

Statically Detecting Likely Buffer Overflow Vulnerabilities

David Larochelle
larochelle@cs.virginia.edu

University of Virginia, Department of Computer Science
David Evans

evans@cs.virginia.edu
University of Virginia, Department of Computer Science

Abstract

Buffer overflow attacks may be today’s single most important security threat. This paper presents a new approach to
mitigating buffer overflow vulnerabilities by detecting likely vulnerabilities through an analysis of the program source
code. Our approach exploits information provided in semantic comments and uses lightweight and efficient static
analyses. This paper describes an implementation of our approach that extends the LCLint annotation-assisted static
checking tool. Our tool is as fast as a compiler and nearly as easy to use. We present experience using our approach to
detect buffer overflow vulnerabilities in two security-sensitive programs.

1. Introduction

Buffer overflow attacks are an important and persistent
security problem. Buffer overflows account for
approximately half of all security vulnerabilities
[CWPBW00, WFBA00]. Richard Pethia of CERT
identified buffer overflow attacks as the single most im-
portant security problem at a recent software
engineering conference [Pethia00]; Brian Snow of the
NSA predicted that buffer overflow attacks would still
be a problem in twenty years [Snow99].

Programs written in C are particularly susceptible to
buffer overflow attacks. Space and performance were
more important design considerations for C than safety.
Hence, C allows direct pointer manipulations without
any bounds checking. The standard C library includes
many functions that are unsafe if they are not used
carefully. Nevertheless, many security-critical pro-
grams are written in C.

Several run-time approaches to mitigating the risks
associated with buffer overflows have been proposed.
Despite their availability, these techniques are not used
widely enough to substantially mitigate the
effectiveness of buffer overflow attacks. The next
section describes representative run-time approaches
and speculates on why they are not more widely used.
We propose, instead, to tackle the problem by detecting
likely buffer overflow vulnerabilities through a static
analysis of program source code. We have implement-

ed a prototype tool that does this by extending LCLint
[Evans96]. Our work differs from other work on static
detection of buffer overflows in three key ways: (1) we
exploit semantic comments added to source code to
enable local checking of interprocedural properties; (2)
we focus on lightweight static checking techniques that
have good performance and scalability characteristics,
but sacrifice soundness and completeness; and (3) we
introduce loop heuristics, a simple approach for
efficiently analyzing many loops found in typical
programs.

The next section of this paper provides some
background on buffer overflow attacks and previous
attempts to mitigate the problem. Section 3 gives an
overview of our approach. In Section 4, we report on
our experience using our tool on wu-ftpd and BIND, two
security-sensitive programs. The following two sec-
tions provide some details on how our analysis is done.
Section 7 compares our work to related work on buffer
overflow detection and static analysis.

2. Buffer Overflow Attacks and Defenses

The simplest buffer overflow attack, stack smashing
[AlephOne96], overwrites a buffer on the stack to
replace the return address. When the function returns,
instead of jumping to the return address, control will
jump to the address that was placed on the stack by the
attacker. This gives the attacker the ability to execute
arbitrary code. Programs written in C are particularly

susceptible to this type of attack. C provides direct
low-level memory access and pointer arithmetic
without bounds checking. Worse, the standard C
library provides unsafe functions (such as gets) that
write an unbounded amount of user input into a fixed
size buffer without any bounds checking [ISO99].
Buffers stored on the stack are often passed to these
functions. To exploit such vulnerabilities, an attacker
merely has to enter an input larger than the size of the
buffer and encode an attack program binary in that
input. The Internet Worm of 1988 [Spafford88, RE89]
exploited this type of buffer overflow vulnerability in
fingerd. More sophisticated buffer overflow attacks
may exploit unsafe buffer usage on the heap. This is
harder, since most programs do not jump to addresses
loaded from the heap or to code that is stored in the
heap.

Several run-time solutions to buffer overflow attacks
have been proposed. StackGuard [CPMH+98] is a
compiler that generates binaries that incorporate code
designed to prevent stack smashing attacks. It places a
special value on the stack next to the return address,
and checks that it has not been tampered with before
jumping. Baratloo, Singh and Tsai describe two run-
time approaches: one replaces unsafe library functions
with safe implementations; the other modifies
executables to perform sanity checking of return ad-
dresses on the stack before they are used [BST00].

Software fault isolation (SFI) is a technique that inserts
bit mask instructions before memory operations to
prevent access of out-of-range memory [WLAG93].
This alone does not offer much protection against
typical buffer overflow attacks since it would not
prevent a program from writing to the stack address
where the return value is stored. Generalizations of SFI
can insert more expressive checking around potentially
dangerous operations to restrict the behavior of
programs more generally. Examples include Janus,
which observes and mediates behavior by monitoring
system calls [GWTB96]; Naccio [ET99, Evans00a] and
PSLang/PoET [ES99, ES00] which transform object
programs according to a safety policy; and Generic
Software Wrappers [FBF99] which wraps system calls
with security checking code.

Buffer overflow attacks can be made more difficult by
modifications to the operating system that put code and
data in separate memory segments, where the code
segment is read-only and instructions cannot be
executed from the data segment. This does not
eliminate the buffer overflow problem, however, since
an attacker can still overwrite an address stored on the
stack to make the program jump to any point in the
code segment. For programs that use shared libraries, it

is often possible for an attacker to jump to an address in
the code segment that can be used maliciously (e.g., a
call to system). Developers decided against using this
approach in the Linux kernel since it did not solve the
real problem and it would prevent legitimate uses of
self-modifying code [Torvalds98, Coolbaugh99].

Despite the availability of these and other run-time
approaches, buffer overflow attacks remain a persistent
problem. Much of this may be due to lack of awareness
of the severity of the problem and the availability of
practical solutions. Nevertheless, there are legitimate
reasons why the run-time solutions are unacceptable in
some environments. Run-time solutions always incur
some performance penalty (StackGuard reports
performance overhead of up to 40% [CBDP+99]). The
other problem with run-time solutions is that while they
may be able to detect or prevent a buffer overflow
attack, they effectively turn it into a denial-of-service
attack. Upon detecting a buffer overflow, there is often
no way to recover other than terminating execution.

