Python For Audio Signal Processing

John GLOVER, Victor LAZZARINI and Joseph TIMONEY
The Sound and Digital Music Research Group
National University of Ireland, Maynooth
Ireland
{John.C.Glover, Victor.Lazzarini }@nuim.ie
JTimoney@cs.nuim.ie

Abstract

This paper discusses the use of Python for develop-
ing audio signal processing applications. Overviews
of Python language, NumPy, SciPy and Matplotlib
are given, which together form a powerful platform
for scientific computing. We then show how SciPy
was used to create two audio programming libraries,
and describe ways that Python can be integrated
with the SndObj library and Pure Data, two exist-
ing environments for music composition and signal
processing.

Keywords
Audio, Music,

Programming

Signal Processing, Python,

1 Introduction

There are many problems that are common to a
wide variety of applications in the field of audio
signal processing. Examples include procedures
such as loading sound files or communicating
between audio processes and sound cards, as
well as digital signal processing (DSP) tasks
such as filtering and Fourier analysis [Allen and
Rabiner, 1977]. It often makes sense to rely on
existing code libraries and frameworks to per-
form these tasks. This is particularly true in
the case of building prototypes, a practise com-
mon to both consumer application developers
and scientific researchers, as these code libraries
allows the developer to focus on the novel as-
pects of their work.

Audio signal processing libraries are available
for general purpose programming languages
such as the GNU Scientific Library (GSL) for
C/CH+ [Galassi et al., 2009], which provides a
comprehensive array of signal processing tools.
However, it generally takes a lot more time to
develop applications or prototypes in C/C++
than in a more lightweight scripting language.
This is one of the reasons for the popularity
of tools such as MATLAB [MathWorks, 2010],
which allow the developer to easily manipulate

matrices of numerical data, and includes imple-
mentations of many standard signal processing
techniques. The major downside to MATLAB
is that it is not free and not open source, which
is a considerable problem for researchers who
want to share code and collaborate. GNU
Octave [Eaton, 2002] is an open source alter-
native to MATLAB. It is an interpreted lan-
guage with a syntax that is very similar to
MATLAB, and it is possible to write scripts that
will run on both systems. However, with both
MATLAB and Octave this increase in short-
term productivity comes at a cost. For any-
thing other than very basic tasks, tools such as
integrated development environments (IDEs),
debuggers and profilers are certainly a useful
resource if not a requirement. All of these
tools exist in some form for MATLAB/Octave,
but users must invest a considerable amount
of time in learning to use a programming lan-
guage and a set of development tools that have
a relatively limited application domain when
compared with general purpose programming
languages. It is also generally more difficult
to integrate MATLAB/Octave programs with
compositional tools such as Csound [Vercoe et
al., 2011] or Pure Data [Puckette, 1996], or
with other technologies such as web frameworks,
cloud computing platforms and mobile applica-
tions, all of which are becoming increasingly im-
portant in the music industry.

For developing and prototyping audio signal
processing applications, it would therefore be
advantageous to combine the power and flexi-
bility of a widely adopted, open source, general
purpose programming language with the quick
development process that is possible when using
interpreted languages that are focused on signal
processing applications. Python [van Rossum
and Drake, 2006], when used in conjunction
with the extension modules NumPy [Oliphant,
2006], SciPy [Jones et al., 2001] and Matplotlib
[Hunter, 2007] has all of these characteristics.



Section 2 provides a brief overview of the
Python programming language. In Section 3 we
discuss NumPy, SciPy and Matplotlib, which
add a rich set of scientific computing functions
to the Python language. Section 4 describes
two libraries created by the authors that rely
on SciPy, Section 5 shows how these Python
programs can be integrated with other software
tools for music composition, with final conclu-
sions given in Section 6.

