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Abstract—In this paper we identify some of the limitations with
previous electricity cost functions used for demand-response (DR)
programs in the retail market of the smart grid. In particular,
we prove that while previous models lower the demand, they do
not guarantee that they will try to flatten the demand. We then
introduce a new nonlinear piece-wise continuous electricity cost
function to model the way several consumers (from small utilities
to retail consumers) are billed for electricity consumption. We
show that the new cost function lowers the peaks in DR programs
and design new incentive mechanisms to ensure that distributed
agents converge to the Pareto-efficient solution of the system.
However, we prove that any incentives mechanism either imposes
additional taxes or requires external subsidies to operate. The
paper finalizes with two examples of such mechanisms.

Index Terms—Electricity market, dynamic pricing, game the-
ory, mechanism design.

I. INTRODUCTION

One of the goals of the smart grid is to make consumers
active participants and decision makers in the retail electricity
market through demand response (DR) programs [1]. DR pro-
grams attempt to achieve better energy efficiency and reduce
new capital investments by controlling consumer loads, which
might be responsive to conditions in the electricity market. For
example, by providing incentives consumers might redistribute
their load more evenly—e.g., consume more energy when
there is high wind or solar energy in the grid, and reduce
consumption during peak demand times. Moreover, an efficient
use of resources might defer the need for grid expansion and
reduce the investments on fast generators, which are only used
to supply peak demands.

In DR programs consumers will have a choice between
cost and convenience. A good way to capture the behavior
of strategic decision makers are game-theoretic models, where
all participants attempt to optimize their own utility functions
[2]. Previous work that used game-theoretic models for DR
focus on improving social welfare and in optimizing the use
of resources in the system [3]–[9]. Nevertheless, the efficiency
metrics used, such as Pareto efficiency, are not designed to
reduce peaks in demand. Furthermore, in the literature price
functions are assumed to be lineal, since the cost of generation
is assumed to be quadratic [10]. Therefore, these previous
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models do not capture non-linearities associated with peak-
reduction incentives. These peak-reduction incentives are par-
ticularly important for small utilities and co-ops, who have to
pay not only for the amount of electricity consumed, but also
for the largest electricity peak during the billing period. This
happens because the upstream provider has to build enough
capacity to provide energy during these peaks. Particularly,
the costs charged to customers due to peaks are significant
with respect to the cost of the overall energy consumed in a
billing period (see some evidence in [11]).

In this paper we address these concerns by the following
steps. First, in Section II we introduce the basic notation and
two DR models, which use linear price functions: (i) a cen-
tralized optimization problem that models direct-load control
DR; and (ii) an equivalent decentralized optimization problem
modeling selfish agents. This second DR formulation models
dynamic pricing. Section III is dedicated to show that although
previous work reduces the peak consumption of electricity,
they do not target a Peak-to-Average Ratio (PAR) reduction
of electricity consumption. Thus, these DR schemes might not
be appropriate when peaks have a significant contribution to
the cost-function. Next, we introduce in Section IV a new
nonlinear price functions to the formulation, and show how
it can effectively reduce electricity peaks in a population (for
the centralized optimization DR model).

The main contribution of the paper is presented in Sec-
tion V, where we deal with the design of incentives to reduce
electricity peak prices in the decentralized case, using nonlin-
ear price functions. Specifically, we find that it is not possible
to design incentives in which rewards are equal to penalties.
In other words, a decentralized DR scheme either imposes
additional taxes or requires external subsidies to operate. Then,
we deduce two mechanisms with the aforementioned proper-
ties. Particularly, it is interesting to note that the incentive
scheme that requires external incentives was obtained before
for the linear price case, by imposing some fairness properties
on the incentives (see [5]). This suggest some generality of
that mechanism for problems of resource allocation.