Static checking overcomes these problems by detecting
likely vulnerabilities before deployment. Detecting
buffer overflow vulnerabilities by analyzing code in
general is an undecidable problem.1 Nevertheless, it is
possible to produce useful results using static analysis.
Rather than attempting to verify that a program has no
buffer overflow vulnerabilities, we wish to have
reasonable confidence of detecting a high fraction of
likely buffer overflow vulnerabilities. We are willing
to accept a solution that is both unsound and
incomplete. This means that our checker will
sometimes generate false warnings and sometimes miss
real problems. Our goal is to produce a tool that
produces useful results for real programs with a
reasonable effort. The next section describes our
approach. We compare our work with other static
approaches to detecting buffer overflow vulnerabilities
in Section 7.

3. Approach

Our static analysis tool is built upon LCLint [EGHT94,
Evans96, Evans00b], an annotation-assisted lightweight
static checking tool. Examples of problems detected by
LCLint include violations of information hiding,
inconsistent modifications of caller-visible state or uses
of global variables, misuses of possibly NULL
references, uses of dead storage, memory leaks and
problems with parameters aliasing. LCLint is actually

1 We can trivially reduce the halting problem to the buffer
overflow detection problem by inserting code that causes a
buffer overflow before all halt instructions.

used by working programmers, especially in the open
source development community [Orcero00, PG00].

Our approach is to exploit semantic comments
(henceforth called annotations) that are added to source
code and standard libraries. Annotations describe
programmer assumptions and intents. They are treated
as regular C comments by the compiler, but recognized
as syntactic entities by LCLint using the @ following
the /* to identify a semantic comment. For example,
the annotation /*@notnull@*/ can be used
syntactically like a type qualifier. In a parameter
declaration, it indicates that the value passed for this
parameter may not be NULL. Although annotations can
be used on any declaration, for this discussion we will
focus exclusively on function and parameter
declarations. We can also use annotations similarly in
declarations of global and local variables, types and
type fields.

Annotations constrain the possible values a reference
can contain either before or after a function call. For
example, the /*@notnull@*/ annotation places a
constraint on the parameter value before the function
body is entered. When LCLint checks the function
body, it assumes the initial value of the parameter is not
NULL. When LCLint checks a call site, it reports a
warning unless it can determine that the value passed as
the corresponding parameter is never NULL.

Prior to this work, all annotations supported by LCLint
classified references as being in one of a small number
of possible states. For example, the annotation
/*@null@*/ indicated that a reference may be NULL,
and the annotation /*@notnull@*/ indicated that a
reference is not NULL. In order to do useful checking
of buffer overflow vulnerabilities, we need annotations
that are more expressive. We are concerned with how
much memory has been allocated for a buffer,
something that cannot be adequately modeled using a
finite number of states. Hence, we need to extend
LCLint to support a more general annotation language.
The annotations are more expressive, but still within the
spirit of simple semantic comments added to programs.

The new annotations allow programmers to explicitly
state function preconditions and postconditions using
requires and ensures clauses.2 We can use these
clauses to describe assumptions about buffers that are
passed to functions and constrain the state of buffers
when functions return. For the analyses described in

2 The original Larch C interface language LCL [GH93], on
which LCLint’s annotation language was based, did
include a notion of general preconditions and post-
conditions specified by requires and ensures clauses.

this paper, four kinds of assumptions and constraints
are used: minSet, maxSet, minRead and maxRead.3

When used in a requires clause, the minSet and maxSet
annotations describe assumptions about the lowest and
highest indices of a buffer that may be safely used as an
lvalue (e.g., on the left-hand side of an assignment).
For example, consider a function with an array
parameter a and an integer parameter i that has a pre-
condition requires maxSet(a) >= i. The analysis
assumes that at the beginning of the function body,
a[i] may be used as an lvalue. If a[i+1] were used
before any modifications to the value of a or i, LCLint
would generate a warning since the function
preconditions are not sufficient to guarantee that
a[i+1] can be used safely as an lvalue. Arrays in C
start with index 0, so the declaration
 char buf[MAXSIZE]

generates the constraints

 maxSet(buf) = MAXSIZE – 1 and
 minSet(buf) = 0.

Similarly, the minRead and maxRead constraints
indicate the minimum and maximum indices of a buffer
that may be read safely. The value of maxRead for a
given buffer is always less than or equal to the value of
maxSet. In cases where there are elements of the buffer
have not yet been initialized, the value of maxRead
may be lower than the value of maxSet.

At a call site, LCLint checks that the preconditions
implied by the requires clause of the called function are
satisfied before the call. Hence, for the requires
maxSet(a) >= i example, it would issue a warning if it
cannot determine that the array passed as a is allocated
to hold at least as many elements as the value passed as
i. If minSet or maxSet is used in an ensures clause, it
indicates the state of a buffer after the function returns.
Checking at the call site proceeds by assuming the
postconditions are true after the call returns.

For checking, we use an annotated version of the
standard library headers. For example, the function
strcpy is annotated as4:

3 LCLint also supports a nullterminated annotation that
denotes storage that is terminated by the null character. Many
C library functions require null-terminated strings, and can
produce buffer overflow vulnerabilities if they are passed a
string that is not properly null-terminated. We do not cover
the nullterminated annotation and related checking in this
paper. For information on it, see [LHSS00].
4 The standard library specification of strcpy also includes
other LCLint annotations: a modifies clause that indicates that
the only thing that may be modified by strcpy is the storage
referenced by s1, an out annotation on s1 to indicate that it

char *strcpy (char *s1, const char *s2)
/*@requires maxSet(s1) >= maxRead(s2)@*/
/*@ensures maxRead(s1) == maxRead(s2)

/\ result == s1@*/;

The requires clause specifies the precondition that the
buffer s1 is allocated to hold at least as many char-
acters as are readable in the buffer s2 (that is, the
number of characters up to and including its null
terminator). The postcondition reflects the behavior of
strcpy – it copies the string pointed to by s2 into the
buffer s1, and returns that buffer. In ensures clauses,
we use the result keyword to denote the value returned
by the function.

Many buffer overflows result from using library
functions such as strcpy in unsafe ways. By
annotating the standard library, many buffer overflow
vulnerabilities can be detected even before adding any
annotations to the target program. Selected annotated
standard library functions are shown in Appendix A.

4. Experience

In order to test our approach, we used our tool on wu-
ftpd, a popular open source ftp server, and BIND
(Berkeley Internet Name Domain), a set of domain
name tools and libraries that is considered the reference
implementation of DNS. This section describes the
process of running LCLint on these applications, and
illustrates how our checking detected both known and
unknown buffer overflow vulnerabilities in each appli-
cation.