2 Python

Python is an open source programming lan-
guage that runs on many platforms including
Linux, Mac OS X and Windows. It is widely
used and actively developed, has a vast array of
code libraries and development tools, and inte-
grates well with many other programming lan-
guages, frameworks and musical applications.
Some notable features of the language include:

e [t is a mature language and allows for pro-
gramming in several different paradigms in-
cluding imperative, object-orientated and
functional styles.

e The clean syntax puts an emphasis on pro-
ducing well structured and readable code.
Python source code has often been com-
pared to executable pseudocode.

e Python provides an interactive interpreter,
which allows for rapid code development,
prototyping and live experimentation.

e The ability to extend Python with modules
written in C/C++ means that functional-
ity can be quickly prototyped and then op-
timised later.

e Python can be embedded into existing ap-
plications.

e Documentation can be generated automat-
ically from the comments and source code.

e Python bindings exist for cross-platform
GUI toolkits such as Qt [Nokia, 2011].

e The large number of high-quality library
modules means that you can quickly build
sophisticated programs.

A complete guide to the language, including
a comprehensive tutorial is available online at
http://python.org.

3 Python for Scientific Computing

Section 3.1 provides an overview of three pack-
ages that are widely used for performing ef-
ficient numerical calculations and data visu-
alisation using Python. Example programs

that make use of these packages are given in
Section 3.2.

3.1 NumPy, SciPy and Matplotlib

Python’s scientific computing prowess comes
largely from the combination of three re-
lated extension modules: NumPy, SciPy and
Matplotlib. ~ NumPy [Oliphant, 2006] adds
a homogenous, multidimensional array object
to Python. It also provides functions that
perform efficient calculations based on array
data. NumPy is written in C, and can be ex-
tended easily via its own C-API. As many ex-
isting scientific computing libraries are written
in Fortran, NumPy comes with a tool called
f2py which can parse Fortran files and create
a Python extension module that contains all
the subroutines and functions in those files as
callable Python methods.

SciPy builds on top of NumPy, providing
modules that are dedicated to common issues
in scientific computing, and so it can be com-
pared to MATLAB toolboxes. The SciPy mod-
ules are written in a mixture of pure Python,
C and Fortran, and are designed to operate ef-
ficiently on NumPy arrays. A complete list of
SciPy modules is available online at
http://docs.scipy.org, but examples include:

File input/output (scipy.io): Provides
functions for reading and writing files in
many different data formats, including
.wav, .csv and matlab data files (.mat).

Fourier transforms (scipy.fftpack):
Contains implementations of 1-D and
2-D fast Fourier transforms, as well as
Hilbert and inverse Hilbert transforms.

Signal processing (scipy.signal): Provides
implementations of many wuseful signal
processing techniques, such as waveform
generation, FIR and IIR filtering and
multi-dimensional convolution.

Interpolation (scipy.interpolate): Consists
of linear interpolation functions and cubic
splines in several dimensions.

Matplotlib is a library of 2-dimensional plot-
ting functions that provides the ability to
quickly visualise data from NumPy arrays, and
produce publication-ready figures in a variety
of formats. It can be used interactively from
the Python command prompt, providing sim-
ilar functionality to MATLAB or GNU Plot
[Williams et al., 2011]. It can also be used in
Python scripts, web applications servers or in
combination with several GUI toolkits.


http://python.org
http://docs.scipy.org

3.2 SciPy Examples

Listing 1 shows how SciPy can be used to read
in the samples from a flute recording stored in
a file called flute.wav, and then plot them using
Matplotlib. The call to the read function on line
5 returns a tuple containing the sampling rate
of the audio file as the first entry and the audio
samples as the second entry. The samples are
stored in a variable called audio, with the first
1024 samples being plotted in line 8. In lines
10, 11 and 13 the axis labels and the plot title
are set, and finally the plot is displayed in line
15. The image produced by Listing 1 is shown
in Figure 1.

1 from scipy.io.wavfile import read
2 import matplotlib.pyplot as plt
3

+# read audio samples

5 input_data = read("flute.wav")
6 audio = input_datal[l]

7# plot the first 1024 samples
splt.plot (audio[0:10247])

9# label the axes

wplt.ylabel ("Amplitude")
nplt.xlabel ("Time (samples)™)
12 # set the title
wplt.title("Flute Sample")

14 # display the plot

15 plt.show ()

Listing 1: Plotting Audio Files

Flute Sample

2000
15001
1000}

5001

Amplitude

=500

—1000}

~1500; 200 400 500 800 1000 1200

Time (samples)

Figure 1: Plot of audio samples, generated by
the code given in Listing 1.

