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Abstract
A family of probabilistic time series models is
developed to analyze the time evolution of topics
in large document collections. The approach is
to use state space models on the natural param-
eters of the multinomial distributions that repre-
sent the topics. Variational approximations based
on Kalman filters and nonparametric wavelet re-
gression are developed to carry out approximate
posterior inference over the latent topics. In addi-
tion to giving quantitative, predictive models of a
sequential corpus, dynamic topic models provide
a qualitative window into the contents of a large
document collection. The models are demon-
strated by analyzing the OCR’ed archives of the
journalSciencefrom 1880 through 2000.

1. Introduction

Managing the explosion of electronic document archives
requires new tools for automatically organizing, searching,
indexing, and browsing large collections. Recent research
in machine learning and statistics has developed new tech-
niques for finding patterns of words in document collec-
tions using hierarchical probabilistic models (Blei et al.,
2003; McCallum et al., 2004; Rosen-Zvi et al., 2004; Grif-
fiths and Steyvers, 2004; Buntine and Jakulin, 2004; Blei
and Lafferty, 2006). These models are called “topic mod-
els” because the discovered patterns often reflect the under-
lying topics which combined to form the documents. Such
hierarchical probabilistic models are easily generalizedto
other kinds of data; for example, topic models have been
used to analyze images (Fei-Fei and Perona, 2005; Sivic
et al., 2005), biological data (Pritchard et al., 2000), and
survey data (Erosheva, 2002).

In an exchangeable topic model, the words of each docu-
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ment are assumed to be independently drawn from a mix-
ture of multinomials. The mixing proportions are randomly
drawn for each document; the mixture components, or top-
ics, are shared by all documents. Thus, each document
reflects the components with different proportions. These
models are a powerful method of dimensionality reduction
for large collections of unstructured documents. Moreover,
posterior inference at the document level is useful for infor-
mation retrieval, classification, and topic-directed brows-
ing.

Treating words exchangeably is a simplification that it is
consistent with the goal of identifying the semantic themes
within each document. For many collections of interest,
however, the implicit assumption of exchangeabledoc-
umentsis inappropriate. Document collections such as
scholarly journals, email, news articles, and search query
logs all reflect evolving content. For example, theScience
article “The Brain of Professor Laborde” may be on the
same scientific path as the article “Reshaping the Corti-
cal Motor Map by Unmasking Latent Intracortical Connec-
tions,” but the study of neuroscience looked much different
in 1903 than it did in 1991. The themes in a document col-
lection evolve over time, and it is of interest to explicitly
model the dynamics of the underlying topics.

In this paper, we develop a dynamic topic model which
captures the evolution of topics in a sequentially organized
corpus of documents. We demonstrate its applicability by
analyzing over 100 years of OCR’ed articles from the jour-
nal Science, which was founded in 1880 by Thomas Edi-
son and has been published through the present. Under this
model, articles are grouped by year, and each year’s arti-
cles arise from a set of topics that have evolved from the
last year’s topics.

In the subsequent sections, we extend classical state space
models to specify a statistical model oftopic evolution.
We then develop efficient approximate posterior inference
techniques for determining the evolving topics from a se-
quential collection of documents. Finally, we present qual-
itative results that demonstrate how dynamic topic models
allow the exploration of a large document collection in new
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ways, and quantitative results that demonstrate greater pre-
dictive accuracy when compared with static topic models.

2. Dynamic Topic Models

While traditional time series modeling has focused on con-
tinuous data, topic models are designed for categorical
data. Our approach is to use state space models on the nat-
ural parameter space of the underlying topic multinomials,
as well as on the natural parameters for the logistic nor-
mal distributions used for modeling the document-specific
topic proportions.

