramimation for the natural topic paramete§8y 1, . . ., Br.r }
eters f0r eaCh Of the dOCUment IeVel Iatent VarlableS Th%corporates the t|me dynam|cs we deSC”be one approx_
approximate variational posterior is imation based on a Kalman filter, and a second based on
% wavelet regression.
T aBens - Brr | Beas- -\ Brr) x 3) o -
ke 3.1. Variational Kalman Filtering
oL o The view of the variational parameters as outputs is
U H 9(0r.a|70.a) [1n1 a(ztain [ dran) | - based on the symmetry properties of the Gaussian density,

- fuxn(z) = fzn(n), which enables the use of the standard
In the commonly used mean-field approximation, each laforward-backward calculations for linear state space mod-
tent variable is considered independently of the others. Irels. The graphical model and its variational approximation
the variational distribution of 5x 1, ..., Bk, v}, however, are shown in Figure 2. Here the triangles denote varia-
we retain the sequential structure of the topic by positingional parameters; they can be thought of as “hypothetical
a dynamic model with Gaussian “variational observations”outputs” of the Kalman filter, to facilitate calculation.
{6’“1.’ - Brr}. These parameters are fit to minimize the To explain the main idea behind this technique in a sim-
KL divergence between the resulting posterior, which is

Gaussian, and the true posterior, which is not GaussialﬁIer setting, consider the model where unigram mogels

(A similar technique for Gaussian processes is describe jin the natural parameterization) evolve over time. In this
in Snelson and Ghahramani, 2006.) model there are no topics and thus no mixing parameters.

The calculations are simpler versions of those we need for
The variational distribution of the document-level latentthe more general latent variable models, but exhibit the es-
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sential features. Our state space model is taken = 27 andJ = 7. To be consistent with our earlier
notation, we assume that
Bt | Br-1 ~ N(ﬁtfly 021) R ~
wen | Br ~ Mult(m(5,)) be =+ ber

wheree; ~ A(0,1). Our variational wavelet regression
X algorithm estimate$§g; }, which we view as observed data,
BelBe ~ N(Bi,0T) just as in the Kalman filter method, as well as the noise
level 7.

and we form the variational state space model where

The variational parameters afe and#,. Using standard . . .
P aoe "t 9 For concreteness, we illustrate the technique using the Haa

Kalman filter calculations (Kalman, 1960), the forward let b Daubechi let d wal
mean and variance of the variational posterior are given byvave et basis; Daubechies wavelets are used in our actual
examples. The model is then

= gﬁtml:t) = ) J—12-1
W I SR By = ag(x) + Dbk ()
_ 1 t t
<Vt1+02+ﬁt2>mtl+( Vt1+02+ﬁt2>ﬁt jz::OkZ:O Y
. - = <z<
Vi = E((B—m)?|Bia) wherez; = t/n, p(x) =1for0 <z <1,
2
vy 2 -1 fo<z<i
= ([——————— | (Vi_ _ <z <3,
(Vt_1+a2+f/3>< -1+ ) v(@) { 1 ifl<a<l

with initial conditions specified by fixethy andV,. The and v, (z) = 29/2¢(20z — k). Our variational estimate
backward recursion then calculates the marginal mean ang, the posterior mean becomes
variance of; given 61 .7 as

. J—127-1
mi-1 = E(Bi-1|Bur) = e = ag(ze) + Y > Djxthje(e).
o2 (1 o2 . j=0 k=0
Vi1 + o2 et Vi1 + o2 e A .

