
EVOLVABLE REAL-TIME C3 SYSTEMS - 11:
REAL-TIME INFRASTRUCTURE REQUIREMENTS

Bhavani Thuraisingham, Peter Krupp, Arkady Kanevsky, Edward Bensley, Ruth Ann Sigel, Michael Squadrito,
Alice Schafer, Mike Gates, Thomas Wheeler

The MITRE Corporation,
202 Burlington Road, Bedford, MA 0 1730

Abstract
MITRE'S Evolvable Real-Time Comma& Control,

and Communications (C3) project funa'ed under the Air
Force Mission Oriented Investigation and Experimentation
(MOIE) program attempts to develop an approach that
would enable current real-time systems to evolve into the
systems of the future. The project has chosen Airbonze
Warning and Control System (AWACS) as an example to
test the concepts and architectures to be developed In this
paper we discuss the requirements for the infrartructure for
next generation complex real-time command and control
systems. This discussion also includes an overview of the
infiastrucmm requirements for each of the three
architectures that we b e considered [BENS95].

1. Introduction
Between now and the early part of the next century,

significant portions of today's real-time Command,
Control, and Communication systems will become either
functionally inadequate or logistically insupportable.
Furthermore, due to the continuing budget reductions, new
developments of next generation real-time C3 systems
may not be possible. Therefore, current real-time C3
systems need to become easier, faster, and less costly to
upgrade in capability and easier to support. What is needed
is an approach to evolve current real-time C3 systems into
the extensible systems required for the future.
MITRE'S Evolvable Real-Time C3 project funded

under the Air Force Mission Oriented Investigation ad
Experimentation (MOIE) program attempts to develop an
approach that would enable current real-time systems to
evolve into the systems of the future. The candidate
evolution approach is to leverage off near-term system
upgrade and/or P31 (Pre Planned Product Improvement)
activity to put a new architecture framework in place. The
emphasis is on transitioning to open architectures, which
are modular and free from proprietary or unnecessarily
complex software designs. The open framework can also
accommodate new upgrades more easily. Availability of
an infrastructure to support a suitable software architecture
is key for this approach to succeed. The investment plan
would continue incremental transition of current systems
into more flexible systems. The extensible system

architecture would ultimately replace the current hardware
and s o h a r e architecture.

The project has chosen AWACS as an example to test
the concepts and architectures to be developed. Currently,
its centralized design is a closed architecture with
monolithic custom software, that does not take
advantages of state-of-the-art hardware and makes
processing upgrades time-consuming and expensive. The
project has chosen Multi-Sensor Integration (MSI)
function ~ A L ' D O] , because of its support of important
combat identification capabilities, as a starting point for
transitioning AWACS to an open architecture. Also, MSI
function's impact on data and display processing provides
a thorough test of the concept. The technical challenge is
to demonstrate the applicability of open software
technology to AWACS and other real-time C3 systems.
The successful execution of this project would facilitate
the transition to open systems.

The specific goals of our project are the following:
To identify real-time infrastructure requirements (RTIS)
to support AWACS and other real-time C3 systems.
Determine how existing C3 systems could be
transitioned into such a software infrastructure.
Demonstrate feasibility of the approach through
modeling, prototyping, and evaluation of commercial
products.
In this article we discuss the requirements for the

infrastructure for next generation real-time command and
control systems. This discussion also includes an
overview of the real-time infrastructure requirements for
each of the three architectures that we have considered
@ENS95]. We first provide a brief overview of OUT
approach to designing evolvable systems as well as
summarize the three architectures in section 2. A detailed
discussion of the requirements for the real-time
infrastructure are given in section 3. In section 4 we
provide separate requirements for data management. We
conclude the paper by discussing current directions in
section 5.

2. Background

2.1
In order to provide an evolution path for real-time C3

systems, one needs to understand the requirements of

Approach to Building New Systems

0-8186-7614-0/96 $5.00 0 1996 IEEE
473

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 18:47:29 UTC from IEEE Xplore. Restrictions apply.

current real-time C3 systems and how they designed. ll-ie
major goals of the initiative include determining the
software infrastructure requirements and identifying the
migration path for legacy systems. The infrasmcture is a
collection of all non-application specific software services.
This infrastructure provides the software backplane €or
applications and insulates application software from
hardware. Ideally, we want to use Commercial-Off-the-
Shelf (COTS) products for the infrastructure. Figure 2-1
illustrates the infrastructure.

Hardware

Figure 2- 1. Infrastructure

The services provided by the infrastructure include real-
time operating systems services such as memory
management and real-time scheduling, real-time
communication services such as interprocess and
intraprocess communications, real-time dab management
services such as data sharing, queqing, updating,
transaction management, and enforces integity and timing
constraints. The infrastructure also provides the
mechanisms for interaction between the software
components. All of the services must provide an
integated priority scheme and perfoxmance predictability.