II. BACKGROUND

A. Retail Electricity Market Model

We consider a population of N consumers V = 1, . . . .N .
We divide a period of 24 hours in a set of T time intervals
denoted τ = {τ1, . . . , τT }. Formally, we define the set



τ as a partition of [0, 24), where ∪t∈{1,...,T}τt = τ and
∩t∈{1,...,T}τt = ∅. Let qti be the electricity consumption
of the ith user in the tth time interval. The daily electricity
consumption of the ith user is represented by the vector qi =
[q1i , . . . , q

T
i ]
> ∈ <T≥0. The population consumption at a given

time t is defined by the vector qt = [qt1, , q
t
2 . . . , q

t
N ]> ∈ <N≥0.

On the other hand, the joint electricity consumption of the
whole population is denoted by q = [q>1 , . . . , q

>
N ]> and the

vector q−i = [q>1 , . . . , q
>
i−1, q

>
i+1, . . . , q

>
N ]> ∈ RT ·(N−1)≥0

represents the consumption of the population, except for the
ith agent. Without loss of generality, we assume that the
electricity consumption of the ith user satisfies qti ≥ 0, in
each time instant t. A valuation function vti(q

t
i) models the

valuation that the ith user gives to an electricity consumption
of qti units in the tth time interval. Finally, let p(·) : < → < be
the price of electricity charged to consumers. The aggregated
consumption at a given time t is defined as ‖qt‖1 =

∑N
j=1 q

t
j .

B. Centralized Optimization DR Model

Assuming that the electricity generation cost is the same for
all t, we can express the profit function of each individual as
their valuation of electricity minus their electricity bill, i.e.,
Ui(q) =

∑T
t=1 (v

t
i(q

t
i)− qtip (‖qt‖1)) , where p : <+ → <+

is the price per unit of consumption. The consumers welfare
function is maximized by solving the following optimization
problem [12]:

maximize
q

N∑
i=1

Ui(q) =

N∑
i=1

(
T∑
t=1

(
vti(q

t
i)− qtip

(∥∥qt∥∥
1

)))
subject to qti ≥ 0, i = {1, . . . , N}, t = {1, . . . , T}.

(1)
Here we make some assumptions on the problem character-

istics in order to guarantee that the problem has a maximum
and it is unique.
Assumption 1.

i. The valuation function vti(·) is differentiable, concave,
and non-decreasing.

ii. The price p(·) is differentiable, convex, and non-
decreasing.

Assumption 2. The maximum of a concave function is inside
the feasible set, i.e., the following inequality is satisfied for
all i: ∂

∂qti
Ui(0) > 0.

Notice that this optimization problem assumes a central
planner coordinating the consumption of each user, and thus,
it is a model of DR program like direct-load control, where a
central agent directly controls electricity consumption of dif-
ferent agents. A drawback is that the central planner requires
full information to find the optimal solution.

C. Decentralized Optimization DR Model

A decentralized DR scheme models the case when all agents
keep their valuation of electricity to themselves, and have
autonomous control of their consumption. Particularly, we
need to consider strategic agents that will try to selfishly max-
imize their own profit. The analysis of strategic interactions

among rational agents can be done by using game theory [2].
The outcome of a distributed system is the equilibrium of a
game between users, which is the solution of the following
optimization problem:

maximize
qi

Ui(qi, q−i) =

T∑
t=1

(
vti(q

t
i)− qtip(

∥∥qt∥∥
1
)
)

subject to qti ≥ 0, i = {1, . . . , N}, t = {1, . . . , T}.
(2)

The solution of the decentralized optimization problem is sub-
optimal with respect to the solution of the centralized scheme
(Eq. (2) and (1), respectively ) [12]. Furthermore, delegation
of actions among users also involves a larger consumption
of resources, with respect to the centralized scheme. This
situation is known as the tragedy of the commons [5].