wherea = n=' Y | 3;, andD,,, are obtained by thresh-
olding the coefficients

Vicr = E((Bi—1 — mu-1)? | Brr) o
2 — — 3 .
— Vit (Vi) (Vi — (Via + 0%)) 2= 3 3 B

Vie1 + 02

To estimataét we use gradient ascent, as for theAKaIman
filter approximation, requiring the derivativésn, /00;. If
soft thresholding is used, then we have that

with initial conditionsii; = mr andViy = V. We ap-
proximate the posterigr(5;.7 | wy.7) using the state space
posteriorg(51.7 | f1.7). From Jensen’s inequality, the log-

likelihood is bounded from below as Pys J_19i_1 ah
o= o)+ XY T o).
logp(di.r) = (4) 0P 365 = im0 90
5 p(Br.r) pldiT | Br7)
q(ﬁl:T | ﬁl:T) 10g ( = dﬁl:T . ~ A _ 1
/ Q(ﬂl:T | BlzT) with 804/855 n and
T 1 .
- A aik(@s) [ Zje| > A
= E,1 . E,l d H 0D;/0Bs = " o
g ng(ﬂl.T)JFt:Zl glogp(ds | B;) + H(q) ik/ OB {0 othenise

Details of optimizing this bound are given in an appendix. Note also thatZ;,| > A if and only if |ﬁjk‘ > 0. These
derivatives can be computed using off-the-shelf software
3.2. Variational Wavelet Regression for the wavelet transform in any of the standard wavelet

The variational Kalman filter can be replaced with varia- bases.

tional wavelet regression; for a readable introductionsta Sample results of running this and the Kalman variational
dard wavelet methods, see Wasserman (2006). We rescaddgorithm to approximate a unigram model are given in
time so it is between 0 and 1. For 128 yearsSofencave  Figure 3. Both variational approximations smooth out the
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Figure 3.Comparison of the Kalman filter (top) and wavelet regression (bottongti@al approximations to a unigram model. The
variational approximations (red and blue curves) smooth out the lagzb#tions in the unigram counts (gray curves) of the words
shown, while preserving the sharp peaks that may indicate a significange of content in the journal. The wavelet regression is able
to “superresolve” the double spikes in the occurrence of Einstein in tB@slqThe spike in the occurrence of Darwin near 1910 may
be associated with the centennial of Darwin’s birth in 1809.)

local fluctuations in the unigram counts, while preservingl15,955. To explore the corpus and its themes, we estimated
the sharp peaks that may indicate a significant change &f 20-component dynamic topic model. Posterior inference
content in the journal. While the fit is similar to that ob- took approximately 4 hours on a 1.5GHZ PowerPC Mac-
tained using standard wavelet regression to the (normaintosh laptop. Two of the resulting topics are illustrated i
ized) counts, the estimates are obtained by minimizing thé&igure 4, showing the top several words from those topics
KL divergence as in standard variational approximations. in each decade, according to the posterior mean number of
. . . . occurrences as estimated using the Kalman filter varidtiona
In the dynamic topic model of Section 2, the algorithms L . X
approximation. Also shown are example articles which ex-

are essentially the same as those described above. Ho\f\wli_bit those topics through the decades. As illustrated, the

ever, rather than fitting the observations from true ob- . e
. model captures different scientific themes, and can be used
served counts, we fit them from expected counts under the -
0 inspect trends of word usage within them.

document-level variational distributions in (3).
To validate the dynamic topic model quantitatively, we con-
sider the task of predicting the next yeaSzfiencegiven all

the articles from the previous years. We compare the pre-
We analyzed a subset of 30,000 articles frSoience250  dictive power of three 20-topic models: the dynamic topic
from each of the 120 years between 1881 and 1999. Oumodel estimated from all of the previous years, a static
data were collected by JISTORvw. j st or . or g), anot-  topic model estimated from all of the previous years, and a
for-profit organization that maintains an online scholarly static topic model estimated from the single previous year.
archive obtained by running an optical character recogniAll the models are estimated to the same convergence crite-
tion (OCR) engine over the original printed journals. JS-rion. The topic model estimated from all the previous data
TOR indexes the resulting text and provides online accesand dynamic topic model are initialized at the same point.