4

I Hardware
Fiagre 2-2. Target C3 Extensible Architecture
The target C3 extensible architecture is illustrated in

Figure 2-2. Ideally, all of the application components
should be hosted on the infrastructure. The application
components for a system such as AWACS will include
MSP, display, weapons, surveiIlance and tracking, and
communication. The infrastructure provides the means for
the application subsystems to access and share data as well
as to communicate with each other. Implementing such a
system will mean re-architecting the entire AWACS
system. This is not feasible within the cunent budget.
Therefore, our approach is to extract certain application
subsystems and host them on the infrastructure while the

other subsystems remain within the legacy environment.
An intemediate architecture is illustrated in Figure 2-3
where MSI is hosted on the infrastructure.

2.2. Architecting a Robust Real-Time System
We have considered three architectures[BENS95]. One

is a centraked database architecture, the second is a
distributed message passing architecture, and the third is
based on a distributed-object client-server paradigm.

2.2.1. Centralized Database Architecture
The central database computer system architecture for

C3 systems consists of subsystem functional units
operating on possibly separate computer nodes each with
their own local data manager and database (see Figure 2.4).
The local databases are partial replicas of a central
database. The central database is maintained on a central
node which contains all data for inter-subsystem
communication. A central data manager periodically
receives inputs from each subsystem node, and
periodically broadcasts the central database out to each
subsystem node. Since all the subsystems report their new
or modified data each cycle, and the subsystems receive a
full copy of the central database each cycle, all data is
comiIILicated between subsystems in a predictable,
reliable way.

Figure 2-3. AWACS MSI in an Extensible Infrastructure

22.2. Message-Based Distributed
In this architecture, each subsystem has its own

individual database of all required data, and different
subsystems shardexchange data via messages (see Figure
2-5). Note that there is no central database to synchronize
the local databases. Therefore, the local databases have to
ensure that they are synchronized by exchanging
messages.

2.2.3. Distributed Object Management
Architecture

In a distributed object management system @OM), the
components are encapsulated as objects and the objects
communicate with each other through some from of
object request broker. An example of a DOM is the Object
Management Group's (OMG) Common Object Request

474

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 18:47:29 UTC from IEEE Xplore. Restrictions apply.

Sensory
input

Local
Databare

Database Database Database

Surveillance Display
Interface

LOG31 Local
Database Database .

Figure 2-5. Distributed Database Architecture

Extemal
Communication

Local
Database

[[~ ? Z Z E ~ -] J
1-1

Figure 2-6. DOM With Centralized Data Management

Weapons

Periodic Database
Broadcast

3, Real-3ime Infrastructure Requirement

3.1. Overview
The following real-time infrastructure requirements

@TIS) have been identified and discussed in this chapter:'
Real-Time Scheduling,
Time Constraint Enforcement,
Transaction Management,
Scheduler Encapsulation,
Real-Time Predictability,
Admission Control,
Overload Management,
Real-Time Tasks,
Red-Time Threads,
Interthread Synchronization and Mutual Exclusion,
InterprocessAnterthread Communication,
Fault-Tolerance and Group Communication,
Portability,
Global Time,
Evolvability and Extensibility
Obiect-Orientedness.

AIS; data management requirements are discussed
separately in chapter 4. These requirements are intended to
address many of the problems that we have observed in
existing C3 systems [GINIS96]. The most important
problem is the cost of maintenance (evolution and
extension). A significant factor driving the cost is the use
of cyclic executives, that results in a global, system-wide
dispersal of the knowledge of real-time constraints and
behavior of the system. We believe that some of the
proposed techniques described below in the form of RTIS
design requirements will ameliorate this problem
significantly. Through our prototyping of RTIS, we will
be able to test our hypothesis.

I Component I

t

Figure 2-7. DOM With Distributed Data Management

3.2. Real-Time Scheduling
RTIS will provide an application with real-time
scheduling support services, that include the assignment
of operating system scheduling parameters on the basis
of the application real-time workload to processes and
threads with real-time constraints.

INote that some of these requirements are design goals and
constraints. These will be stated where appropriate.

475

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 18:47:29 UTC from IEEE Xplore. Restrictions apply.

Current real-time operating systems do not provide
services to support the determination of scheduling
priorities, on the basis of workload and timing
constraints, which is left to an implementor. By applying
existing scheduling theory, we can provide an RTIS
service that will calculate scheduling parameters (priority)
on the basis of workload and timing constraints.

We believe that scheduling techniques with
“preclictable” behavior must be used to achieve highly
reliable, open real-time systems. One interpretation of
“predictable” is that some type of simple analytic model
must exist which when given a workload will provide us
with a determination of its schedulability. Another
desirable property would be a prediction of system
behavior under overload conditions so that we can design
the system to gracefully degrade when overloaded.