First, we review the underlying statistical assumptions of
a static topic model, such as latent Dirichlet allocation
(LDA) (Blei et al., 2003). Letβ1:K beK topics, each of
which is a distribution over a fixed vocabulary. In a static
topic model, each document is assumed drawn from the
following generative process:

1. Choose topic proportionsθ from a distribution over
the(K − 1)-simplex, such as a Dirichlet.

2. For each word:

(a) Choose a topic assignmentZ ∼ Mult (θ).
(b) Choose a wordW ∼ Mult (βz).

This process implicitly assumes that the documents are
drawnexchangeablyfrom the same set of topics. For many
collections, however, the order of the documents reflects
an evolving set of topics. In a dynamic topic model, we
suppose that the data is divided by time slice, for example
by year. We model the documents of each slice with aK-
component topic model, where the topics associated with
slicet evolve from the topics associated with slicet− 1.

For aK-component model withV terms, letβt,k denote
the V -vector of natural parameters for topick in slice t.
The usual representation of a multinomial distribution is by
its mean parameterization. If we denote the mean param-
eter of aV -dimensional multinomial byπ, the ith com-
ponent of thenatural parameteris given by the mapping
βi = log(πi/πV ). In typical language modeling applica-
tions, Dirichlet distributions are used to model uncertainty
about the distributions over words. However, the Dirichlet
is not amenable to sequential modeling. Instead, we chain
the natural parameters of each topicβt,k in a state space
model that evolves with Gaussian noise; the simplest ver-
sion of such a model is

βt,k |βt−1,k ∼ N (βt−1,k, σ
2I) . (1)

Our approach is thus to model sequences of compositional
random variables by chaining Gaussian distributions in a
dynamic model and mapping the emitted values to the sim-
plex. This is an extension of the logistic normal distribu-
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Figure 1.Graphical representation of a dynamic topic model (for
three time slices). Each topic’s natural parametersβt,k evolve
over time, together with the mean parametersαt of the logistic
normal distribution for the topic proportions.

tion (Aitchison, 1982) to time-series simplex data (West
and Harrison, 1997).

In LDA, the document-specific topic proportionsθ are
drawn from a Dirichlet distribution. In the dynamic topic
model, we use a logistic normal with meanα to express
uncertainty over proportions. The sequential structure be-
tween models is again captured with a simple dynamic
model

αt |αt−1 ∼ N (αt−1, δ
2I) . (2)

For simplicity, we do not model the dynamics of topic cor-
relation, as was done for static models by Blei and Lafferty
(2006).

By chaining together topics and topic proportion distribu-
tions, we have sequentially tied a collection of topic mod-
els. The generative process for slicet of a sequential corpus
is thus as follows:

1. Draw topicsβt |βt−1 ∼ N (βt−1, σ
2I).

2. Drawαt |αt−1 ∼ N (αt−1, δ
2I).

3. For each document:

(a) Drawη ∼ N (αt, a
2I)

(b) For each word:

i. DrawZ ∼ Mult (π(η)).
ii. DrawWt,d,n ∼ Mult (π(βt,z)).

Note thatπ maps the multinomial natural parameters to the
mean parameters,π(βk,t)w =

exp(βk,t,w)
P

w
exp(βk,t,w) .

The graphical model for this generative process is shown in
Figure 1. When the horizontal arrows are removed, break-
ing the time dynamics, the graphical model reduces to a set
of independent topic models. With time dynamics, thekth



Dynamic Topic Models

topic at slicet has smoothly evolved from thekth topic at
slicet− 1.

For clarity of presentation, we now focus on a model with
K dynamic topics evolving as in (1), and where the topic
proportion model is fixed at a Dirichlet. The technical is-
sues associated with modeling the topic proportions in a
time series as in (2) are essentially the same as those for
chaining the topics together.

3. Approximate Inference

Working with time series over the natural parameters en-
ables the use of Gaussian models for the time dynamics;
however, due to the nonconjugacy of the Gaussian and
multinomial models, posterior inference is intractable. In
this section, we present a variational method for approx-
imate posterior inference. We use variational methods as
deterministic alternatives to stochastic simulation, in or-
der to handle the large data sets typical of text analysis.
While Gibbs sampling has been effectively used for static
topic models (Griffiths and Steyvers, 2004), nonconjugacy
makes sampling methods more difficult for this dynamic
model.