\t,(;otrr:jeszgag:ed images of the original content through key"rhe dynamic topic model performs well; it always assigns

higher likelihood to the next year’s articles than the other
Our corpus is made up of approximately 7.5 million words.two models (Figure 5). It is interesting that the predictive
We pruned the vocabulary by stemming each term to itpower of each of the models declines over the years. We
root, removing function terms, and removing terms that oc-can tentatively attribute this to an increase in the rate of
curred fewer than 25 times. The total vocabulary size ispecialization in scientific language.

4. Analysis of Science
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1881 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980
force motion magnet force atom ray energy energy radiat electron electron
energy force electric magnet theory measure measure radiat energy energy energy
motion magnet measure theory electron energy electron ray electron atom particle
differ energy force electric energy theory light electron measure measure field
light measure theory atom measure light atom measure ray radiat radiat
measure differ system system ray wave particle atom atom field model
magnet direct motion measure electr radiat ray particle field ray atom
direct line line line line atom radiat two two model two
matter result point energy force electric point light particle particle ray
result light differ body value value theory absorpt observe magnet measure

1881 On Matter as a form of Energy
1892 Non-Euclidean Geometry
1900 On Kathode Rays and Some Related Phenomena
1917 “Keep Your Eye on the Ball"
b ) ’ 1920 The Arrangement of Atoms in Some Common Metals
n H inl 3 4 by 1933 Studies in Nuclear Physics
Atomic PhYSICS 3 g e $ 1943 Aristotle, Newton, Einstein. ||
1950 Instrumentation for Radioactivity
1965 Lasers
1975 Particle Physics: Evidence for Magnetic Monopole Obtained
1985 Fermilab Tests its Antiproton Factory
1999 Quantum Computing with Electrons Floating on Liquid Helium

quantum

T T T T T T T
1880 1900 1920 1940 1960 1980 2000

1881 1890 1910 1920

1930 1940 1950 1960 1970

brain movement it record respons response respons neuron
movement eye brain sound muscle nerve record stimulate cell active
action right sound muscle sound stimulate stimulate record potential brain
right hand nerve active movement response nerve condition stimul cell
eye brain active nerve response muscle muscle active neuron fig
hand left muscle stimulate nerve electrode active potential active response
left action left fiber frequency active frequency stimulus nerve channel
muscle muscle eye reaction fiber brain electrode nerve eye receptor
nerve sound sound right brain active fiber potential subject record synapse
sound experiment muscle nervous response brain otential stud e abstract signal

1887 Mental Science

1900 Hemianopsia in Migraine

1912 A Defence of the **"New Phrenology"

1921 The Synchronal Flashing of Fireflies

1932 Myoesthesis and Imageless Thought

1943 Acetylcholine and the Physiology of the Nervous System
1952 Brain Waves and Unit Discharge in Cerebral Cortex

1963 Errorless Discrimination Learning in the Pigeon

1974 Temporal Summation of Light by a Vertebrate Visual Receptor
1983 Hysteresis in the Force-Calcium Relation in Muscle

1993 GABA-Activated Chloride Channels in Secretory Nerve Endings

"Neuroscience"

1880 1900 1920 1940 1960 1980 2000

Figure 4.Examples from the posterior analysis of a 20-topic dynamic model estinfiatan the Sciencecorpus. For two topics, we
illustrate: (a) the top ten words from the inferred posterior distribution ayéam lags (b) the posterior estimate of the frequency as a
function of year of several words from the same two topics (c) exarieles throughout the collection which exhibit these topics.
Note that the plots are scaled to give an idea of the shape of the trajectiny wbrds’ posterior probability (i.e., comparisons across
words are not meaningful).

