
1

IMAGE PROCESSING FOR EVERYONE

George C Panayi, Alan C Bovik and Umesh Rajashekar

Laboratory for Vision Systems,
Department of Electrical and Computer Engineering

The University of Texas at Austin, Austin, TX 78712-1084 USA
{panayi, bovik, umesh}@ece.utexas.edu

ABSTRACT

The techniques of digital image processing have
found a myriad of applications in diverse fields
of scientific, commerical, and technical
endeavor. Image processing education therefore
needs to cater to a wide spectrum of people
coming from different educational backgrounds.
In this paper, we describe tools and techniques
that facilitate a gentle introduction to image
processing. We present novel LabVIEW-based
image processing demonstrations that, when
supplemented with web-based class lectures,
illustrate the power and beauty of image
processing algorithms.

1 Introduction

Digital Image Processing (DIP) is a
multidisciplinary science that borrows principles
from diverse fields such as optics, surface
physics, visual psychophysics, computer science
and mathematics. The many applications of
image processing include: astronomy, ultrasonic
imaging, remote sensing, video communications
and microscopy, among innumerable others.

In this paper, we discuss teaching
visualization tools developed for the EE 371R -
Digital Image and Video Processing course
offered every Fall semester at the University of
Texas at Austin. The aim of the course is to
make DIP accessible to an audience of fairly
mixed backgrounds, using numerous visual
examples to supplement the theory with
reasonable mathematical simplicity. Though
designed for an undergraduate Electrical

Engineering curriculum, EE 371R attracts many
undergraduate and graduate students from
various departments, such as geology,
psychology, astronomy, computer science (to
name a few) as well as local industry. Image
acquisition, image processing theory, and
practical applications are introduced from an
operational perspective with some exposure to
theory. To encourage a web-based educational
system, all course material and visualization
tools are made available to the students for
downloading so that they can experiment with
the tools at their leisure. MATLAB based
assignments help reinforce the concepts. The
"Best Project Award" for the best DIP class
project (with a $100 first prize) motivates
students to investigate and apply the concepts
learned in the course to their respective fields.
Beginning this Fall, students will also be
provided camcorders and webcams to develop
their projects. Introductory material covered in
the course includes binary image processing,
image analysis, and image enhancement, while
the more advanced material covers Hough
transforms, edge detection and video
processing. Since visualization is invaluable to
interpret the concepts, lecturing is accompanied
with "in-class" LabVIEW demonstrations to
illustrate the concepts being discussed.

 Section 2 of this paper gives a brief
overview of LabVIEW and its basic image
processing functions, such as those embodied in
the IMAQ Vision modules. In Section 3, we
explain some of the visualization modules we
have created and we conclude in Section 4.

2

2 LabVIEW

LabVIEW (Laboratory Virtual Instru-
ment Engineering Workbench) is a graphical
programming language used as a powerful and
flexible instrumentation and analysis software
system in industry and academia. LabVIEW
uses a graphical programming language - G to
create programs called Virtual Instruments or VI
(pronounced vee-eye) in a pictorial form called a
block diagram, eliminating a lot of the
syntactical details of other programming
languages like C and MATLAB that use a text
based programming approach. LabVIEW also
includes many tools for data acquisition,
analysis and display of results. The analysis
library contains a multitude of functions in
signal generation, signal processing, filtering
and statistics. LabVIEW is available for all the
major platforms and is easily portable across
platforms. Each VI contains 3 parts:
1) The front panel contains the user interface
like knobs, push buttons, graphs and many other
controls (inputs) and indicators (outputs). Inputs
can be fed using the mouse or the keyboard. Fig
1a shows a typical front panel.
2) The block diagram shown in Fig 1b is the
VI’s source code constructed in G and is the
actual executable program. The block diagram
has other lower-level VIs and built in functions.
The blocks can be connected using wires to
indicate the dataflow. Front panel objects have
corresponding terminals on the block diagram to
allow dataflow from the user to the program and
back to the user.
3) Sub-VIs are analogous to subroutines in
conventional programming languages.