4.1 wu-ftpd

We analyzed wu-ftp-2.5.05, a version with known secur-
ity vulnerabilities.

Running LCLint is similar to running a compiler. It is
typically run from the command line by listing the

need not point to defined storage when strcpy is called, a
unique annotation on s1 to indicate that it may not alias the
same storage as s2, and a returned annotation on s1 to
indicate that the returned pointer references the same storage
as s1. For clarity, the examples in this paper show only the
annotations directly relevant to detecting buffer overflow
vulnerabilities. For more information on other LCLint
annotations, see [Evans96, Evans00c].
5 The source code for wu-ftpd is available from
http://www.wu-ftpd.org. We analyzed the version in
ftp://ftp.wu-ftpd.org/pub/wu-ftpd-attic/wu-ftpd-2.5.0.tar.gz.
We configured wu-ftpd using the default configuration for
FreeBSD systems. Since LCLint performs most of its
analyses on code that has been pre-processed, our analysis did
not examine platform-specific code in wu-ftpd for platforms
other than FreeBSD.

source code files to check, along with flags that set
checking parameters and control which classes of
warnings are reported. It takes just over a minute for
LCLint to analyze all 17 000 lines of wu-ftpd. Running
LCLint on the entire unmodified source code for wu-
ftpd without adding any annotations resulted in 243
warnings related to buffer overflow checking.

Consider a representative message6:
ftpd.c:1112:2: Possible out-of-bounds store. Unable to
 resolve constraint:
 maxRead ((entry->arg[0] @ ftpd.c:1112:23)) <= (1023)
 needed to satisfy precondition:
 requires maxSet ((ls_short @ ftpd.c:1112:14))
 >= maxRead ((entry->arg[0] @ ftpd.c:1112:23))
 derived from strcpy precondition:
 requires maxSet (<param 1>) >= maxRead (<param 2>)

Relevant code fragments are shown below with line
1112 in bold:
char ls_short[1024];
…
extern struct aclmember *
getaclentry(char *keyword,

struct aclmember **next);
…
int main(int argc, char **argv,

char **envp)
{

…
entry = (struct aclmember *) NULL;
if (getaclentry("ls_short", &entry)

&& entry->arg[0]
&& (int)strlen(entry->arg[0]) > 0)
{

strcpy(ls_short,entry->arg[0]);
…

This code is part of the initialization code that reads
configuration files. Several buffer overflow vulnerabil-
ities were found in the wu-ftpd initialization code.
Although this vulnerability is not likely to be exploited,
it can cause security holes if an untrustworthy user is
able to alter configuration files.

The warning message indicates that a possible out-of-
bounds store was detected on line 1112 and contains
information about the constraint LCLint was unable to
resolve. The warning results from the function call to
strcpy. LCLint generates a precondition constraint
corresponding to the strcpy requires clause

6 For our prototype implementation, we have not yet
attempted to produce messages that can easily be interpreted
by typical programmers. Instead, we generate error messages
that reveal information useful to the LCLint developers.
Generating good error messages is a challenging problem; we
plan to devote more effort to this before publicly releasing our
tool.

maxSet(s1) >= maxRead(s2) by substituting the actual
parameters:

 maxSet (ls_short @ ftpd.c:1112:14)
 >= maxRead (entry->arg[0] @ ftpd.c:1112:23).

Note that the locations of the expressions passed as
actual parameters are recorded in the constraint. Since
values of expressions may change through the code, it
is important that constraints identify values at particular
program points.

The global variable ls_short was declared as an array
of 1024 characters. Hence, LCLint determines maxSet
(ls_short) is 1023. After the call to getaclentry, the
local entry->arg[0] points to a string of arbitrary
length read from the configuration file. Because there
are no annotations on the getaclentry function,
LCLint does not assume anything about its behavior. In
particular, the value of maxRead (entry->arg[0]) is
unknown. LCLint reports a possible buffer misuse,
since the constraint derived from the strcpy requires
clause may not be satisfied if the value of maxRead
(entry->arg[0]) is greater than 1023.

To fix this problem, we modified the code to handle
these values safely by using strncpy. Since
ls_short is a fixed size buffer, a simple change to use
strncpy and store a null character at the end of the
buffer is sufficient to ensure that the code is safe.7

In other cases, eliminating a vulnerability involved both
changing the code and adding annotations. For
example, LCLint generated a warning for a call to
strcpy in the function acl_getlimit:
int acl_getlimit(char *class,

char *msgpathbuf) {
int limit;
struct aclmember *entry = NULL;

if (msgpathbuf) *msgpathbuf = '\0';
while (getaclentry("limit", &entry)) {

…
if (!strcasecmp(class, entry->arg[0]))
{

…
if (entry->arg[3]

&& msgpathbuf != NULL)
strcpy(msgpathbuf, entry->arg[3]);

…

If the size of msgputhbuf is less than the length of the
string in entry->arg[3], there is a buffer overflow.
To fix this we replaced the strcpy call with a safe call
to strncpy:

7 Because strncpy does not guarantee null termination, it is
necessary to explicitly put a null character at the end of the
buffer.

strncpy(msgpathbuf, entry->arg[3], 199);
msgpathbuf[199] = '\0';

and added a requires clause to the function declaration:
/*@requires maxSet(msgpathbuf) >= 199@*/

The requires clause documents an assumption (that may
be incorrect) about the size of the buffer passed to
acl_getlimit. Because of the constraints denoted by
the requires clauses, LCLint does not report a warning
for the call to strncpy.

When call sites are checked, LCLint produces a warn-
ing if it is unable to determine that this requires clause
is satisfied. Originally, we had modified the function
acl_getlimit by adding the precondition maxSet
(msgpathbuf) >= 1023. After adding this precondition,
LCLint produced a warning for a call site that passed a
200-byte buffer to acl_getlimit. Hence, we re-
placed the requires clause with the stronger constraint
and used 199 as the parameter to strncpy.

This vulnerability was still present in the current ver-
sion of wu-ftpd. We contacted the wu-ftpd developers
who acknowledged the bug but did not consider it
security critical since the string in question is read from
a local file not user input [Luckin01, Lundberg01].