In Listing 2, SciPy is used to perform a Fast
Fourier Transform (FFT) on a windowed frame
of audio samples then plot the resulting magni-
tude spectrum. In line 11, the SciPy hann func-

tion is used to compute a 1024 point Hanning
window, which is then applied to the first 1024
flute samples in line 12. The FFT is computed
in line 14, with the complex coefficients con-
verted into polar form and the magnitude val-
ues stored in the variable mags. The magnitude
values are converted from a linear to a decibel
scale in line 16, then normalised to have a max-
imum value of 0 dB in line 18. In lines 20-26
the magnitude values are plotted and displayed.
The resulting image is shown in Figure 2.

1 import scipy

2 from scipy.io.wavfile import read
3 from scipy.signal import hann

4 from scipy.fftpack import rfft

5 import matplotlib.pyplot as plt

6

7# read audio samples

s input_data = read("flute.wav")
9audio = input_datall]

10 # apply a Hanning window

11 window = hann (1024)

12audio = audio[0:1024] * window
13# fft

1amags = abs (rfft (audio))

15 # convert to dB

iemags = 20 x scipy.loglO (mags)
17 # normalise to 0 dB max
1smags —= max (mags)

19 # plot

20plt.plot (mags)

21 # label the axes
2plt.ylabel ("Magnitude (dB)")
23 plt.xlabel ("Frequency Bin")
24 # set the title

s plt.title ("Flute Spectrum")
26 plt .show ()

Listing 2: Plotting a magnitude spectrum

4 Audio Signal Processing With
Python

This section gives an overview of how SciPy is
used in two software libraries that were created
by the authors. Section 4.1 gives an overview
of Simpl [Glover et al., 2009], while Section 4.2
introduces Modal, our new library for musical
note onset detection.

4.1 Simpl
Simpl ! is an open source library for sinusoidal

modelling [Amatriain et al., 2002] written in
C/C++ and Python. The aim of this project is

! Available at http://simplsound.sourceforge.net


http://simplsound.sourceforge.net

Flute Spectrum

-20
——
m
O —-40
N
QO _gol
3 -60
-
X _so}
c
o
G —100}
=
—120}
~140g 200 400 500 800 1000 1200

Frequency Bin

Figure 2: Flute magnitude spectrum produced
from code in Listing 2.

to tie together many of the existing sinusoidal
modelling implementations into a single unified
system with a consistent API, as well as provide
implementations of some recently published si-
nusoidal modelling algorithms. Simpl is primar-
ily intended as a tool for other researchers in
the field, allowing them to easily combine, com-
pare and contrast many of the published analy-
sis/synthesis algorithms.

Simpl breaks the sinusoidal modelling pro-
cess down into three distinct steps: peak de-
tection, partial tracking and sound synthesis.
The supported sinusoidal modelling implemen-
tations have a Python module associated with
every step which returns data in the same for-
mat, irrespective of its underlying implementa-
tion. This allows analysis/synthesis networks to
be created in which the algorithm that is used
for a particular step can be changed without
effecting the rest of the network. Each object
has a method for real-time interaction as well as
non-real-time or batch mode processing, as long
as these modes are supported by the underlying
algorithm.

All audio in Simpl is stored in NumPy ar-
rays. This means that SciPy functions can be
used for basic tasks such as reading and writ-
ing audio files, as well as more complex pro-
cedures such as performing additional process-
ing, analysis or visualisation of the data. Audio
samples are passed into a PeakDetection ob-
ject for analysis, with detected peaks being re-
turned as NumPy arrays that are used to build
a list of Peak objects. Peaks are then passed to
PartialTracking objects, which return partials
that can be transferred to Synthesis objects to
create a NumPy array of synthesised audio sam-

ples. Simpl also includes a module with plotting
functions that use Matplotlib to plot analysis
data from the peak detection and partial track-
ing analysis phases.