An alternative to mitigate the inefficiency of the decentral-
ized scheme is to design incentives that modify the behavior
of users for the good of the population. For instance, we can
modify the profit function of each user (by adding some price
signal) to make the new game efficient in the sense of Pareto.
Consider a new profit function for the ith agent [5]:

Wi(q
t
i, q

t
−i) =

∑T

t=1
vti(q

t
i)− qtip

(∥∥qt∥∥
1

)
+ Ii(q

t) (3)

where incentives are of the form

Ii(q
t) =

(∥∥qt−i∥∥1) (hi(∥∥qt−i∥∥)− p (∥∥qt∥∥1)) . (4)

The incentives assign rewards or penalties according to the
contribution made by an agent to the society. In particular, the
function hi : < → < is a design parameter that estimates the
externalities introduced by each individual. It can be shown
that these incentives can lead to an optimal equilibrium in
a strategic environment. Note that the incentives modify the
price paid by each user according to their relative consump-
tion. However, two different users receive different incentives
if their consumption is different.

III. LIMITATIONS OF PREVIOUS DR MODELS

One of the objectives of DR is to shave electricity consump-
tion peaks. Nevertheless, Pareto efficiency does not guarantee a
flat demand profile. To see why, let us impose some constraints
on the valuation functions. We assume that the valuation
functions belong to a family of functions v : <+ ×<+ → <.
Here, the valuation function of the ith agent at the tth time
interval is defined as vti(q) := v(q, αti), where αti is a
parameter that characterizes the form of the valuation. The
family of valuation functions satisfy the following properties:
Assumption 3. The family of valuation functions v : R≥0 ×
R≥0 → R satisfies the following conditions:
• If αk1i > αk2j , then v(q, αk1i ) > v(q, αk2j ), for all i, j ∈ P

and αk1i , α
k2
j , q ∈ R≥0.

• limq→0 v(q, α) = 0, for α ∈ R≥0.

Now we are ready to prove that an efficient outcome might
not be flat.
Proposition 1. Consider a centralized maximization problem
described by Eq. (1) that satisfies Assumptions 1, 2, and 3. If



agents have different valuations at each time period, then the
aggregated demand is greater in the time period with greater
valuation. That is, if there are t1 and t2, such that for all i
αt1i > αt2i , then ‖qt1‖1 > ‖qt2‖1.

Proof. The proof is made by contradiction. Let us assume that
the aggregated consumption at time t1 is less than or equal to
the aggregated consumption at time t2, i.e., ‖qt1‖1 ≤ ‖qt2‖1.
The first-order conditions (FOC) for two different time periods
t1 and t2 for all individual i ∈ V are:

v̇(qt1i , α
t1
i )− p(

∥∥qt1∥∥
1
)−

∥∥qt1∥∥
1
ṗ(
∥∥qt1∥∥

1
) = 0, (5)

v̇(qt2i , α
t2
i )− p(

∥∥qt2∥∥
1
)−

∥∥qt2∥∥
1
ṗ(
∥∥qt2∥∥

1
) = 0. (6)

Note that p(·) and ṗ(·) are increasing functions. We can use
our contradiction assumption in Eq. (5) and (6) to obtain the
following inequality:

v̇(qt2i , α
t2
i ) > v̇(qt1i , α

t1
i ),

for all i ∈ V . Now, recall from Assumption 3 that the
derivative of two valuation functions with different parameters
(αt1i and αt2i ) evaluated at the same point (qt2i ) satisfies the
following inequality:

v̇(qt2i , α
t1
i ) > v̇(qt2i , α

t2
i ) > v̇(qt1i , α

t1
i ), (7)

for all i ∈ V , since αt1i > αt2i for all users in the society.
Now, in order to satisfy Eq. (7), qt1i has to be greater
that qt2i , for all i ∈ V (recall that v̇(·, α) is decreasing).
However, if qt1i is greater than qt2i for every individual, then
the aggregated demand at time t1 has to be greater than the
aggregated demand at time t2, i.e., ‖qt1‖ > ‖qt2‖. This is in
contradiction with our initial assumptions. Hence, we conclude
that ‖qt1‖1 > ‖qt2‖1.