In addition to the previously unreported buffer
overflows in the initialization code, LCLint detected a
known buffer overflow in wu-ftpd. The buffer overflow
occurs in the function do_elem shown below, which
passes a global buffer and its parameters to the library
function strcat. The function mapping_chdir calls
do_elem with a value entered by the remote user as its
parameter. Because wu-ftpd fails to perform sufficient
bounds checking, a remote user is able to exploit this
vulnerability to overflow the buffer by carefully
creating a series of directories and executing the cd
command.8

char mapped_path [200];
…
void do_elem(char *dir) {

…
if (!(mapped_path[0] == '/'

&& mapped_path[1] == '\0'))
strcat (mapped_path, "/");

strcat (mapped_path, dir);
}

8 Advisories for this vulnerability can be found at
http://www.cert.org/advisories/CA-1999-13.html and
ftp://www.auscert.org.au/security/advisory/AA-
1999.01.wu-ftpd.mapping_chdir.vul.

LCLint generates warnings for the unsafe calls to
strcat. This was fixed in latter versions of wu-ftpd by
calling strncat instead of strcat.

Because of the limitations of static checking, LCLint
sometimes generates spurious error messages. If the
user believes the code is correct, annotations can be
added to precisely suppress spurious messages.

Often the code was too complex for LCLint to analyze
correctly. For example, LCLint reports a spurious
warning for this code fragment since it cannot
determine that ((1.0*j*rand()) / (RAND_MAX +

1.0)) always produces a value between 1 and j:
i = passive_port_max

– passive_port_min + 1;
port_array = calloc (i, sizeof (int));
for (i = 3; … && (i > 0); i--) {

for (j = passive_port_max
– passive_port_min + 1;

… && (j > 0); j--) {
k = (int) ((1.0 * j * rand())

/ (RAND_MAX + 1.0));
pasv_port_array [j-1]

= port_array [k];

Determining that the port_array[k] reference is safe
would require far deeper analysis and more precise
specifications than is feasible within a lightweight static
checking tool.

Detecting buffer overflows with LCLint is an iterative
process. Many of the constraints we found involved
functions that are potentially unsafe. We added
function preconditions to satisfy these constraints where
possible. In certain cases, the code was too convoluted
for LCLint to determine that our preconditions satisfied
the constraints. After convincing ourselves the code
was correct, we added annotations to suppress the
spurious warnings.

Before any annotations were added, running LCLint on
wu-ftpd resulted in 243 warnings each corresponding to
an unresolved constraint. We added 22 annotations to
the source code through an iterative process similar to
the examples described above. Nearly all of the
annotations were used to indicate preconditions
constraining the value of maxSet for function
parameters.

After adding these annotations and modifying the code,
running LCLint produced 143 warnings. Of these, 88
reported unresolved constraints involving maxSet.
While we believe the remaining warnings did not
indicate bugs in wu-ftpd, LCLint’s analyses were not
sufficiently powerful to determine the code was safe.
Although this is a higher number of spurious warnings
than we would like, most of the spurious warnings can

be quickly understood and suppressed by the user. The
source code contains 225 calls to the potentially buffer
overflowing functions strcat, strcpy, strncat,
strncpy, fgets and gets. Only 18 of the unresolved
warnings resulted from calls to these functions. Hence,
LCLint is able to determine that 92% of these calls are
safe automatically. The other warnings all dealt with
classes of problems that could not be detected through
simple lexical techniques.

4.2 BIND

BIND is a key component of the Internet infrastructure.
Recently, the Wall Street Journal identified buffer
overflow vulnerabilities in BIND as a critical threat to
the Internet [WSJ01]. We focus on named, the DNS
sever portion of BIND, in this case study. We analyzed
BIND version 8.2.2p79, a version with known bugs.
BIND is larger and more complex than wu-ftpd. The
name server portion of BIND, named, contains
approximately 47 000 lines of C including shared libra-
ries. LCLint took less than three and a half minutes to
check all of the named code.

We limited our analysis to a subset of named because
of the time required for human analysis. We focused on
three files: ns_req.c and two library files that contain
functions which are called extensively by ns_req.c:
ns_name.c and ns_sign.c. These files contain slightly
more than 3 000 lines of code.

BIND makes extensive use of functions in its internal
library rather than C library functions. In order to
accurately analyze individual files, we needed to
annotate the library header files. The most accurate
way to annotate the library would be to iteratively run
LCLint on the library and add annotations. However,
the library was extremely large and contains deeply
nested call chains. To avoid the human analysis this
would require, we added annotations to some of the
library functions without annotating all the dependent
functions. In many cases, we were able to guess
preconditions by using comments or the names of
function parameters. For example, several functions
took a pointer parameter (p) and another parameter
encoding it size (psize), from which we inferred a
precondition MaxSet(p) >= (psize – 1). After
annotating selected BIND library functions, we were
able to check the chosen files without needing to fully
annotate all of BIND.

LCLint produces warnings for a series of unguarded
buffer writes in the function req_query. The code in

9 The source code is available at
ftp://ftp.isc.org/isc/bind/src/8.2.2-P7/bind-src.tar.gz

question is called in response to a specific type of query
which requests information concerning the domain
name server version. BIND appends a response to the
buffer containing the query that includes a global string
read from a configuration file. If the default
configuration is used, the code is safe because this
function is only called with buffers that are large
enough to store the response. However, the restrictions
on the safe use of this function are not obvious and
could easily be overlooked by someone modifying the
code. Additionally, it is possible that an administrator
could reconfigure BIND to use a value for the server
version string large enough to make the code unsafe.
The BIND developers agreed that a bounds check
should be inserted to eliminate this risk [Andrews01].

BIND uses extensive run time bounds checking. This
type of defensive programming is important for writing
secure programs, but does not guarantee that a program
is secure. LCLint detected a known buffer overflow in
a function that used run time checking but specified
buffer sizes incorrectly.10

The function ns_req examines a DNS query and gen-
erates a response. As part of its message processing, it
looks for a signature and signs its response with the
function ns_sign. LCLint reported that it was unable
to satisfy a precondition for ns_sign that requires the
size of the message buffer be accurately described by a
size parameter. This precondition was added when we
initially annotated the shared library. A careful hand
analysis of this function reveals that to due to careless
modification of variables denoting buffer length, it is
possible for the buffer length to be specified incorrectly
if the message contains a signature but a valid key is
not found. This buffer overflow vulnerability was
introduced when a digital signature feature was added
to BIND (ironically to increase security). Static analysis
tools can be used to quickly alert programmers to
assumptions that are broken by incremental code
changes.