An example Python program that uses Simpl
is given in Listing 3. Lines 6-8 read in the first
4096 sample values of a recorded flute note. As
the default hop size is 512 samples, this will
produce 8 frames of analysis data. In line 10 a
SndObjPeakDetection object is created, which
detects sinusoidal peaks in each frame of audio
using the algorithm from The SndObj Library
[Lazzarini, 2001]. The maximum number of de-
tected peaks per frame is limited to 20 in line
11, before the peaks are detected and returned
in line 12. In line 15 a MQPartialTracking ob-
ject is created, which links previously detected
sinusoidal peaks together to form partials, us-
ing the McAulay-Quatieri algorithm [McAulay
and Quatieri, 1986]. The maximum number of
partials is limited to 20 in line 16 and the par-
tials are detected and returned in line 17. Lines
18-25 plot the partials, set the figure title, label
the axes and display the final plot as shown in
Figure 3.

1 import simpl

2 import matplotlib.pyplot as plt
3 from scipy.io.wavfile import read
4

5 # read audio samples

6 audio = read("flute.wav") [1]

7# take Jjust the first few frames
saudio = audio[0:4096]

9# Peak detection with SndObj
1opd = simpl.SndObjPeakDetection ()
11 pd.max_peaks = 20

12 pks = pd.find_peaks (audio)

13 # Partial Tracking with

14 # the McAulay-Quatieri algorithm
15 pt = simpl.MQPartialTracking()

16 pt.max_partials = 20

impartls = pt.find_partials (pks)
18 # plot the detected partials

19 simpl.plot.plot_partials (partls)
20# set title and label axes
a1plt.title ("Flute Partials")
22plt.ylabel ("Frequency (Hz)")
23plt.xlabel ("Frame Number")

24 plt.show ()

Listing 3: A Simpl example



Flute Partials

4500

4000 |
N 3500
< 3000}

O’ 2500

ncy

@ 2000F
-

O 1500

Fre

1000

500F

2 3 4 5
Frame Number

Figure 3: Partials detected in the first 8 frames
of a flute sample, produced by the code in
Listing 3. Darker colours indicate lower am-
plitude partials.

4.2 Modal

Modal 2 is a new open source library for musi-
cal onset detection, written in C++ and Python
and released under the terms of the GNU
General Public License (GPL). Modal consists
of two main components: a code library and a
database of audio samples. The code library
includes implementations of three widely used
onset detection algorithms from the literature
and four novel onset detection systems created
by the authors. The onset detection systems
can work in a real-time streaming situation as
well as in non-real-time. For more information
on onset detection in general, a good overview
is given in Bello et al. (2005).

The sample database contains a collection of
audio samples that have creative commons li-
censing allowing for free reuse and redistribu-
tion, together with hand-annotated onset loca-
tions for each sample. It also includes an appli-
cation that allows for the labelling of onset loca-
tions in audio files, which can then be added to
the database. To the best of our knowledge, this
is the only freely distributable database of au-
dio samples together with their onset locations
that is currently available. The Sound Onset
Labellizer [Leveau et al., 2004] is a similar ref-
erence collection, but was not available at the
time of publication. The sample set used by
the Sound Onset Labellizer also makes use of
files from the RWC database [Goto et al., 2002],
which although publicly available is not free and
does not allow free redistribution.

2 Available at http://github.com/johnglover /modal

Modal makes extensive use of SciPy, with
NumPy arrays being used to contain audio sam-
ples and analysis data from multiple stages of
the onset detection process including computed
onset detection functions, peak picking thresh-
olds and the detected onset locations, while
Matplotlib is used to plot the analysis results.
All of the onset detection algorithms were writ-
ten in Python and make use of SciPy’s signal
processing modules. The most computationally
expensive part of the onset detection process
is the calculation of the onset detection func-
tions, so Modal also includes C++ implemen-
tations of all onset detection function modules.
These are made into Python extension modules
using SWIG [Beazley, 2003]. As SWIG exten-
sion modules can manipulate NumPy arrays,
the C++ implementations can be seamlessly
interchanged with their pure Python counter-
parts. This allows Python to be used in ar-
eas that it excels in such as rapid prototyping
and in “glueing” related components together,
while languages such as C and C++ can be used
later in the development cycle to optimise spe-
cific modules if necessary.