One of the design goals of RTIS is to take advantage
of the recent developments in the area of real-time
scheduling theory as implemented in recent COTS real-
time operating systems such as LynxOS and as
defined in emerging real-time operating systems standards
such as POSIX 1003.lb, Id and lj [POSIX]. The trend is
towards preemptive, priority-based scheduling (dynamic
and static priorities); including rate-monotonic scheduling
and earliest deadline first- Best-effort scheduling (as in the
real-time extensions to OSFMach developed at the
OSFResearch Institute) is closely related, but not strictly
speaking a priority-based scheduling scheme. The trend is
away from time-driven cyclic executive schedulers a d
towards event-driven schedulers based on various priority
schemes.

It is possible to apply existing scheduling techniques
to provide both schedulability analysis and graceful
degradation. One example of a technique that has these
properties is rate-monotonic Scheduling. To do so requir;eS
assigning scheduling priorities to each thread (task) in the
system according to its period (for periodic tasks) or
minimum inter-arrival time (for sporadic tasks). To
properly assign priorities to a particular task pequires
knowledge of the entire processor workload. This is an
example of a service that RTIS can provide that will ease
the difficulty in using modem real-time scheduling
techniques.

3.3. Time Constraint Enforcements
5 RTIS will provide time constraint (real-time and CPU-
time) enforcement services. An application will be able
to request notification of time-constraint violations
(e.g., Wk faults) and then elecr to specifj, fault
recovery processing which may include applicatian
routines.
In our initial exploration of how to implement this

requirement, we found that a significant design issue was
the problem of aborting the execution of a thread cleanly.
The POSM 1003.lc, lj standards is of little help in this
area since it does not provide for the automatic cleanup of
a thread when it is aborted. The standard however does
provide for user specified cleanup handlers that are

executed when a thread is aborted.
necessary, seems unsatisfactory in

This. while certainlv
its level of supporl.

Drawing an analogy between a UNIX-style process and a
POSIX thread, it would be convenient if threads were
cleaned up (resources reclaimed) as when a UNM process
is terminated. The operating system kernel cleans up in
most cases and reclaims process resources when a process
is terminated. This does not happen with a thread, and if a
thread is simply aborted resources such as semaphores,
mutexes, and the heap that are process-wide can be left in
an ill-defined state.

A second issue is how to carry out the timing fault
recovery processing without causing a cascade of other
timing faults. If the fault-recovery processing consumes
additional processor time, other threads may fail to meet
their constraints because of reduced processor time
availability or because the thread that has failed also fails
to release other needed, shared resources on time. Our
current strategy to resolve these conflicting requirements
is to require the application to reserve time for recovery by
setting a high water mark for both CPU-time constraints
and real-time constraints. When the high water mark is
met, the application is notified, it then has time
remaining to carry out its recovery. This we believe is a
simple, effective way to enforce real-time constraints and
provide for clean recovery from timing faults.

3.4. Transaction Manager Support
* RTIS will provide the services needed to s

implementation of a real-time transaction manager m
part of a r d - W data manager.

From our exploration of the problem of enforcing
timing-constraints, we believe that there is a need for a
real-time transaction manager that supports atomic
transactions. Transactions implemented as threads must be
cleaned up by the RTIS without significant operating
system support. The data manager component of RTIS
must provide this support (see section 4). We found that
the problem of cIean termination was a significant barrier
to the use of COTS real-time data managers such as ZIP
Real-Time Management System (Zrp
R’l”]. Since ZIP-RTDBMS did no
transactions or any means of cleanly terminating in-
progress operation on data under its management, we
could not easily use it as a basis for implemention hard
real-time database operations.

3.5. Real-Time Scheduler Encapsulation
e An application shall have no explicit knowledge of the

scheduling Bchnique being zised by the real-time
operating system.

An important design objective of RTIS is to reduce
the cost of the maintenance (extension and evolution) of
distributed real-time applications. What we have observed
in existing applications is that knowledge of the real-time
scheduling technique is typically distributed throughout
the application source code. This increases the cost and
complexity of the evolution of real-time systems. The

476

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 18:47:29 UTC from IEEE Xplore. Restrictions apply.

application should not be concemed with how real-time
constraints are met, only with what the constraints are and
what should be done if they are not met. The application
will d e k e its scheduling requirements (timdresource
constraints), pass them to RTIS which will be responsible
for selecting the appropriate scheduling technique and
calculating the appropriate scheduling parameters. By
providing scheduling support services that keep track of
all the application real-time constraints, RTIS can
calculate the scheduling priority using rate-monotonic
priority assignment rules. Later on if it is desired to use
dynamic scheduling with the EDF (earliest deadline first)
rule, (and the underlying real-time operating system
supports it), the RTIS could substitute that method of
scheduling without requiring any changes to application
source code. We plan on seeing how far this idea can be
extended. Our experience this year supports our claim that
knowledge of the operating system scheduling mechanism
can be encapsulated within the RTIS. The only real issue
is the fact that different schedulers have different levels of
efficiency in scheduling and different behavior under
overload conditions. We will need to determine through
experimentation if this tradeoff of encapsulation vs.
scheduling efficiency is worthwhile. We expect that it is.