Based on our case studies, we believe that LCLint is a
useful tool for improving the security of programs. It
does not detect all possible buffer overflow
vulnerabilities, and it can generate spurious warnings.
In practice, however, it provides programmers
concerned about security vulnerabilities with useful
assistance, even for large, complex programs. In
addition to aiding in the detection of exploitable buffer
overflows, the process of adding annotations to code
encourages a disciplined style of programming and

10 An advisory for this vulnerability can be found at
http://lwn.net/2001/0201/a/covert-bind.php3.

produces programs that include reliable and precise
documentation.

5. Implementation

Our analysis is implemented by combining traditional
compiler data flow analyses with constraint generation
and resolution. Programs are analyzed at the function
level; all interprocedural analyses are done using the
information contained in annotations.

We support four types of constraints corresponding to
the annotations introduced in Section 2: maxSet,
minSet, maxRead, and minRead. Constraints can also
contain constants and variables and allow the arithmetic
operations: + and -. Terms in constraints can refer to
any C expression, although our analysis will not be able
to evaluate some C expressions statically.

The full constraint grammar is:

constraint ⇒ (requires | ensures)
constraintExpression relOp constraintExpression
relationalOp ⇒ == | > | >= | < | <=
constraintExpression ⇒
 constraintExpression binaryOp constraintExpresion
 | unaryOp (constraintExpression)
 | term
binaryOp ⇒ + | -
unaryOp ⇒ maxSet | maxRead | minSet | minRead
term ⇒ variable | C expression | literal | result

Source-code annotations allow arbitrary constraints (as
defined by our constraint grammar) to be specified as
the preconditions and postconditions of functions.
Constraints can be conjoined (using /\), but there is no
support for disjunction. All variables used in
constraints have an associated location. Since the value
stored by a variable may change in the function body, it
is important that the constraint resolver can distinguish
the value at different points in the program execution.

Constraints are generated at the expression level and
stored in the corresponding node in the parse tree.
Constraint resolution is integrated with the checking by
resolving constraints at the statement level as checking
traverses up the parse tree. Although this limits the
power of our analysis, it ensures that it will be fast and
simple. The remainder of this section describes briefly
how constraints are represented, generated and
resolved.

Constraints are generated for C statements by traversing
the parse tree and generating constraints for each
subexpression. We determine constraints for a
statement by conjoining the constraints of its

subexpressions. This assumes subexpressions cannot
change state that is used by other subexpressions of the
same expression. The semantics of C make this a valid
assumption for nearly all expressions – it is undefined
behavior in C for two subexpressions not separated by a
sequence point to read and write the same data. Since
LCLint detects and warns about this type of undefined
behavior, it is reasonable for the buffer overflow
checking to rely on this assumption. A few C
expressions do have intermediate sequence points (such
as the comma operator which specifies that the left
operand is always evaluated first) and cannot be
analyzed correctly by our simplified assumptions. In
practice, this has not been a serious limitation for our
analysis.

Constraints are resolved at the statement level in the
parse tree and above using axiomatic semantics
techniques. Our analysis attempts to resolve constraints
using postconditions of earlier statements and function
preconditions. To aid in constraint resolution, we
simplify constraints using standard algebraic techniques
such as combining constants and substituting terms.
We also use constraint-specific simplification rules
such as maxSet(ptr + i) = maxSet(ptr) - i. We have
similar rules for maxRead, minSet, and minRead.

Constraints for statement lists are produced using
normal axiomatic semantics rules and simple logic to
combine the constraints of individual statements. For
example, the code fragment
1 t++;
2 *t = ‘x’;
3 t++;

leads to the constraints:

requires maxSet(t @ 1:1) >= 1,
ensures maxRead(t @ 3:4) >= -1 and
ensures (t @ 3:4) = (t @ 1:1) + 2.

The assignment to *t on line 2 produces the constraint
requires maxSet(t @ 2:2) >= 0. The increment on line 1
produces the constraint ensures (t@1:4) = (t@1:1) + 1.
The increment constraint is substituted into the maxSet
constraint to produce requires maxSet (t@1:1 + 1) >= 0.
Using the constraint-specific simplification rule, this
simplifies to requires maxSet (t@1:1) - 1 >= 0 which
further simplifies to requires maxSet(t @ 1:1) >= 1.

6. Control Flow

Statements involving control flow such as while and
for loops and if statements, require more complex
analysis than simple statement lists. For if statements
and loops, the predicate often provides a guard that
makes a possibly unsafe operation safe. In order to

analyze such constructs well, LCLint must take into
account the value of the predicate on different code
paths. For each predicate, LCLint generates three lists
of postcondition constraints: those that hold regardless
of the truth value of the predicate, those that hold when
the predicate evaluates to true, and those that hold when
the predicate evaluates to false.

To analyze an if statement, we develop branch specific
guards based on our analysis of the predicate and use
these guards to resolve constraints within the body. For
example, in the statement
 if (sizeof (s1) > strlen (s2))

strcpy(s1, s2);

if s1 is a fixed-size array, sizeof (s1) will be equal
to maxSet(s1) + 1. Thus the if predicate allows LCLint
to determine that the constraint maxSet(s1) >=
maxRead(s2) holds on the true branch. Based on this
constraint LCLint determines that the call to strcpy is
safe.

Looping constructs present additional problems.
Previous versions of LCLint made a gross
simplification of loop behavior: all for and while
loops in the program were analyzed as though the body
executed either zero or one times. Although this is
clearly a ridiculous assumption, it worked surprisingly
well for the types of analyses done by LCLint. For the
buffer overflow analyses, this simplified view of loop
semantics does not provide satisfactory results – to
determine whether buf[i] is a potential buffer
overflow, we need to know the range of values i may
represent. Analyzing the loop as though its body
executed only once would not provide enough
information about the possible values of i.

In a typical program verifier, loops are handled by
requiring programmers to provide loop invariants.
Despite considerable effort [Wegbreit75, Cousot77,
Collins88, IS97, DLNS98, SI98], no one has yet been
able to produce tools that generate suitable loop
invariants automatically. Some promising work has
been done towards discovering likely invariants by
executing programs [ECGN99], but these techniques
require well-constructed test suites and many problems
remain before this could be used to produce the kinds of
loop invariants we need. Typical programmers are not
able or willing to annotate their code with loop
invariants, so for LCLint to be effective we needed a
method for handling loops that produces better results
than our previous gross simplification method, but did
not require expensive analyses or programmer-supplied
loop invariants.