Listing 4 gives an example that uses Modal,
with the resulting plot shown in Figure 4. In
line 12 an audio file consisting of a sequence
of percussive notes is read in, with the sample
values being converted to floating-point values
between -1 and 1 in line 14. The onset detection
process in Modal consists of two steps, creating
a detection function from the source audio and
then finding onsets, which are peaks in this de-
tection function that are above a given thresh-
old value. In line 16 a ComplezxODF object is
created, which calculates a detection function
based on the complex domain phase and energy
approach described by Bello et al. (2004). This
detection function is computed and saved in
line 17. Line 19 creates an OnsetDetection ob-
ject which finds peaks in the detection function
that are above an adaptive median threshold
[Brossier et al., 2004]. The onset locations are
calculated and saved on lines 21-22. Lines 24-42
plot the results. The figure is divided into 2 sub-
plots, the first (upper) plot shows the original
audio file (dark grey) with the detected onset lo-
cations (vertical red dashed lines). The second
(lower) plot shows the detection function (dark
grey) and the adaptive threshold value (green).

1 from modal.onsetdetection \
2 import OnsetDetection
3 from modal.detectionfunctions \


http://github.com/johnglover/modal

4 import ComplexODF

5 from modal.ui.plot import \

6 (plot_detection_function,
7 plot_onsets)

s import matplotlib.pyplot as plt

o from scipy.io.wavfile import read
10

11 # read audio file

12audio = read("drums.wav") [1]

13 # values between -1 and 1

1uaudio = audio / 32768.0

15 # create detection function

16 codf = ComplexODF ()

17odf = codf.process (audio)

18 # create onset detection object
190od = OnsetDetection ()

20 hop_size = codf.get_hop_size ()

21 onsets = od.find_onsets (odf) * \
22 hop_size

23 # plot onset detection results
24 plt.subplot(2,1,1)

s plt.title ("Audio And Detected "
26 "Onsets")

27 plt.ylabel ("Sample Value")

s plt.xlabel ("Sample Number")
29plt.plot (audio, "0.4")

30 plot_onsets (onsets)
s1plt.subplot (2,1, 2)

s2plt.title ("Detection Function "

33 "And Threshold")
saplt.ylabel ("Detection Function "
35 "Value")

36 plt .xlabel ("Sample Number")

s7 plot_detection_function (odf,

38 hop_size)
39 thresh = od.threshold

w0 plot_detection_function (thresh,

41 hop_size,
42 "green")
43 plt.show ()

Listing 4: Modal example

5 Integration With Other Music
Applications

This section provides examples of SciPy inte-
gration with two established tools for sound
design and composition. Section 5.1 shows
SciPy integration with The SndObj Library,
with Section 5.2 providing an example of using
SciPy in conjunction with Pure Data.

5.1 The SndObj Library

The most recent version of The SndObj Library
comes with support for passing NumPy arrays

1.0

__Audio And Detected Onsets

Sample Value

-1.0

100000 150000
Sample Number

Detection Function And Threshold

0 50000

200000 250000

g
=}

o
[=3)

o
o

o
N

Detection Function Value

Y

[
M WU\\\“JM o Mo
0 50000 100000 150000
Sample Number

.

-

o
=)

200000 250000
Figure 4: The upper plot shows an audio sam-
ple with detected onsets indicated by dashed
red lines. The lower plot shows the detection
function that was created from the audio file (in
grey) and the peak picking threshold (in green).

to and from objects in the library, allowing data
to be easily exchanged between SndObj and
SciPy audio processing functions. An example
of this is shown in Listing 5. An audio file is
loaded in line 8, then the scipy.signal module
is used to low-pass filter it in lines 10-15. The
filter cutoff frequency is given as 0.02, with 1.0
being the Nyquist frequency. A SndObj called
obj is created in line 21 that will hold frames
of the output audio signal. In lines 24 and 25,
a SndRTIO object is created and set to write
the contents of 0bj to the default sound output.
Finally in lines 29-33, each frame of audio is
taken, copied into obj and then written to the
output.