3.6. Real-Time Predictability
RTIS will support the implementation of ‘‘pr-ble”

real-time applications.
The principal design issue is what do we mean by

“predictability.” Our interpretation here is that we will
only use real-time scheduling algorithms in RTIS for
which tractable theories exist: simple schedulability
models as in rate-monotonic scheduling, deadline-
monotonic Scheduling, or earliestdeadline-first; or
schedulers that empirically have acceptable behavior such
as best-effort scheduling. Standard “feedbackqueue”
schedulers used in most mainframe time-sharing and
UNM: systems, emphasizing fairness and deterministic
timing behavior, are not acceptable and will not be used.
Currently, only static priority-based preemptive
scheduling techniques are universally supported in COTS
real-time operating systems.

3.7. Admission Control
RTIS will support the optional use of admission

control. When admission control is enabk4 all
requests for the creaiion of thread with real-time ard
CPU-time constraints me checked for admissibility
and are created only if the new workload is schedulable.
This requirement is imposed because in hard real-time

applications, timing faults lead to system failure.
Admission control enables the application to monitor the
workload through RTIS. Additional units of work
(threads) will be rejected when they are created instead of
when they fail or trigger other failures. This capability is
not needed for all real-time applications, only those that
have critical timing constraints. The application will
enable or disable admission control as part of its initial

configuration. We have made this decision in order to
simplify the design of RTIS and see no need to
dynamically enable or disable this capability. When
enabled, it will permit admission control to restrict the
creation of real-time threads to those that constitute
“analyzable” architectures for the underlying real-time
operating system. This means that an application that
uses this capability will not necessarily be portable to
other platforms that support other (different) analyzable
real-time scheduling algorithms.

3.8. Overload Manager
RTIS will support the “gmceful” degr&n of an
application under overload
An RTIS application gracefully degrades missed in the

order of criticality when the real-time constraints of an
application are. When a workload is not schedulable, there
is an overload condition. The application will enable or
disable overload management when it is initialized. A
design issue that we have not resolved, satisfactorily, is
how to specify the “criticality” of a thread. We will
initially simply permit the application to specify a
ranking with an integer. Another issue is that overload
management is only well understood for a few real-time
scheduling techniques: rate-monotonic, deadline-
monotonic, and best-effort scheduling. RTIS will only
support overload management for these scheduling
techniques.

3.9. Real-Time Tasks
RTIS will support the creation of a real-time task (a

native operating system process) that provides the
address space for a set of RTIS and application threads
that contain per-task (per-process) resources.
This is analogous to the Mach concept of a task as a

container for threads (a UNIX process without its single
thread of control). This is RTIS notion of a process and
easily maps on to processes in all modem operating
systems. It is a convenient way of managing per-process
@er-task) resources such as applidon-created
communication ports, RTIScreated communication ports
(for task control and monitoring), and RTIS service
threads needed to carry out RTIS control functions.

3.10. Real-Time Threads
RTIS will support the creation of time-constrained real-

time thread: both periodic and sporadic. RTIS will
also support the creation of non-real-time t h r d for
activities that have no critical time-constraints.
The real-time threads described here are intended to map

on to POSM 1003.lb,lc threads. If appropriate
scheduling algorithms are supported, they could be
mapped onto other types of operating system supported
threads, such as Mach threads. Two types of real-time
threads will be supported, periodic and sporadic. A periodic
thread will have a default deadline that coincides with the
end of the period. A deadline that is earlier or later than the
period may be specified. If admission control is enabled, a

477

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 18:47:29 UTC from IEEE Xplore. Restrictions apply.

CPU-time quota €or the thread must be specified. A
sporadic thread will have a minimum inter-arrival time
specified (it will not automatically be invoked
periodically). If a request for a sporadic task arrives earlier
than permitted it will be either dropped or queued as
specified when the thread is created. Non-real-time threads
with have no time-constraints can be created (pe r idc and
aperiodic-no minimum inter-arrival time). RTfS will
ensure that they are scheduled in such a manner that they
do not conflict with the execution of real-time threads.