From this result we conclude that the total demand might
be time changing, however, it is not clear if the PAR improves
in the optimal outcome. We illustrate the differences between
optimal and sub-optimal outcomes by means of the following
numerical example. In particular, in this example PAR reduc-
tion is not a consequence of an efficient outcome.
Example 1. We select some typical functions previously used
in the literature [4], [13]

vti(q
t
i) = αti log(1 + qti), α

t
i > 0,

p(‖q‖1) = β‖q‖1, β > 0.

These functions satisfy Assumptions 3, 1, and 2. In order to
model time varying valuations along a day, we assign to αki a
value proportional to the actual consumption in an electrical
system. In this case, we consider T = 24 time periods and
define the valuations of each individual using consumption
measurements provided by the Colombian electricity system
administrator [14] (a detailed implementation of the simula-
tions can be found in [15]). In Fig. 1 we can see how the
inefficient outcome (Nash equilibrium) has less total utility
for all parties and produces more power consumption than the
efficient outcome (Pareto equilibrium). While in this example
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Fig. 1: Profit and demand at both efficient and inefficient
outcomes.

we can see how if the electric utility designs incentives that
guarantee the optimal outcome of the system, then the whole
system is more efficient (including a reduction in electricity
consumption) than in the Nash equilibrium (without incen-
tives), there can still be peaks of electricity that can potentially
be reduced under a different setting.

In this example we find that the inefficient outcome (Nash
equilibrium) has a Peak-to-Average Ratio (PAR) of 1.1139,
while the efficient outcome (Pareto solution) has a PAR of
1.1228. Note that the efficient outcome has a slight major
PAR.

IV. NONLINEAR PIECE-WISE CONTINUOUS PRICE
FUNCTIONS FOR THE CENTRALIZED DR MODEL

We now incorporate in the DR models the cost of peaks.
Let us introduce the following price per unit of electricity
consumption:

p̂(q) = p(q) + pk(q)

where the term pk(q) can be interpreted as an additional price
(a peak tax) or incentive designed by an upstream electricity
distributor or a regulatory entity to reduce demand peaks. The
function pk : < → < is defined as follows:

pk(z) =

{
0, if z ≤ k,
γ(z − k)2, if z > k,

where γ is a positive real number. Note that p(·) is a
continuous differentiable function. Note also that this new
price function is nonlinear piece-wise continuous, and serves
as a justification for further analysis of more complex price
functions in DR programs.
Example 2. We now include the additional cost function
pk(·) in our numerical example. In this case, the threshold
k corresponds to the average consumption at the efficient
outcome, i.e., k = 3.3, and our goal is to penalize significantly
peaks above it γ = 15. With this new set up we obtain the
Pareto efficient solution for all agents and observe that the PAR
of the demand is 1.0446. This value is lower than the PAR
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Fig. 2: Profit and demand at both efficient and flat outcomes.
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Fig. 3: Aggregated power demand for different values of γ.

of the efficient demand in the Example 1 (case with γ = 0),
which is 1.1228 (see Fig. 2).

Note that the maximum consumption is close to the thresh-
old specified, causing a reduction in prices. Furthermore,
aggregated profit of the population is not affected notably.
Inspection the profit of each individual, however, reveals that
some individuals improve their utility with the peak tax, while
others do worse. This happens because some agents do not
have high electricity valuations and can improve their utilities
with lower prices associated with peak reduction.

Fig. 3 shows the demand profile of the population for
different values of γ. We can see that the impact of the tax is
more drastic with higher tax increase rates.

V. DESIGNING INCENTIVES FOR THE DECENTRALIZED DR
MODEL WITH NONLINEAR PRICE FUNCTIONS

We have shown how nonlinear price functions can be used to
flatten the demand in the centralized DR model. Nevertheless,
we now need to show how to design incentives for the
decentralized DR model such that the selfish agents converge
to the same Pareto optimal solution described in the previous
section. To simplify the notation we drop the superscript t
from the consumption profiles.