[1] provides an introduction to
LabVIEW. [2] provides more information on
LabVIEW. In some applications such as image
processing, execution speed is critical.
LabVIEW is the only graphical programming
system with a compiler that generates optimized
code with execution speeds comparable to
compiled C programs. Thus, LabVIEW has the
ability to create stand-alone executable

applications, which run at compiled execution
speeds. Another advantage of LabVIEW is the
fact that it includes built in applications, such as
the IMAQ Vision for image processing. IMAQ
Vision includes more than 400 imaging
functions and interactive imaging windows and
utilities for displaying and building imaging
systems. IMAQ Vision gave us the opportunity
to create examples for all the important
functions in image processing, and use them for
educational purposes. [3] provides information
on IMAQ Vision.

3 Visualization modules

The front panel provides an excellent
intuitive graphical user interface (GUI) to vary
various parameters in the algorithm. These
GUIs resemble the controls on many
instruments and provide a user-friendly
interface (hence the name Virtual Instrument).

We have developed a wide range of VI’s
that can be used in conjunction with class
lectures. In this section, we describe few of the
LabVIEW VIs that we developed. The reader
can download other VI’s from:
http://pineapple.ece.utexas.edu/class/ee371r/Mo
dules/demos.htm. [4] provides detailed
information on how the VI s were created.

3.1 Analog to digital conversion

Sampling and quantization help to
transform the continuous domain image into a
digital format. The effects of sampling and
quantization can be visualized effectively with
the following two VI’s. This is a basic concept
that must be understood by any practitioner in
any field utilizing digital images.

3.1.1 Quantization
The Quantization VI (front panel in Fig

2a) demonstrates the effects that different
quantization levels have on images. This VI
reads in an 8-bits/pixel image and creates an
output image whose number of bit levels is

3

specified by the input parameter Number of bits.
The user has the options to create images that
have 1, 2, 4, or 8 bit levels. Fig 2b shows the
effects of quantization.

3.1.2 Sampling
To demonstrate the effects that different

sampling rates have on images, we created the
Sampling VI whose front panel shown in Fig
3a. While there is a mathematical theory of
sampling, the intuitive aspects of sampling can
be understood by a diversity of users by visual
observation of its effects. This VI reads in an
image and sub-samples it to the user-specified
size. The user has the option to sub-sample the
image to the sizes of 256*256, 128*128, 64*64,
and 32*32, using our VI. Fig 3b shows the sub-
sampling of the input image to the specified
size. The sub-sampled image is scaled to the
size of the input image, by duplicating columns
and rows of the sub-sampled image. In this
image, we can see the effects that sampling has
on images. The effects of sampling become
more pronounced when the sampling rate is
decreased. Aliasing effects can be demonstrated
when severe undersampling occurs.

3.2 Binary Image processing

Binary images have only two possible "gray
levels" and can be represented using only one
bit per pixel. Besides developing VIs for
thresholding grayscale images to binary, we also
demonstrate the effects of binary morphology.
Morphological operations are defined by
moving a structuring element over the image to
be modified, in such a way that it is centered
over every image pixel at some point. When the
structuring element is centered over a region of
the image, a logical operation is performed on
the pixels covered by the structuring element,
yielding a binary output. We created the
Morphology VI for demonstrating the effects of
various morphological operations on binary
images. In this VI, we implemented the seven
following morphological operations: Median,

Dilation, Erosion, Open, Close, Open-Clos, and
Clos-Open. The user has the option to test all
the above morphological operations on an
image, and also to modify the type and size of
the structuring element. The Morphology VI
allows the following structuring element types:
Row, Column, Square, Cross, and X-Shape.