3.11. Interthread Synchronization and Mutual
Exclusion
0 RTIS shall provide interthread mutual exclusion ancl

synchronization services that me integrated with red-
time scheduling such that a real-time thread with high
criticality cannot be delayed i&+inetaly by a less
critical real-time thread.
The synchronization constructs are intended to map

onto POSE 1003.lb,lc synchronization and mutual
exclusion services: semaphores, condition variables, and
mutexes. The key issue here is the avoidance of
unbounded delays due to tasks with low priority holding
resources that high priority tasks need (unbounded priority
inversion). Unbounded priority inversion may be avoided
hough the use of the priority inheritance and priority
ceiling protocols. POSE 1003.1c71j draft shdards
recognize this problem and provide support for its
solution. The real-time data manager requires this support
for its implementation of atomic transactions and
semantic locking.

3.12. InterprocessLCnterthread Communication
e RTIS will provide IFCATC services by supporting

communication objects called ports.
The communication model we have adopted from

Mach is simply an extension of the existing model
implemented by COTS real-time operating systems. It has
been extended so that thread-to-thread communication can
take place. Process-to-process communication does not
provide a sufficiently fine level of granularity. IPCATC
wiIl follow the Mach model: RTIS will provide services
necessary to createldestroy communication objects d e d
ports (a port is similar to a PQSIX/Lynx OS message
queue). A thread can send a message using a port as a
target and can also receive a using a port as a receiving
endpoint. Both blocking and non-blocking sends and
receives will be supported. A blocking send will wait
until an acknowledgment from the receiving point is
received (as a blocking RPC does). RTIS will support
sends and receives between threads in the same process and
different processes on either the same processor or different
processors.

RTIS will provide a name service for the registration
of ports. A thread can then advertise the availability of a
port by an agreed upon name. RTIS will support the
transmission of ports (as objects) from any thread to any
other thread. In a heterogeneous environment RTIS will

make the machine-dependent representation conversions of
messages (byte-ordering, integers, floating point).

3.13. FauIt-Tolerance
6 RTIS will support faULt-tolerance by providing group

communication services (reliable multicast, atomic
multicast, causal multicast, and group membership
services).
The ISIS model demonstrated support for fault-

tolerance and distributed computing outside of the normal
point-to-point communication model, which we adopted
€or RTIS WIRM96, ISIS, HORUS]. T h i s supports fault-
tolerance by permitting replication of data, real-time
processes, and threads. The following group
communication services will be supported: reliable
multicast, atomic multicast, causal multicast. The
associated orderings in message delivery will be e n f o d
with respect to changes in group membership. RTIS will
provide support for thread groups: the creation and naming
of a thread group, the destruction of a thread group, and
the addition and removal of a thread from a thread group.
The name of a thread group will be associated with a
thread group address. A disbibuted name service will
permit any thread to find the address of a thread group by
asking the name service for its address. When a thread
group is created, it will be registered with its specified
name with the thread group name service. when a thread
group is destroyed, it will be deregistered from the ihread
group name service.

3.14. Global Time Service
6 RTIS will provide a global time service using clock

synchronization protocols to keep processor clocks
synchronized within a specij?ed upper bound. The
application will be able to qwv RTIS as to the
accuracy and maximum skew of the time service.
A disbibuted time service will be provided to

synchronize clocks across the network. For this project we
will use publicly available N T P (Network Time Protocol)
that has been ported to a variety of UNIX-like platforms.
Its accuracy should be sufficient for this project. Another
choice is the Ravio-Christian's fault-tolerant clock
synchronization service [CRISBOI that had been
implemented by the OSF as part of an x-kemel
distribution. To use it we need to port the x-kernel (a
network protocol implementation kit) to our current real-
time operating system (LynxOS).

3.15. Portability
6 RTIS will be constructed as a layer above POSTx.l,lb.

I€ this requirement can be met, RTIS should be
portable to any POSJX.1,lb compliant platform. As part
of OLE project we will test this hypothesis. An RTIS
application will be portable if it obtains its
through RTIS API.

3.16. Evolvability & Extensibility (Design Goal)

478

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 18:47:29 UTC from IEEE Xplore. Restrictions apply.

RTIS will be designed such that if additional capability
needs to be adde4 existing CO& does not need to be
modified
This is really a constraint on the design of RTIS. We

have adopted an object-oriented approach in the hope that
through the use of classes and inheritance we will be able
to design and implement RTIS in a manner that permits
us to add functionality by inheriting from existing RTIS
classes and overriding or adding methods to new RTIS
classes. Through the mechanism of inheritance and object
composition only new classes need to be added. This goal
(while not easily or clearly attainable) is an ideal that
should be striven for, if and extensibility are to be
properties of RTIS. This is an hypothesis that has been
shown to be true for other applications of object-oriented
design. We intend to test its applicability to the design
and implementation of RTIS.