The idea behind variational methods is to optimize the free
parameters of a distribution over the latent variables so that
the distribution is close in Kullback-Liebler (KL) diver-
gence to the true posterior; this distribution can then be
used as a substitute for the true posterior. In the dynamic
topic model, the latent variables are the topicsβt,k, mixture
proportionsθt,d, and topic indicatorszt,d,n. The variational
distribution reflects the group structure of the latent vari-
ables. There are variational parameters for each topic’s se-
quence of multinomial parameters, and variational param-
eters for each of the document-level latent variables. The
approximate variational posterior is

K∏

k=1

q(βk,1, . . . , βk,T | β̂k,1, . . . , β̂k,T )× (3)

T∏

t=1

(
Dt∏

d=1

q(θt,d | γt,d)
∏Nt,d

n=1 q(zt,d,n |φt,d,n)

)
.

In the commonly used mean-field approximation, each la-
tent variable is considered independently of the others. In
the variational distribution of{βk,1, . . . , βk,T }, however,
we retain the sequential structure of the topic by positing
a dynamic model with Gaussian “variational observations”
{β̂k,1, . . . , β̂k,T }. These parameters are fit to minimize the
KL divergence between the resulting posterior, which is
Gaussian, and the true posterior, which is not Gaussian.
(A similar technique for Gaussian processes is described
in Snelson and Ghahramani, 2006.)

The variational distribution of the document-level latent
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Figure 2.A graphical representation of the variational approxima-
tion for the time series topic model of Figure 1. The variational
parameterŝβ and α̂ are thought of as the outputs of a Kalman
filter, or as observed data in a nonparametric regression setting.

variables follows the same form as in Blei et al. (2003).
Each proportion vectorθt,d is endowed with a free Dirichlet
parameterγt,d, each topic indicatorzt,d,n is endowed with
a free multinomial parameterφt,d,n, and optimization pro-
ceeds by coordinate ascent. The updates for the document-
level variational parameters have a closed form; we use
the conjugate gradient method to optimize the topic-level
variational observations. The resulting variational approx-
imation for the natural topic parameters{βk,1, . . . , βk,T }
incorporates the time dynamics; we describe one approx-
imation based on a Kalman filter, and a second based on
wavelet regression.

3.1. Variational Kalman Filtering

The view of the variational parameters as outputs is
based on the symmetry properties of the Gaussian density,
fµ,Σ(x) = fx,Σ(µ), which enables the use of the standard
forward-backward calculations for linear state space mod-
els. The graphical model and its variational approximation
are shown in Figure 2. Here the triangles denote varia-
tional parameters; they can be thought of as “hypothetical
outputs” of the Kalman filter, to facilitate calculation.

To explain the main idea behind this technique in a sim-
pler setting, consider the model where unigram modelsβt

(in the natural parameterization) evolve over time. In this
model there are no topics and thus no mixing parameters.
The calculations are simpler versions of those we need for
the more general latent variable models, but exhibit the es-
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sential features. Our state space model is

βt |βt−1 ∼ N (βt−1, σ
2I)

wt,n |βt ∼ Mult (π(βt))

and we form the variational state space model where

β̂t |βt ∼ N (βt, ν̂
2
t I)

The variational parameters arêβt and ν̂t. Using standard
Kalman filter calculations (Kalman, 1960), the forward
mean and variance of the variational posterior are given by

mt ≡ E (βt | β̂1:t) =
(

ν̂2
t

Vt−1 + σ2 + ν̂2
t

)
mt−1 +

(
1 −

ν̂2
t

Vt−1 + σ2 + ν̂2
t

)
β̂t

Vt ≡ E ((βt −mt)
2 | β̂1:t)