Our solution is to take advantage of the idioms used by
typical C programmers. Rather than attempt to handle
all possible loops in a general way, we observe that a
large fraction of the loops in most C programs are
written in a stylized and structured way. Hence, we can
develop heuristics for identifying and analyzing loops
that match certain common idioms. When a loop
matches a known idiom, corresponding heuristics can
be used to guess how many times the loop body will
execute. This information is used to add additional
preconditions to the loop body that constrain the values
of variables inside the loop.

To further simplify the analysis, we assume that any
buffer overflow that occurs in the loop will be apparent
in either the first or last iterations. This is a reasonable
assumption in almost all cases, since it would be quite
rare for a program to contain a loop where the extreme
values of loop variables were not on the first and last
iterations. This allows simpler and more efficient loop
checking. To analyze the first iteration of the loop, we
treat the loop as an if statement and use the techniques
described above. To analyze the last iteration we use a
series of heuristics to determine the number of loop
iterations and generate additional constraints based on
this analysis.

An example loop heuristic analyzes loops of the form

for (index = 0; expr; index++) body

where the body and expr do not modify the index
variable and body does not contain a statement (e.g., a
break) that could interfere with normal loop execution.
Analyses performed by the original LCLint are used to
aid loop heuristic pattern matching. For example, we
use LCLint’s modification analyses to determine that
the loop body does not modify the index variable.

For a loop that matches this idiom, it is reasonable to
assume that the number of iterations can be determined
solely from the loop predicate. As with if statements,
we generate three lists of postcondition constraints for
the loop test. We determine the terminating condition
of the loop by examining the list of postcondition
constraints that apply specifically to the true branch.
Within these constraints, we look for constraints of the
form index <= e. For each of these constraints, we
search the increment part of the loop header for
constraints matching the form index = index + 1. If we
find a constraint of this form, we assume the loop runs
for e iterations.

Of course, many loops that match this heuristic will not
execute for e iterations. Changes to global state or other
variables in the loop body could affect the value of e.
Hence, our analysis is not sound or complete. For the

programs we have tried so far, we have found this
heuristic works correctly.

Abstract syntax trees for loops are converted to a
canonical form to increase their chances of matching a
known heuristic. After canonicalization, this loop
pattern matches a surprisingly high number of cases.
For example, in the loop
 for (i = 0; buffer[i]; i++) body

the postconditions of the loop predicate when the body
executes would include the constraint ensures i <
maxRead(buffer). This would match the pattern so
LCLint could determine that the loop executes for
maxRead(buffer) iterations.

Several other heuristics are used to match other
common loop idioms used in C programs. We can
generalize the first heuristic to cases where the initial
index value is not known. If LCLint can calculate a
reasonable upper bound on the number of iterations (for
example, if we can determine that the initial value of
the index is always non-negative), it can determine an
upper bound on the number of loop iterations. This can
generate false positives if LCLint overestimates the
actual number of loop iterations, but usually gives a
good enough approximation for our purposes.

Another heuristic recognizes a common loop form in
which a loop increments and tests a pointer. Typically,
these loops match the pattern:
 for (init; *buf; buf++)

A heuristic detects this loop form and assumes that loop
executes for maxRead(buf) iterations.

After estimating the number of loop iterations, we use a
series of heuristics to generate reasonable constraints
for the last iteration. To do this, we calculate the value
of each variable in the last iteration. If a variable is
incremented in the loop, we estimate that in the last
iteration the variable is the sum of the number of loop
iterations and the value of the variable in the first
iteration. For the loop to be safe, all loop preconditions
involving the variable must be satisfied for the values
of the variable in both the first and last iterations. This
heuristic gives satisfactory results in many cases.

Our heuristics were initially developed based on our
analysis of wu-ftpd. We found that our heuristics were
effective for BIND also. To handle BIND, a few addi-
tional heuristics were added. In particular, BIND fre-
quently used comparisons of pointer addresses to
ensure a memory accesses is safe. Without an appro-
priate heuristic, LCLint generated spurious warnings
for these cases. We added appropriate heuristics to

handle these situations correctly. While we expect
experience with additional programs would lead to the
addition of new loop heuristics, it is encouraging that
only a few additional heuristics were needed to analyze
BIND.

Although no collection of loop heuristics will be able to
correctly analyze all loops in C programs, our
experience so far indicates that a small number of loop
heuristics can be used to correctly analyze most loops
in typical C programs. This is not as surprising as it
might seem – most programmers learn to code loops
from reading examples in standard texts or other
people’s code. A few simple loop idioms are sufficient
for programming many computations.

7. Related Work

In Section 2, we described run-time approaches to the
buffer overflow problem. In this section, we compare
our work to other work on static analysis.

It is possible to find some program flaws using lexical
analysis alone. Unix grep is often used to perform a
crude analysis by searching for potentially unsafe
library function calls. ITS4 is a lexical analysis tool
that searches for security problems using a database of
potentially dangerous constructs [VBKM00]. Lexical
analysis techniques are fast and simple, but their power
is very limited since they do not take into account the
syntax or semantics of the program.

More precise checking requires a deeper analysis of the
program. Our work builds upon considerable work on
constraint-based analysis techniques. We do not
attempt to summarize foundational work here. For a
summary see [Aiken99].

Proof-carrying code [NL 96, Necula97] is a technique
where a proof is distributed with an executable and a
verifier checks the proof guarantees the executable has
certain properties. Proof-carrying code has been used
to enforce safety policies constraining readable and
writeable memory locations. Automatic construction of
proofs of memory safety for programs written in an
unsafe language, however, is beyond current
capabilities.

Wagner, et al. have developed a system to statically
detect buffer overflows in C [WFBA00, Wagner00].
They used their tool effectively to find both known and
unknown buffer overflow vulnerabilities in a version of
sendmail. Their approach formulates the problem as an
integer range analysis problem by treating C strings as
an abstract type accessed through library functions and
modeling pointers as integer ranges for allocated size

and length. A consequence of modeling strings as an
abstract data type is that buffer overflows involving
non-character buffers cannot be detected. Their system
generates constraints similar to those generated by
LCLint for operations involving strings. These
constraints are not generated from annotations, but
constraints for standard library functions are built in to
the tool. Flow insensitive analysis is used to resolve the
constraints. Without the localization provided by
annotations, it was believed that flow sensitive analyses
would not scale well enough to handle real programs.
Flow insensitive analysis is less accurate and does not
allow special handling of loops or if statements.