3.17. Object-Oriented (Design Goal & Constraint)
The API for RTIS will be implemented as a C++ class

library. RTIS will serve as an object-oriented
framework for MSI applications.
This is needed to support the design goal of

evolvability and extensibility. To attain evolvability and
extensibility of RTIS and applications using RTIS, we
believe we need a CORBA-like distributed object approach
[ALLENgQ KOF961. We are investigating some
implementations of distributed object managers that are
available from other projects, like ILU (Interlanguage
Unification) from Xerox PARC. That would allow RTIS
to support a number of languages and extend the object-
oriented paradigm to include distributed objects.

Since our project is about the evolvability of C3
systems and MSI is our test application, an objective of
RTIS is to act as on object-oriented h e w o r k for MSI
applications. This provides a significantly higher level of
reuse and support for an application than a simple class
library. It will enable us to build a collection of
collaborating classes which we believe is important if we
are to support complex real-time, distributed MSI
applications. Since this is desirable and not necessarily
achievable with the time and resources available, it is only
listed as a design goal and not a requirement.

4. Features of Real-Time Data Managers2
C3 systems cannot be just a simple blend of real-time

and data management requirements. While a real-time data
manager (RTDM) must have many features of database
management systems that service complex, multi-user
systems, such as multithreading and locking, it must also
support real-time systems requirements, such as the
performance of transactions within predicted execution
times. In addition, it must support the data representation
requirements of the applications. For example, not only
should the entities of the application and the relationships
between the entities be represented, it should also be

[RAMA93] provides good introduction to RTDMs.

possible to represent the data dependencies between the
processes which operate on the data.

Thus, there are a set of additional issues which arise
which are distinct and particular to the maintenance and
access of temporal data combined with real-time
constraints imposed by priorities, deadlines, and fault
tolerance. These issues lead to approaches such as fuzzy
responses to satisfy query deadlines and relaxation of
serializability. Basic features that data managers are
expected to provide are:

Multi-user access with data locking for serializability,
preventing inadvertent corruption of data.
Data views and dam manipulation language on logical
views of persistent data.
Isolation from physical layout and storage of data.
Indices and/or other optimized mechanisms for fast data
access.
Query and update capability.
Atomic transactions to maintain data consistency and
integrity.
Backup and recovery facilities.
Many modem data managers also provide additional

features which the users have grown to expect as part of a
basic data manager:

Report generators.
Ad hoc query capability.
GUI (Graphical User Interface) builders.
GUI front end.
Fourth generation application builders.
Distributed databases.
Multiple platform support.
Bridges to other data managers.
RTDMs have to meet additional requirements that do

not apply to traditional data managers. Data is time-
stamped and transactions are timeconstrained, they have a
deadIine and they have a value to the system which varies
depending on whether or not they met that deadline.

In some cases, missing the deadline may be
catastrophic. Other new aspects which must be considered
when scheduling transactions are: What is the expected
execution time, and is the required data sufficiently upto-
date? While temporal data managers also contain time-
stamped data, these data managers do not require the kind
of scheduling that is necessary to meet strict deadlines, as
requiredfor functionally complete RTDMs. In addition, a
RTDM must also provide the facility to represent the
application and be able to analyze the application for data
dependencies and determine potential inconsistencies.

A basic RTDM may not have to supply the additional
features in the second list above, since it is generally in a
specialized environment and not expected to be a general
purpose data manager. In addition, some of the traditional
basic features listed for data managers such as data
consistency, locking, and transaction serializability are
modified when time-constraints and priorities must be
considered.

4.2. Discussion of Requirements

479

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 18:47:29 UTC from IEEE Xplore. Restrictions apply.

4.2.1. Representation and Analysis
Representing the application is a major requirement.

The entities of the application, the relationships between
the entities, the constraints, and the data dependencies have
to be specified. Constraints include logical consistency
constraints, temporal consistency constraints, and timing
constraints. Data dependency consmints include
statements like transaction T1 can read data item 0 only
after T2 has updated 0. An appropriate dab model is
needed to represent the application.

4.2.2. Temporal Data Management
The temporal data requirements of the C3 systems we

have been concerned with, when expressed explicitly, wiIl
affect both the data and the transactions to that data. Time-
stamped data will have an acquisition time-stamp and a
time-decay attribute which describes its interlude of
validity. This may be a value, another time-stamp, or a
function. Not all the data in the system will be temporal
but all data could be time-stamped. A ground installation
might be stamped as valid forever, for instance. When data
is no longer valid, it could be removed from the darabase
or ignored, depending upon the policy decided upon.

Temporally consistent data is required in order to derive
other data or conclusions, or to display a coherent picture
of a situation. What is considered temporally consistent is
determined by the semantics of the application but must
be explicitly specified so that the system can enforce it.
There are two kinds of temporal consistencies to consider
(1) consistency with the extemal h e of reference
(absolute consistency); (2) consistency with other data in
database (relative consistency). Note that, unlike temporal
databases, a composite object in a RTDM may have data
attributes witb different timestamps. Thus, the altitude of
an aircraft may have been reported at a somewhat Merent
point in time as either its speed or latitude-longitude.