=

(
ν̂2

t

Vt−1 + σ2 + ν̂2
t

)
(Vt−1 + σ2)

with initial conditions specified by fixedm0 andV0. The
backward recursion then calculates the marginal mean and
variance ofβt givenβ̂1:T as

m̃t−1 ≡ E (βt−1 | β̂1:T ) =
(

σ2

Vt−1 + σ2

)
mt−1 +

(
1 −

σ2

Vt−1 + σ2

)
m̃t

Ṽt−1 ≡ E ((βt−1 − m̃t−1)
2 | β̂1:T )

= Vt−1 +

(
Vt−1

Vt−1 + σ2

)2 (
Ṽt − (Vt−1 + σ2)

)

with initial conditionsm̃T = mT and ṼT = VT . We ap-
proximate the posteriorp(β1:T |w1:T ) using the state space
posteriorq(β1:T | β̂1:T ). From Jensen’s inequality, the log-
likelihood is bounded from below as

log p(d1:T ) ≥ (4)
∫
q(β1:T | β̂1:T ) log

(
p(β1:T ) p(d1:T |β1:T )

q(β1:T | β̂1:T )

)
dβ1:T

= E q log p(β1:T ) +

T∑

t=1

E q log p(dt |βt) +H(q)

Details of optimizing this bound are given in an appendix.

3.2. Variational Wavelet Regression

The variational Kalman filter can be replaced with varia-
tional wavelet regression; for a readable introduction stan-
dard wavelet methods, see Wasserman (2006). We rescale
time so it is between 0 and 1. For 128 years ofSciencewe

taken = 2J andJ = 7. To be consistent with our earlier
notation, we assume that

β̂t = m̃t + ν̂εt

whereεt ∼ N (0, 1). Our variational wavelet regression
algorithm estimates{β̂t}, which we view as observed data,
just as in the Kalman filter method, as well as the noise
level ν̂.

For concreteness, we illustrate the technique using the Haar
wavelet basis; Daubechies wavelets are used in our actual
examples. The model is then

β̂t = αφ(xt) +

J−1∑

j=0

2j
−1∑

k=0

Djkψjk(xt)

wherext = t/n, φ(x) = 1 for 0 ≤ x ≤ 1,

ψ(x) =

{
−1 if 0 ≤ x ≤ 1

2 ,
1 if 1

2 < x ≤ 1

andψjk(x) = 2j/2ψ(2jx − k). Our variational estimate
for the posterior mean becomes

m̃t = α̂φ(xt) +

J−1∑

j=0

2j
−1∑

k=0

D̂jkψjk(xt).

whereα̂ = n−1
∑n

t=1 β̂t, andD̂jk are obtained by thresh-
olding the coefficients

Zjk =
1

n

n∑

t=1

β̂tψjk(xt).

To estimateβ̂t we use gradient ascent, as for the Kalman
filter approximation, requiring the derivatives∂m̃t/∂β̂t. If
soft thresholding is used, then we have that

∂m̃t

∂β̂s

=
∂α̂

∂β̂s

φ(xt) +
J−1∑

j=0

2j
−1∑

k=0

∂D̂jk

∂β̂s

ψjk(xt).

with ∂α̂/∂β̂s = n−1 and

∂D̂jk/∂β̂s =

{
1
nψjk(xs) if |Zjk| > λ

0 otherwise.

Note also that|Zjk| > λ if and only if |D̂jk| > 0. These
derivatives can be computed using off-the-shelf software
for the wavelet transform in any of the standard wavelet
bases.

Sample results of running this and the Kalman variational
algorithm to approximate a unigram model are given in
Figure 3. Both variational approximations smooth out the
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Figure 3.Comparison of the Kalman filter (top) and wavelet regression (bottom) variational approximations to a unigram model. The
variational approximations (red and blue curves) smooth out the local fluctuations in the unigram counts (gray curves) of the words
shown, while preserving the sharp peaks that may indicate a significant change of content in the journal. The wavelet regression is able
to “superresolve” the double spikes in the occurrence of Einstein in the 1920s. (The spike in the occurrence of Darwin near 1910 may
be associated with the centennial of Darwin’s birth in 1809.)

local fluctuations in the unigram counts, while preserving
the sharp peaks that may indicate a significant change of
content in the journal. While the fit is similar to that ob-
tained using standard wavelet regression to the (normal-
ized) counts, the estimates are obtained by minimizing the
KL divergence as in standard variational approximations.