5. Discussion Gaussian model, but it would be natural to include a drift

i i ) term in a more sophisticated autoregressive model to ex-
We have developed sequential topic models for dlscre:%I
i

data b . e . h | licitly capture the rise and fall in popularity of a topia, o
ata by using Ga_tussngm t'm? SEries on_t € hatura Paramy the use of specific terms. Another variant would allow
eters of the multinomial topics and logistic hormal topic

. . _ ; for heteroscedastic time series.
proportion models. We derived variational inference algo-

rithms that exploit existing techniques for sequentiabgat Perhaps the most promising extension to the methods pre-
we demonstrated a novel use of Kalman filters and wavelegented here is to incorporate a model of how new topics in
regression as variational approximations. Dynamic topidhe collection appear or disappear over time, rather than as
models can give a more accurate predictive model, and alssuming a fixed number of topics. One possibility is to use a
offer new ways of browsing large, unstructured documensimple Galton-Watson or birth-death process for the topic
collections. population. While the analysis of birth-death or branching

Th hat th Kd ibed h bprocesses often centers on extinction probabilities, here
ere are many yvaygt "’.ltt € work described nere can By 4 would be to find documents that may be responsible
extended. One direction is to use more sophisticated sta

; r spawning new themes in a collection.
space models. We have demonstrated the use of a simple P g
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data PhD thesis, Carnegie Mellon University, Depart-
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McCallum, A., Corrada-Emmanuel, A., and Wang, X.
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(2004). The author-recipient-topic model for topic and
Year role discovery in social networks: Experiments with En-
ron and academic email. Technical report, University of

Figure 5. This figure illustrates the performance of using dy- Massachusetts, Amherst.

namic topic models and static topic models for prediction. For

each year between 1900 and 2000 (at 5 year increments), we eBritchard, J., Stephens, M., and Donnelly, P. (2000). infer

timated three models on the articles through that year. We then ence of population structure using multilocus genotype

computed the variational bound on the negative log likelihood of data.Genetics 155:945—-959.

next year’s articles under the resulting model (lower numbers are

better). DTM is the dynamic topic model; LDA-prev is a static Rosen-zvi, M., Griffiths, T., Steyvers, M., and Smith, P.

topic model estimated on just the previous year's articles; LDA-  (5004)  The author-topic model for authors and docu-

all is a static topic model estimated on all the previous articles. ments. InProceedings of the 20th Conference on Un-
certainty in Artificial Intelligencepages 487-494. AUAI
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log p(dy.7). The first term of the righthand side of (5) is
T
vr
> Eqlogp(Bi]fi1) = ——-
t=1
T
1
~503 Z

T
“= (1og 0 + log 27) ——Zumt a2

(log % +log 27r)

ﬁt 1 (515 - ﬁt—l)

_% XT: Tr (Vi) + % (Tr (Vo) = Tr (V)
t=1

using the Gaussian quadratic form identity

Eomy(z—p) TSz - p)
(m =) S m —p) +Tr (2"

V).

The second term of (5) is

T
Z Eqlogp(de | B¢) =
t=1

Z Z Niw B g (ﬂtw — log Z exp(ﬁtw)>

t=1 w
T
2 :2 : ~ F—1
Z N M — Mg Ct
t=1 w

T

+Znt

t=1

Z eXp(mtw + ‘Zw/2)

w

— ny¢ log ét

wheren; = > n,, introducing additional variational
parameters,.. The third term of (5) is the entropy

T

1 ~ T
Z (§1og|‘/}| + 510g27r)

H(q)

T
1 ~ TV
3 él Ew log Vi + - log 27r.

To maximize the lower bound as a function of the varia-

Next, we maximize with respect 10

(B, D)
0B
1 & om om
. (ﬁltw _ fflt—l,y;) ( Atw _ i—l,w)
o? ; 0Bsw 0Bsw
aTntw

B

+

(

The forward-backward eqqations for, can be used to de-
rive a recurrence fodm,/95,. The forward recurrence is
~2

( 2) 0P
v

l— )4

( Vi1 +0? +I9t2) Osit

with the initial conditionamo/aﬁs = 0. The backward
recurrence is then

Ntw — nt&t eXp(mtw + V;tw/2))

sw

t=1

2
Vi

v+ 02+ D

omy oms_q

90,

8T7Lt,1 ( 0'2 > 8mt,1
= 3 — +
aﬂs W_l + o aﬂ@
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tional parameters we use a conjugate gradient algorithm.
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Setting to zero and solving f@j gives
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