4.2.3. Storage and Main-Memory Databases
Other characteristics of RTDMs have led to a

rethinking of storage and backup techniques. As
mentioned above, one cannot effectively schedule a set of
operations which will complete within a given time
period without knowing what the worst case execution
time of each of these operations are, and what
dependencies they have upon each other. Thus, when
performing transaction scheduling, execution time and
resource usage need to be known or computable so that a
guaranteed schedule can be produced a-priori. When this is
not possible, a best-effort schedule is made with
provisions for aborting, delaying, or omitting tnnsactions
which will cause violations of the most serious
constraints. There are algorithms for choosing and
strategies to choose from. However, there are no
guarantees.

One technique that has the advantage of predictability
is to maintain all the data in main memory, or, at a
minimum, all the data which is used by any of the time-

critical transactions. This may, indeed, be reasonable for
some of the C3 systems we are currently examining,
given the increasing availability of large, relatively
inexpensive memory and the possibility of using multiple
processors. Use of main memory for data has other
advantages; it enables transactions to execute quickly and
prevents Inputloutput WO) operations from adding a
large degree of uncertainty to the system.

When main memory is being used for data storage,
specialized hardware or software is needed to ensure
continuing system operation during power-down is needed,
such as battery back-up of power sources, rapid logging
devices, and checkpointing that runs off shadow copies of
the &base, so as not to interfere with on-going data
processing. Analysis of main-memory databases has
identified storage and access algorithms which perform
better for memory database than when disk I/O is the
critic$ factor. For instance, B-tree type indexing is useful
with disk-based data managers to minimize UO. On the
other hand, hashing may be used for main memory data
managers to minimize CPU usage. New designs, with and
without caches, have been developed for RT memory
usage which can be applied to RTDMs. There are also RT
access algorithms for disks which are sensitive to
priorities and deadlines.

Ultimately, we believe that a multi-level storage
management policy will be used by next-generation
RTDM, using main memory, shared memory, local
processor memory, disks, tapes, and new devices.

4.2.4. Transaction Management
As has been iterated before, in order to pepform hard-

real-time scheduling, transactions need predictable,
computable execution times. If the execution of the
transaction is not time-critical, then in addition to the
worst-case execution time, the average time and a measure
of variance &om the average could be used to schedule.
There has been much work on scheduling periodic tasks
for real-time systems. When aperiodic tasks can be treated
as if they were periodic ones, this work also applies.

Most of the work on scheduling of red-time tasks is
relevant to the scheduling of real-time transactions. Note
that the arrival of periodic (every x secs) transactions is
predictable. The arrival of aperiodic transactions are not
predictabIe. Transactions may arrive based on conditions
in system or from extemal world. Constraints may be
violated and this will cause transactions to be initiated for
repair. This may occur either via an application, a data
manager constraint checker, or an active RTDM.

Transactions will have time constraints, i.e., deadlines,
and priorities, with some policy such as: cannot miss
deadline (sometimes called hard); abort if can't be executed
by deadline; has some value even if executed after deadline.
If the system is expected to guarantee that no hard
deadlines will be missed, then executable schedules for
hard deadline transactions must be predetermined and a
plan to ensure that they will be executed, despite
unexpected events, must be in place.

480

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 18:47:29 UTC from IEEE Xplore. Restrictions apply.

As mentioned, transactions may have a value
(importance of execution) function, and may have
predetermined priorities. If a priority doesn't preexist, and
the transaction does not inherit it from the task it belongs
to, priority will be computed on basis of deadline, value,
etc.

4.2.5. Common RTDM and Operating System
Needs

Most of the work of RT scheduling is perfoxmed
within some layer of the real-time operating system. The
RTDM scheduling issues are so close to those of the
operating system (OS), that we feel that collaborative
scheduling algorithms will emerge in the next several
years, where the OS will consult with the RTDM about
the data resources needed for a task to run. Tasks are units
which typically perform a number of database transactions
in the process of their execution. With a little extra
information about the transactions within a task, the
initial schedule generated could avoid data conflicts, which
are not considered now.

Some traditional large data managers avoid using the
services of the OS they are layered on top of, managing as
much of the memory management, buffering, I/O, and
threads as they can. Since they have specialized needs and
do not have to provide a general service to all
applications, they optimized these critical functions for
the purpose of maximizing data manager throughput and
average response time. Real-time operating systems (RT
OSs), however, are designed with most of the same goals
as the RTDM, and if the RTDM can use the services
provided (and they are real-time POSIX compliant), the
total C3 system will be simpler, as well as more portable.