First, we address the problem of whether or not there is
an incentive mechanism that satisfies the property of budget
balance, i.e., we want to see if there is an incentive mechanism
of the form in Eq. (4) that satisfies∑

i∈V
Ii(q) =

∑
i∈V

∥∥q−i∥∥1 (hi(∥∥q−i∥∥1)− p (‖q‖1)) = 0.

This is an ideal property because rewards are equal to penal-
ties. In other words, a budget balanced systems neither require
additional taxes nor requires external subsidies to operate.

The budget balance property can be rewritten as

p (‖q‖1) =
∑
i∈V

(∥∥q−i∥∥1 hi(∥∥q−i∥∥1))∑
i∈V

∥∥q−i∥∥1 (8)

To prove the budget balance impossibility of our case, we need
to find some properties that must be satisfied by the function
hi(·). Specifically, we prove that if the price function p(·) is
concave, then hi(·) must be concave as well. First, we analyze
Eq. (8) for the particular case of a uniform demand profile.
Proposition 2. An incentive that is budget balanced must
satisfy

p (‖q̂‖1) = hi(
∥∥q̂−i∥∥1), (9)

given a uniform demand profile q̂ for all i ∈ V .

Proof. Let us consider a uniform consumption profile q̂ where
all individuals have the same consumption, i.e., q̂ = ε e, for
ε > 0 and e a vector of ones in <N . According to this, Eq. (8)
can be expressed as:

p (‖q̂‖1) =
∑

i∈V
hi(
∥∥q̂−i∥∥1)/N . (10)

Recall that hi(
∥∥q−i∥∥1) = hj(

∥∥q−j∥∥1) if and only if q−i =
q−j , for all i, j ∈ V . Since the demand profile is uniform, we
have q̂−i = q̂−j , and consequently Eq. (10) is equivalent to
p (‖q̂‖1) = hi(

∥∥q̂−i∥∥1) = h(
∥∥q̂−i∥∥1).

Remark 1. Note that Eq. (9) must be satisfied for every
demand profile q̂. Thus, if p(·) is convex, then h(·) must be
convex on q̂−i.

Now we are ready to prove that there is no function hi(·)
that satisfies Eq. (8) for all possible demand profiles of a
society.
Theorem 1. Consider a system described by Eq. (3) that
satisfies Assumptions 3, 1, and 2 and an incentive scheme
of the form in Eq. (4). Then, there is no function h(·) that
satisfies the budget balance property.

Proof. We prove this theorem by contradiction. We restrict our
analysis to convex functions hi(·), since this is a necessary
condition to achieve budget balance (see Remark 1). First, let
us consider a population of two agents, denoted as customers
1 and 2. Consequently, the demand profile is expressed as
‖q‖1 = |q1| + |q2|, while

∥∥q−i∥∥1 = |qj |, for i 6= j. In this
case, Eq. (8) can be rewritten as

p(|q1|+ |q2|) =
|q2|h1(|q2|) + |q1|h2(|q1|)

|q1|+ |q2|
. (11)



Now, let us consider the case in which the aggregated con-
sumption is constant, i.e., ‖q‖1 = Q. Let us introduce the
following variable change:

ρ = q1/(q1 + q2) , 1− ρ = q2/(q1 + q2) .

where 0 ≤ ρ ≤ 1. We can use this variable change and the
fact that h1(z) = h2(z) = h(z) (see Eq. (9)) to transform
Eq. (11) into:

p(Q) = (1− ρ)h
(
(1− ρ)Q

)
+ ρ h

(
ρQ
)

(12)

Note that the right hand side of Eq. (12) must be constant
for every vector q that satisfies ‖q‖1 = Q, i.e., for any ρ
belonging to the subspace [0, 1]. However, the right hand side
of Eq. (12) is not constant on ρ. For example, note that if ρ
is equal to one or zero, then the right hand side of Eq. (12)
is equal to h(Q). On the other hand, if ρ is equal to 1/2, then
the right hand side of Eq. (11) is equal to h(1/2Q). Note that
h(Q) 6= h(1/2Q). This statement can be extended for larger
populations. Hence, it is not possible to find a convex function
that satisfies the property of budget balance.