Dor, Rodeh and Sagiv have developed a system that
detects unsafe string operations in C programs
[DRS01]. Their system performs a source-to-source
transformation that instruments a program with
additional variables that describe string attributes and
contains assert statements that check for unsafe string
operations. The instrumented program is then analyzed
statically using integer analysis to determine possible
assertion failures. This approach can handle many
complex properties such as overlapping pointers.
However, in the worst case the number of variables in
the instrumented program is quadratic in the number of
variables in the original program. To date, it has only
been used on small example programs.

A few tools have been developed to detect array bounds
errors in languages other than C. John McHugh
developed a verification system that detects array
bounds errors in the Gypsy language [McHugh84].
Extended Static Checking uses an automatic theorem-
prover to detect array index bounds errors in Modula-3
and Java [DLNS98]. Extended Static Checking uses
information in annotations to assist checking.
Detecting array bounds errors in C programs is harder
than for Modula-3 or Java, since those languages do not
provide pointer arithmetic.

8. Conclusions

We have presented a lightweight static analysis tool for
detecting buffer overflow vulnerabilities. It is neither
sound nor complete; hence, it misses some vulnera-
bilities and produces some spurious warnings. Despite
this, our experience so far indicates that it is useful. We
were able to find both known and previously unknown
buffer overflow vulnerabilities in wu-ftpd and BIND
with a reasonable amount of effort using our approach.
Further, the process of adding annotations is a con-
structive and useful step for understanding of a program
and improving its maintainability.

We believe it is realistic (albeit perhaps optimistic) to
believe programmers would be willing to add annota-
tions to their programs if they are used to efficiently
and clearly detect likely buffer overflow vulnerabilities
(and other bugs) in their programs. An informal sam-
pling of tens of thousands of emails received from
LCLint users indicates that about one quarter of LCLint
users add the annotations supported by previously
released versions of LCLint to their programs. Perhaps
half of those use annotations in sophisticated ways (and
occasionally in ways the authors never imagined).
Although the annotations required for effectively
detecting buffer overflow vulnerabilities are somewhat
more complicated, they are only an incremental step
beyond previous annotations. In most cases, and
certainly for security-sensitive programs, the benefits of
doing so should far outweigh the effort required.

These techniques, and static checking in general, will
not provide the complete solution to the buffer overflow
problem. We are optimistic, though, that this work
represents a step towards that goal.

Availability
LCLint source code and binaries for several platforms
are available from http://lclint.cs.virginia.edu.

Acknowledgements
We would like to thank the NASA Langley Research
Center for supporting this work. David Evans is also
supported by an NSF CAREER Award. We thank John
Knight, John McHugh, Chenxi Wang, Joel Winstead
and the anonymous reviewers for their helpful and
insightful comments.

References
[Aiken99] Alexander Aiken. Introduction to Set

Constraint-Based Program Analysis. Science of
Computer Programming, Volume 35, Numbers 2-
3. November 1999.

[AlephOne96] Aleph One. Smashing the Stack for Fun
and Profit. BugTraq Archives.
http://immunix.org/StackGuard/profit.html.

[Andrews01] Mark Andrews. Personal communication, May
2001.

[BST00] Arash Baratloo, Navjot Singh and Timothy
Tsai. Transparent Run-Time Defense Against
Stack-Smashing Attacks. 9th USENIX Security
Symposium, August 2000.

[Collins88] William J. Collins. The Trouble with For-
Loop Invariants. 19 th SIGCSE Technical

Symposium on Computer Science Education,
February 1988.

[Coolbaugh99] Liz Coolbaugh. Buffer Overflow
Protection from Kernel Patches. Linux Weekly
News, http://lwn.net/1999/1230/security.php3.

[Cousot77] Patrick Cousot and Radhia Cousot. Abstract
Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or
Approximation of Fixpoints. Fourth ACM
Symposium on Principles of Programming
Languages, January 1977.

[CPMH+98] Crispin Cowan, Calton Pu, David Maier,
Heather Hinton, Peat Bakke, Steve Beattie, Aaron
Grier, Perry Wagle and Qian Zhang. Automatic
Detection and Prevention of Buffer-Overflow
Attacks. 7th USENIX Security Symposium,
January 1998.

[CBDP+99] Crispin Cowan, Steve Beattie, Ryan Finnin
Day, Calton Pu, Perry Wagle and Erik
Walthinsen. Protecting Systems from Stack
Smashing Attacks with StackGuard. Linux Expo.
May 1999. (Updated statistics at
http://immunix.org/StackGuard/performance.html)

[CWPBW00] Crispin Cowan, Perry Wagle, Calton Pu,
Steve Beattie and Jonathan Walpole. Buffer
Overflows: Attacks and Defenses for the
Vulnerability of the Decade. DARPA Information
Survivability Conference and Exposition. January
2000.

[DLNS98] David Detlefs, K. Rustan M. Leino, Greg
Nelson and James B. Saxe. Extended Static
Checking. Research Report, Compaq Systems
Research Center. December 18, 1998.

[DRS01] Nurit Dor, Michael Rodeh and Mooly Sagiv.
Cleanness Checking of String Manipulations in C
Programs via Integer Analysis. 8th International
Static Analysis Symposium. To appear, July
2001.

[ES99] Úlfar Erlingsson and Fred B. Schneider. SASI
Enforcement of Security Policies: A Retrospective.
New Security Paradigms Workshop. September
1999.

[ES00] Ulfar Erlingsson and Fred B. Schneider. IRM
Enforcement of Java Stack Inspection. IEEE
Symposium on Security and Privacy. May 2000.

[ECGN99] Michael D. Ernst, Jake Cockrell, William G.
Griswold and David Notkin. Dynamically
Discovering Likely Program Invariants to Support
Program Evolution. International Conference on
Software Engineering. May 1999.

[EGHT94] David Evans, John Guttag, Jim Horning and
Yang Meng Tan. LCLint: A Tool for Using
Specifications to Check Code. SIGSOFT
Symposium on the Foundations of Software
Engineering. December 1994.

[Evans96] David Evans. Static Detection of Dynamic
Memory Errors. SIGPLAN Conference on
Programming Language Design and
Implementation. May 1996.

[ET99] David Evans and Andrew Twyman. Flexible
Policy-Directed Code Safety. IEEE Symposium on
Security and Privacy. May 1999.

[Evans00a] David Evans. Policy-Directed Code Safety.
MIT PhD Thesis. February 2000.

[Evans00b] David Evans. Annotation-Assisted
Lightweight Static Checking. First International
Workshop on Automated Program Analysis,
Testing and Verification. June 2000.