In the dynamic topic model of Section 2, the algorithms
are essentially the same as those described above. How-
ever, rather than fitting the observations from true ob-
served counts, we fit them from expected counts under the
document-level variational distributions in (3).

4. Analysis of Science

We analyzed a subset of 30,000 articles fromScience, 250
from each of the 120 years between 1881 and 1999. Our
data were collected by JSTOR (www.jstor.org), a not-
for-profit organization that maintains an online scholarly
archive obtained by running an optical character recogni-
tion (OCR) engine over the original printed journals. JS-
TOR indexes the resulting text and provides online access
to the scanned images of the original content through key-
word search.

Our corpus is made up of approximately 7.5 million words.
We pruned the vocabulary by stemming each term to its
root, removing function terms, and removing terms that oc-
curred fewer than 25 times. The total vocabulary size is

15,955. To explore the corpus and its themes, we estimated
a 20-component dynamic topic model. Posterior inference
took approximately 4 hours on a 1.5GHZ PowerPC Mac-
intosh laptop. Two of the resulting topics are illustrated in
Figure 4, showing the top several words from those topics
in each decade, according to the posterior mean number of
occurrences as estimated using the Kalman filter variational
approximation. Also shown are example articles which ex-
hibit those topics through the decades. As illustrated, the
model captures different scientific themes, and can be used
to inspect trends of word usage within them.

To validate the dynamic topic model quantitatively, we con-
sider the task of predicting the next year ofSciencegiven all
the articles from the previous years. We compare the pre-
dictive power of three 20-topic models: the dynamic topic
model estimated from all of the previous years, a static
topic model estimated from all of the previous years, and a
static topic model estimated from the single previous year.
All the models are estimated to the same convergence crite-
rion. The topic model estimated from all the previous data
and dynamic topic model are initialized at the same point.

The dynamic topic model performs well; it always assigns
higher likelihood to the next year’s articles than the other
two models (Figure 5). It is interesting that the predictive
power of each of the models declines over the years. We
can tentatively attribute this to an increase in the rate of
specialization in scientific language.
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Figure 4.Examples from the posterior analysis of a 20-topic dynamic model estimated from theSciencecorpus. For two topics, we
illustrate: (a) the top ten words from the inferred posterior distribution at tenyear lags (b) the posterior estimate of the frequency as a
function of year of several words from the same two topics (c) examplearticles throughout the collection which exhibit these topics.
Note that the plots are scaled to give an idea of the shape of the trajectory ofthe words’ posterior probability (i.e., comparisons across
words are not meaningful).

5. Discussion

We have developed sequential topic models for discrete
data by using Gaussian time series on the natural param-
eters of the multinomial topics and logistic normal topic
proportion models. We derived variational inference algo-
rithms that exploit existing techniques for sequential data;
we demonstrated a novel use of Kalman filters and wavelet
regression as variational approximations. Dynamic topic
models can give a more accurate predictive model, and also
offer new ways of browsing large, unstructured document
collections.

There are many ways that the work described here can be
extended. One direction is to use more sophisticated state
space models. We have demonstrated the use of a simple

Gaussian model, but it would be natural to include a drift
term in a more sophisticated autoregressive model to ex-
plicitly capture the rise and fall in popularity of a topic, or
in the use of specific terms. Another variant would allow
for heteroscedastic time series.