3.3 Histogram and point operations (Grayscale)

We developed VIs that perform linear
(offset, scaling and full-scale contrast stretch)
and non-linear (logarithmic range compression)
image point operations. The VI for a linear point
operation is shown in Fig 4a. The user has the
option to perform the offset and scaling
operations or to perform a full scale contrast
stretch operation on an input image. The
histograms of the input image and the image
after the linear point operation are also
displayed in the front panel in the Histogram
and New Histogram Waveform Graph
indicators. Effects of linear point operations on
an image are shown in Fig 4b.

3.4 Image analysis (Frequency interpretations)

3.4.1 Discrete Fourier Transform (DFT)
The Fourier transform is fundamental to

image filtering and spectral theory, yet is a
difficult concept for many users to correctly
grasp. We therefore begin by teaching the
concept of digital frequency and digital
sinusoidal gratings (2-D sine waves) as the basis
functions for the DFT. We have also constructed
the FFT (Fast Fourier Transform) demonstration
VI that calculates and displays the magnitude
and the phase of the DFT for gray level images.
The front panel of this VI is shown in Fig 5a
Usually, the DFT is displayed with its centered
coordinates (u, v) = (0, 0) at the center of the
image. This way, the lower frequency
information is clustered together near the origin
at the centered of the display. The Center/
Uncenter input parameter of the front panel
specifies whether the DFT will be displayed

4

with its low frequencies clustered together at the
center of the image or not. It is also the case
that the low-amplitude frequencies in the
magnitude of the DFT will be hard to see, thus it
is best to logarithmically compress the DFT
magnitude prior to display. An option is given
again for displaying the log compressed or
uncompressed magnitude of the DFT. This is
specified by the Compr/Uncompr input
parameter of the front panel. Fig 5b shows an
image and the magnitude and phase of the DFT.

3.4.2 Directional DFTs
When the DFT of an image is brighter

along a specific orientation, the image contains
highly oriented components in that direction.
Suppose that we define several oriented zero-
one images. Masking the DFT with these
images will produce IDFT images with only
highly-oriented frequencies remaining. To
demonstrate this effect, we implemented the
DFT Direction VI. The input parameters, Theta
1 and Theta 2, to this VI, are used as the starting
and final angles (in degrees) respectively, of the
black region in the mask images as it can be
seen from the “Circle” illustration in the front
panel in Fig 6a. Results of DFT masking are
shown in Fig 6b.

The other VI s developed includes linear and
non-linear filtering, image compression schemes
and a large number of edge detectors. We have
presented the simplest ones here for the purpose
of illustration.

4 Conclusions

In this paper, we gave an overview of
Digital Image Processing education at UT-
Austin. We describe the use of powerful
visualization tools developed using LabVIEW
for image processing. An overview of
LabVIEW and a few of the demonstrations
developed were provided.

5 References

1. Lisa K. Wells and Jeffrey Travis, "LabVIEW for
Everyone, Graphical Programming made even
easier," Prentice Hall, 1997.

2. ___,"Labview User Manual," National Instruments,
1996.

3. ___, "BridgeVIEW and LabVIEW IMAQ Vision for G
reference manual," National Instruments, 1996.

4. George C Panayi, "Implementation of Digital Image
Processing functions using LabVIEW," Master’s
thesis, UT-Austin 1999.

Fig 1a: Typical front panel
Fig 1b: Block diagram for front panel

5

Fig 2a: Front panel for Quantization Fig 2b: Original (left), Quantized(right)

Fig 3a: Front panel for sampling

Fig 3b: Original(left), sampled(middle), interpolated (right)

Fig 4a: Front panel for linear point operations

Fig 4b: Original(left), Offset and Scaling(middle), Full Scale stretch(right)

6

Fig 5a: Front panel for DFT

Fig 5b: Original(left), DFT Magnitude(middle), DFT Phase(right)

Fig 6a: Front Panel for directional DFT

Fig 6b: Original (left), Result of directional DFT(middle), regions selected(Right)