1 from sndobj import \
2 SndObj, SndRTIO,
3 import scipy as sp
4 from scipy.signal import firwin
s from scipy.io.wavfile import read

SND_OUTPUT

6
7# read audio file
saudio = read ("drums.wav") [1]



9# use SciPy to low pass filter
10order = 101

1ncutoff = 0.02

12 filter = firwin (order, cutoff)
13audio = sp.convolve (audio,

14 filter,

15 "same")
16 # convert to 32-bit floats
iraudio = sp.asarray (audio,

18 sp.float32)

19 # create a SndObj that will hold
20 # frames of output audio

21 0bj = SndOb7j ()

22 # create a SndObj that will

23 # output to the sound card

21 outp = SndRTIO (1, SND_OUTPUT)

25 outp.SetOutput (1, obj)

26 # get the default frame size

27 f_size = outp.GetVectorSize ()

28 # output each frame

201 = 0

sowhile i < len (audio):

31 obj.PushIn(audio[i:i+f_size])
32 outp.Write ()

33 i += f_size

Listing 5: The SndObj Library and SciPy

5.2 Pure Data

The recently released libpd 2 allows Pure Data
to be embedded as a DSP library, and comes
with a SWIG wrapper enabling it to be loaded
as a Python extension module. Listing 6 shows
how SciPy can be used in conjunction with libpd
to process an audio file and save the result to
disk. In lines 7-13 a PdManager object is cre-
ated, that initialises libpd to work with a single
channel of audio at a sampling rate of 44.1 KHz.
A Pure Data patch is opened in lines 14-16, fol-
lowed by an audio file being loaded in line 20.
In lines 22-29, successive audio frames are pro-
cessed using the signal chain from the Pure Data
patch, with the resulting data converted into an
array of integer values and appended to the out
array. Finally, the patch is closed in line 31 and
the processed audio is written to disk in line 33.

1 import scipy as sp

2 from scipy import intlé6

3 from scipy.io.wavfile import \
4 read, write

s import pylibpd as pd

6

7 num_chans = 1

3 Available at http://gitorious.org/pdlib/libpd

s sampling_rate = 44100
9# open a Pure Data patch
iom = pd.PdManager (num_chans,

11 num_chans,

12 sampling_rate,
13 1)

14 p_name = "ring mod.pd"

15 patch = \

16 pd.libpd_open_patch (p_name)

17 # get the default frame size
18 f_size = pd.libpd_blocksize ()
19 # read audio file

20 audio = read("drums.wav") [1]
21 # process each frame

221 = 0

230ut = sp.array([], dtype=intlo6)
242while 1 < len (audio):

25 f = audio[i:i+f_size]

26 p = m.process (f)

27 p = sp.fromstring(p, intl6)
28 out = sp.hstack ((out, p))
29 i += f_size

30 # close the patch

31 pd.libpd_close_patch (patch)

322 # write the audio file to disk
sswrite ("out.wav", 44100, out)

Listing 6: Pure Data and SciPy

6 Conclusions

This paper highlighted just a few of the many
features that make Python an excellent choice
for developing audio signal processing applica-
tions. A clean, readable syntax combined with
an extensive collection of libraries and an unre-
strictive open source license make Python par-
ticularly well suited to rapid prototyping and
make it an invaluable tool for audio researchers.
This was exemplified in the discussion of two
open source signal processing libraries created
by the authors that both make use of Python
and SciPy: Simpl and Modal. Python is easy to
extend and integrates well with other program-
ming languages and environments, as demon-
strated by the ability to use Python and SciPy
in conjunction with established tools for audio
signal processing such as The SndObj Library
and Pure Data.

7 Acknowledgements

The authors would like to acknowledge the gen-
erous support of An Foras Feasa, who funded
this research.


http://gitorious.org/pdlib/libpd

References

J.B. Allen and L.R. Rabiner. 1977. A unified
approach to short-time Fourier analysis and
synthesis. Proceedings of the IEEE, 65(11),
November.

X. Amatriain, Jordi Bonada, A. Loscos, and
Xavier Serra, 2002. DAFx - Digital Audio
Effects, chapter Spectral Processing, pages
373-438. John Wiley and Sons.