Perhaps the most promising extension to the methods pre-
sented here is to incorporate a model of how new topics in
the collection appear or disappear over time, rather than as-
suming a fixed number of topics. One possibility is to use a
simple Galton-Watson or birth-death process for the topic
population. While the analysis of birth-death or branching
processes often centers on extinction probabilities, herea
goal would be to find documents that may be responsible
for spawning new themes in a collection.
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Figure 5. This figure illustrates the performance of using dy-
namic topic models and static topic models for prediction. For
each year between 1900 and 2000 (at 5 year increments), we es-
timated three models on the articles through that year. We then
computed the variational bound on the negative log likelihood of
next year’s articles under the resulting model (lower numbers are
better). DTM is the dynamic topic model; LDA-prev is a static
topic model estimated on just the previous year’s articles; LDA-
all is a static topic model estimated on all the previous articles.
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A. Derivation of Variational Algorithm

In this appendix we give some details of the variational
algorithm outlined in Section 3.1, which calculates a dis-
tribution q(β1:T | β̂1:T ) to maximize the lower bound on
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log p(d1:T ). The first term of the righthand side of (5) is

T∑

t=1

E q log p(βt |βt−1) = −
V T

2

(
log σ2 + log 2π

)

−
1

2σ2

T∑

t=1

E q(βt − βt−1)
T (βt − βt−1)

= −
V T

2

(
log σ2 + log 2π

)
−

1

2σ2

T∑

t=1

‖m̃t − m̃t−1‖
2

−
1

σ2

T∑

t=1

Tr
(
Ṽt

)
+

1

2σ2

(
Tr (Ṽ0) − Tr (ṼT )

)

using the Gaussian quadratic form identity

E m,V (x− µ)T Σ−1(x− µ) =

(m− µ)T Σ−1(m− µ) + Tr (Σ−1V ).

The second term of (5) is

T∑

t=1

E q log p(dt |βt) =

T∑

t=1

∑

w

ntw E q

(
βtw − log

∑

w

exp(βtw)

)

≥
T∑

t=1

∑

w

ntw m̃tw − nt ζ̂
−1
t

∑

w

exp(m̃tw + Ṽtw/2)

+

T∑

t=1

nt − nt log ζ̂t

wherent =
∑

w ntw, introducing additional variational
parameterŝζ1:T . The third term of (5) is the entropy

H(q) =

T∑

t=1

(
1

2
log |Ṽt| +

T

2
log 2π

)

=
1

2

T∑

t=1

∑

w

log Ṽtw +
TV

2
log 2π.

To maximize the lower bound as a function of the varia-
tional parameters we use a conjugate gradient algorithm.
First, we maximize with respect tôζ; the derivative is

∂`

∂ζ̂t
=

nt

ζ̂2
t

∑

w

exp(m̃tw + Ṽtw/2) −
nt

ζ̂t
.

Setting to zero and solving for̂ζt gives

ζ̂t =
∑

w

exp(m̃tw + Ṽtw/2).

Next, we maximize with respect tôβs:

∂`(β̂, ν̂)

∂β̂sw

=

−
1

σ2

T∑

t=1

(m̃tw − m̃t−1,w)

(
∂m̃tw

∂β̂sw

−
∂m̃t−1,w

∂β̂sw

)

+
T∑

t=1

(
ntw − ntζ̂

−1
t exp(m̃tw + Ṽtw/2)

) ∂m̃tw

∂β̂sw

.

The forward-backward equations for̃mt can be used to de-
rive a recurrence for∂m̃t/∂β̂s. The forward recurrence is

∂mt

∂β̂s

=

(
ν̂2

t

vt−1 + σ2 + ν̂2
t

)
∂mt−1

∂β̂s

+

(
1 −

ν̂2
t

vt−1 + σ2 + ν̂2
t

)
δs,t ,

with the initial condition∂m0/∂β̂s = 0. The backward
recurrence is then

∂m̃t−1

∂β̂s

=

(
σ2

Vt−1 + σ2

)
∂mt−1

∂β̂s

+

(
1 −

σ2

Vt−1 + σ2

)
∂m̃t

∂β̂s

,

with the initial condition∂m̃T /∂β̂s = ∂mT /∂β̂s.