[Evans00c] David Evans. LCLint User’s Guide,
Version 2.5. May 2000.
http://lclint.cs.virginia.edu/guide/

[FBF99] Timothy Fraser, Lee Badger and Mark
Feldman. Hardening COTS Software with Generic
Software Wrappers. IEEE Symposium on Security
and Privacy. May 1999.

[GWTB96] Ian Goldberg, David Wagner, Randi
Thomas and Eric A. Brewer. A Secure
Environment for Untrusted Helper Applications:
Confining the Wily Hacker. 6th USENIX Security
Symposium. July 1996.

[GH93] John V. Guttag and James J. Horning, editors,
with Stephen J. Garland, Kevin D. Jones, Andrés
Modet and Jennette M. Wing. Larch: Languages
and Tools for Formal Specification. Springer-
Verlag. 1993.

[IS97] A. Ireland and J. Stark. On the Automatic
Discovery of Loop Invariants. 4th NASA Langley
Formal Methods Workshop. September 1997.

[ISO99] ISO/IEC 9899 International Standard.
Programming Languages – C. December 1999.
Approved by ANSI May 2000.

[LHSS00] David Larochelle, Yanlin Huang, Avneesh
Saxena and Seejo Sebastine. Static Detection of
Buffer Overflows in C using LCLint. Unpublished
report available from the authors. May 2000.

[Luckin01] Bob Luckin. Personal communication,
April 2001.

[Lundberg01] Gregory A Lundberg. Personal
communication, April 2001.

[McHugh84] John McHugh. Towards the Generation
of Efficent Code form Verified Programs.
Technical Report 40, Institute for Computing
Science, University of Texas at Austin PhD
Thesis, 1984.

[Necula97] George C. Necula. Proof-Carrying Code.
24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Langauges, January
1997.

[NL96] George C. Necula and Peter Lee. Safe Kernel
Extensions Without Run-Time Checking. 2nd
Symposium on Operating Systems Design and
Implementation, October 1996.

[Orcero00] David Santo Orcero. The Code Analyzer
LCLint. Linux Journal. May 2000.

[Pethia00] Richard D. Pethia. Bugs in Programs.
Keynote address at SIGSOFT Foundations of
Software Engineering. November 2000.

[PG00] Pramode C E and Gopakumar C E. Static
Checking of C programs with LCLint. Linux
Gazette Issue 51. March 2000.

[RE89] Jon Rochlis and Mark Eichin. With Microscope
and Tweezers: the Worm from MIT’s Perspective.
Communications of the ACM. June 1989.

[Snow99] Brian Snow. Future of Security. Panel
presentation at IEEE Security and Privacy. May
1999.

[Spafford88] Eugene Spafford. The Internet Worm
Program: An Analysis. Purdue Tech Report 832.
1988.

[SI98] J. Stark and A. Ireland. Invariant Discovery Via
Failed Proof Attempts. 8th International
Workshop on Logic Based Program Synthesis and
Transformation. June 1998.

[Torvalds98] Linus Torvalds. Message archived in
Linux Weekly News. August 1998.
http://lwn.net/980806/a/linus-noexec.html

[VBKM00] John Viega, J.T. Bloch, Tadayoshi Kohno
and Gary McGraw. ITS4 : A Static Vulnerability
Scanner for C and C++ Code. Annual Computer
Security Applications Conference. December
2000.

[WFBA00] David Wagner, Jeffrey S. Foster, Eric A.
Brewer and Alexander Aiken. A First Step
Towards Automated Detection of Buffer Overrun
Vulnerabilities. Network and Distributed System
Security Symposium. February 2000.

[Wagner00] David Wagner. Static Analysis and
Computer Security: New Techniques for Software

Assurance. University of California, Berkeley,
PhD Thesis, 2000.

[WLAG93] Robert Wahbe, Steven Lucco, Thomas E.
Anderson and Susan L. Graham. Efficient
Software-Based Fault Isolation. 14th ACM
Symposium on Operating Systems Principles,
1993.

[Wegbreit75] Ben Wegbreit. Property Extraction in
Well-Founded Property Sets. IEEE Transactions
on Software Engineering, September 1975.

[WSJ01] The Wall Street Journal. Researchers Find
Software Flaw Giving Hackers Key to Web Sites.
January 30, 2001.

A. Annotated Selected C Library Functions

char *strcpy (char *s1, char *s2)
/*@requires maxSet(s1) >= maxRead(s2)@*/
/*@ensures maxRead(s1) == maxRead (s2)

/\ result == s1@*/;

char *strncpy (char *s1, char *s2,
size_t n)

/*@requires maxSet(s1) >= n – 1@*/
/*@ensures maxRead (s1) <= maxRead(s2)

/\ maxRead (s1) <= (n – 1)
/\ result == s1@*/;

char *strcat (char *s1, char *s2)
/*@requires maxSet(s1)

>= (maxRead(s1)
+ maxRead(s2))@*/

/*@ensures
maxRead(s1) == maxRead(s1)

+ maxRead(s2)
/\ result == s1@*/;

strncat (char *s1, char *s2, int n)
/*@requires maxSet(s1)

>= maxRead(s1) + n@*/
/*@ensures maxRead(result)

>= maxRead(s1) + n@*/;

extern size_t strlen (char *s)
/*@ensures result == maxRead(s)@*/;

void *calloc (size_t nobj, size_t size)
/*@ensures maxSet(result) == nobj@*/;

void *malloc (size_t size)
/*@ensures maxSet(result) == size@*/;

These annotations were determined based on ISO
C standard [ISO99]. Note that the semantics of
strncpy and strncat are different – strncpy
writes exactly n characters to the buffer but does

not guarantee that a null character is added;
strncat appends n characters to the buffer and a
null character. The ensures clauses reveal these
differences clearly.

The full specifications for malloc and calloc also
include null annotations on the result that indicate
that they may return NULL. Existing LCLint
checking detects dereferencing a potentially null
pointer. As a result, the implicit actual
postcondition for malloc is maxSet(result) == size ∨
result == null. LCLint does not support general
disjunctions, but possibly NULL values can be
handled straightforwardly.

	1
	Buffer Overflow Attacks and Defenses
	Approach
	Experience
	4.1 wu-ftpd
	4.2 BIND

	Implementation
	Control Flow
	Related Work
	Conclusions
	Availability
	Acknowledgements
	References
	A. Annotated Selected C Library Functions