The previous result is negative in the sense that it establishes
a limitation for the design of DR incentives. Now, we look
into the problem of analyzing the conditions in which the
mechanism either imposes taxes over customers or requires
external subsidies. First, let us consider the case when require
external subsidies.

A. Incentives that Require External Subsidies

The following theorem shows the existence of an incentive
scheme in which incentives granted to the population are
greater than penalties. Hence, it is necessary to obtain external
subsidies to support the incentive scheme.
Theorem 2. Consider a system described by Eq. (3) that
satisfies Assumptions 3, 1, 2 and an incentive scheme satisfying
the form in Eq. (4). If we use the following convex function
hi : < → <, defined as

hi(
∥∥q−i∥∥1) = p

(
N/(N − 1)

∥∥q−i∥∥1) , (13)

the incentives scheme satisfies the weakly budget balance
property, i.e.,

∑
i∈V Ii(q) ≥ 0.

Proof. Recall that external subsidies are required when the
following condition is satisfied:∑

i∈V
Ii(q) ≥ 0. (14)

This expression can be used with Eq. (4) to obtain

p (‖q‖1) ≤
∑
i∈V

(∥∥q−i∥∥1 hi(∥∥q−i∥∥1))∑
i∈V

∥∥q−i∥∥1 . (15)

Now, let us consider

θ =
∑

i∈V

∥∥q−i∥∥1 = (N − 1) ‖q‖1 . (16)

Also, let us introduce the following variable change (similar

to the one used in Theorem 1):

ρi =
∥∥q−i∥∥1/∑i∈V

∥∥q−i∥∥1 . (17)

Thus,
∑
i∈V ρi = 1 and

∥∥q−i∥∥1 = θρi. Now we can rewrite
Eq. (15) as

p (‖q‖1) ≤
∑

i∈V
ρi hi (θρi) . (18)

Recall that hi(·) is convex, thus, the following condition is
satisfied:

hi

(∑
i∈V

λizi

)
≤
∑

i∈V
λihi (zi) , (19)

where zi ∈ <+, and ∑
i∈V

λi = 1. (20)

Note that the strict equality is satisfied when λi = λj and
zi = zj for all i, j ∈ V . Now, choosing zi = θρi and λi = ρi
(which satisfies Eq. (20)), Eq. (19) can be rewritten as:

hi

(
θ
∑

i∈V
ρ2i

)
≤
∑

i∈V
ρihi (θρi) . (21)

At this point we have developed the tools to prove that
Eq. (13) satisfies the (weakly) budget balance property in Eq.
(14). First, let us consider a trivial case, when all individuals
consume the same amount of power, i.e., the demand profile
can be defined as q̂ = ke, with k > 0. In this case, we want
to verify that the incentive is budget balanced, i.e., satisfies
Eq. (9).

Observe that with a uniform demand ρi = ρj = 1/N , Eq.
(21) holds with strict equality. Thus, we can replace Eq. (21)
in Eq. (18) to obtain

p (‖q̂‖1) ≤ hi
(
θ
∑

i∈V
ρ2i

)
= hi ((N − 1)/N ‖q̂‖1) .

Moreover, with a uniform distribution N − 1/N ‖q̂‖1 =∥∥q̂−i∥∥1, and therefore, Eq. (9) is satisfied.