David M. Beazley. 2003. Automated
scientific software scripting with SWIG.
Future Generation Computer Systems - Tools
for Program Development and Analysis,

19(5):599-609, July.

Juan Pablo Bello, Chris Duxbury, Mike
Davies, and Mark Sandler. 2004. On the use
of phase and energy for musical onset detec-
tion in the complex domain. IEFE Signal
Processing Letters, 11(6):553-556, June.

Juan Pablo Bello, Laurent Daudet, Samer
Abdallah, Chris Duxbury, Mike Davies,
and Mark Sandler. 2005. A Tutorial
on Onset Detection in Music Signals.
IEEE Transactions on Speech and Audio
Processing, 13(5):1035-1047, September.

Paul Brossier, Juan Pablo Bello, and Mark
Plumbley. 2004. Real-time temporal segmen-
tation of note objects in music signals. In
Proceedings of the International Computer
Music Conference (ICMC’04), pages 458—
461.

John W. Eaton. 2002. GNU Octave Manual.
Network Theory Limited, Bristol, UK.

M. Galassi, J. Davies, J. Theiler, B. Gough,
G. Jungman, P. Alken, M. Booth, and
F. Rossi. 2009. GNU Scientific Library
Reference Manual. Network Theory Limited,
Bristol, UK, 3 edition.

John Glover, Victor Lazzarini, and Joseph
Timoney. 2009. Simpl: A Python library
for sinusoidal modelling. In Proceedings
of the 12th International Conference on
Digital Audio Effects (DAFx-09), Como,
Italy, September.

Masataka Goto, Hiroki Hashiguchi, Takuichi
Nishimura, and Ryuichi Oka. 2002. RWC
music database: Popular, classical, and
jazz music databases. In Proceedings of
the 3rd International Conference on Music
Information Retrieval (ISMIR 2002), pages
287-288, October.

John D. Hunter. 2007. Matplotlib: A 2D
graphics environment. Computing In Science
& Engineering, 9(3):90-95, May-Jun.

Eric Jones, Travis Oliphant, Pearu Peterson,
et al. 2001. SciPy: Open source scientific
tools for Python. http://www.scipy.org (last
accessed 17-02-2011).

Victor Lazzarini. 2001. Sound processing
with The SndObj Library: An overview. In
Proceedings of the COST G-6 Conference on
Digital Audio Effects (DAFX-01), University
of Limerick, Ireland, December.

Piere Leveau, Laurent Daudet, and Gael
Richard. 2004. Methodology and tools for
the evaluation of automatic onset detec-
tion algorithms in music. In Proceedings of
the 5th International Conference on Music
Information Retrieval (ISMIR), Barcelona,
Spain, October.

The MathWorks. 2010. MATLAB
Release R2010b. The MathWorks, Natick,
Massachusetts.

Robert McAulay and Thomas Quatieri. 1986.
Speech analysis/synthesis based on a sinu-
soidal representation. IFEE Transactions
on Acoustics, Speech and Signal Processing,

ASSP-34(4), August.

Nokia. 2011. Qt - a cross-platform application
and UI framework. http://qt.nokia.com (last
accessed 17-02-2011).

Travis Oliphant. 2006. Guide To NumPy.
Trelgol Publishing, USA.

Miller Puckette. 1996. Pure Data. In
Proceedings of the International Computer
Music Conference (ICMC’96), pages 224—
227, San Francisco, USA.

Guido van Rossum and Fred L. Drake. 2006.
Python Language Reference Manual. Network
Theory Limited, Bristol, UK.

Barry Vercoe et al. 2011. The Csound
Reference Manual. http://www.csounds.com
(last accessed 17-02-2011).

Thomas Williams, Colin Kelley, et al. 2011.
Gnuplot. http://www.gnuplot.info (last ac-
cessed 17-02-2011).


http://www.scipy.org
http://qt.nokia.com
http://www.csounds.com
http://www.gnuplot.info

	Introduction
	Python
	Python for Scientific Computing
	NumPy, SciPy and Matplotlib
	SciPy Examples

	Audio Signal Processing With Python
	Simpl
	Modal

	Integration With Other Music Applications
	The SndObj Library
	Pure Data

	Conclusions
	Acknowledgements