Now, we need to prove that Eq. (18) is satisfied for all
demand profiles q. Note that if replace Eq. (13) in Eq. (21)
we obtain

p
(
N/(N − 1)θ

∑
i∈V

ρ2i

)
≤
∑

i∈V
ρip (N/(N − 1)θρi) . (22)

Note also that minρ1,...,ρN
∑
i∈V ρ

2
i = 1/N (the minimum

takes place when ρi = 1/N , for all i ∈ V). Hence, the left
part of Eq. (22) has a lower bound given by

p (θ/(N − 1)) ≤ p
(
N/(N − 1)θ

∑
i∈V

ρ2i

)
. (23)

We can use Eq. (16), (23), and (22) to show that the following
is satisfied for any demand profile q

p (‖q‖1) ≤
∑

i∈V
ρi p (N/(N − 1)θρi) ,

which is equivalent to Eq. (18). It is interesting that the same
rule is obtained for the linear price case, imposing some
fairness properties on the incentives [5].



B. Incentives that Impose Taxes

Now we show the existence of an incentive scheme in
which punishments are grater than rewards, i.e., this scheme
is supported through taxes imposed on the population.
Theorem 3. Consider a system described by Eq. (3) that
satisfies Assumptions 3, 1, and 2 and a incentives scheme of
the form in Eq. (4). Then, the convex function hi : < → <
defined as

hi(
∥∥q−i∥∥1) = p

(∥∥q−i∥∥/(N − 1)
)
, (24)

can be used to satisfy the weakly budget balance property, i.e.,∑
i∈V Ii(q) ≤ 0.

Proof. First, note that the mechanism does not require external
subsidies when

∑
i∈V Ii(q) ≤ 0. Hence, from Eq. (4) we can

extract

p (‖q‖1) ≥
∑
i∈V

(∥∥q−i∥∥1 hi(∥∥q−i∥∥1))∑
i∈V

∥∥q−i∥∥1 .

Making the variable change of Eq. (16) and (17) results in

p (‖q‖1) ≥
∑

i∈V
ρi hi (θρi) . (25)

In general, this inequality can be satisfied if

p (‖q‖1) ≥ max
ρ1,...,ρN

∑
i∈V

ρi hi (θρi) . (26)

It can be shown that the right hand part of Eq. (26) is
maximum for some ρi = 1 and ρj = 0, for i 6= j. Thus,
we can define the following lower bound of Eq. (25):

p (‖q‖1) = p (θ/(N − 1)) ≥ h (θ) .

Now, let us introduce the candidate function

hi
(∥∥q−i∥∥1) = p

(∥∥q−i∥∥1/(N − 1)
)
. (27)

If we replace Eq. (27) into Eq. (25) see that

p (θ/(N − 1)) ≥ p (θ/(N − 1)) .

Since this inequality is true, we verify that Eq. (27) satisfies
the budget condition in Eq. (26).

C. Importance of the Incentives Scheme

Let us denote by ISi (·) and ITi (·) two incentives schemes
that use the results from Sections V-A and V-B, respectively.
Note that ISi (·) assigns more incentives to each customer
because the estimation of hi(·) in Eq. (13) is larger than
the estimation made in Eq. (24). This has a positive effect
in the welfare of the society. However, the implementation of
ISi (·) might not be feasible because it might require external
subsidies.

On the other hand, ITi (·) provides lower incentives, and the
welfare of the whole population might be lower, with respect to
ISi (·). However, its implementation might be more convenient
since it does not require external subsidies. Part of the future
work is to analyze if customers have incentives to join a system
that implements ITi (·).

VI. CONCLUSIONS AND FUTURE WORK

In this work we showed that popular electricity cost func-
tions in the literature do not achieve the peak minimization
goal of practical DR programs. We then introduced a new
nonlinear pricing function that achieves this objective (using
a centralized scheme). Later, we showed how there is no
incentive mechanism that, in a distributed way, can achieve
Pareto efficiency with a balanced budget. We finalized the
paper by introducing two incentive rules, which either require
external subsidies or impose taxes on the population to operate.

A drawback of the analysis is that the consumption is
assumed to be independent in each time interval. That is,
agents do not keep a memory of their previous consumption
or future consumption needs. For example, if an agent does
not use energy for an interval of time, it is very likely that
its valuation of energy will increase in time. Incorporating the
previous and future demand into their current energy valuation
is an open formulation problem that we plan to address in the
future.
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