4.2.6.Conflict and overload management
Conflict resolution is needed when competing for

resources, such as data locks, prevent priority inversion
with some form of priority inheritance, abort (and restart)
all but one of the transactions, wait until completion of
blocking transactions, and relax serialization requirements.

Another issue is whether to prevent conflicts rather
than resolution, and if so, what are the techniques for
conflict prevention. Optimistic locking avoids conflict for
some time but may add some overhead. The system needs
to identify and shed transactions or whole tasks to reduce
overload. However, it must be ensured that the hard real-
time transactions meet deadlines.

Another issue is to reduce quality of responses rather
than no response in a crisis situation. Some current
research here is to use altemate algorithms such as
sampling data, using older data, extrapolating, and
executing partial and imprecise computations.

4.2.7. Recovery Management
An issue here is to recover only temporally consistent

and meaningful data. Logging for recovery may add to
overload or cause deadlines to be missed. Recovery
algorithms must be part of schedulable tasks, suspendable

temporarily and resumed later, yet maintaining required
consistency of the database.

5. Summary --- Current Directions
This paper has built on our previous paper on

evolvable real-time C3 systems. While our previous
paper provided an overview of the project and described
three architectures in detail, this paper descxibes the
infrastructure requirements. In particular, the requirements
for operating system, data manager, and communications
are discussed. The architecture study as well as the
requirements discussed in this paper have formed the basis
of our continuing investigation on this project.

Our current directions are the following. We have
carried out an evaluation of the various approaches
proposed and have chosen a distributed object management
CORBA-like architecture for the system. Since an
evolvable design was a major consideration, we were
influenced by object-oriented design and implementation.
Our infrastructure is essentially a collection of objects
interacting with each other. Existing applications as well
as new applications can be encapsulated as objects.
Furthermore, we have chosen a distributed databaw
approach rather than centralizing the database. We have
carried out a more extensive investigation of the
requirements for the ini?astructure. We have also carried
out the design and implementation of the infixstructure,
data manager, and are now integrating it with the MSI
application. Some preliminary results are reported in
[BENS96]. We have also made progress in investigating
real-time issues for distributed object management
systems -61. At present, we are using Xerox
Corporation's ILU system to integrate the various
components of the infrastructure and the application.
Some of the details of our real-time CORBA work as well
as the design and implementation of the complete system
will be described in future papers.

Acknowledgments
This work was carried out at the MITRE Corporation

under contract F19628-94C-0001. We gratefully
acknowledge the Air Force Mission Oriented Investigation
and Experimentation Program for supporting the work
described in this report. We thank Dr. Tom Lawrence of
Rome Laboratory for monitoring the project, the AWACS
program office and h4ITRE members of the AWACS
project for their support, various groups from Industry and
Academia for the interactions and information provided to
us, and MITRE management for their support.

List of References
[ALLEN961 D. Allen, Position Paper: C O D A Technology for

Cross-Domain Interoperability in Embedded Military
Systems, and Issues in Its Use, Proceedings of 2nd
Workshop on Object-Oriented Real-Time Dependable
Systems, pp. 173-178, 1996.

48 1

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 18:47:29 UTC from IEEE Xplore. Restrictions apply.

PENS953 E. Bensley, et al, Evolvable Real-time C3
Systems, Proceedings of the 1995 lEEE Complex
Systems Conference, pp. 153-166, Nov. 1995.

PENS961 E. Bensley, et al, An Object-Oriented
Implementation of an Infrastructure and Data Manager for
Real-time Command and Control Systems, Proceedings
WORDS '96, Feb. 1996.

FIRM961 K. Birman, and R. Van Renesse. Software for
Reliable Networks, Scientific American, May 1996.

[CRIS90] F. Cristian, B. Dancy, and J. Dehn. Fault-Tolerance
in the Advanced Automation System, In Proc.of Faulr-
Tolerant Computing Symposium, pp. 6-17, June 1990.

[HORUS] R. Van Renesse, K. Birman, and S. Matteis. Horus,
a Flexible Group Communication, Communkariuns of

@SISI K. Birman, and R. Van Renesse. Reliable Distributed
Computing with the Isis TooIkit, IEEE Computer Society
Press, 1993.

[GINS961 R. Ginis, V. Wolfe, and J. Richard, The Design of
an Open System with Distributed ReaI-Time
Requirements, Proceedings lEEE Real-Time Technology
and Applications Symposium, pp. 82-90, June 1996.

[KOP96] H. Kopetz and S. Polenda, A Node as a Real-Time
Object, Proceedings of 2nd Workshop on Object-
Oriented Real-Time Dependable Sysrems, pp. 2-7, 1996.

[LYNX] Lynx Real-Time Systems Inc. http://www.lynx.com

[OMG94] object Management Group. Common Object
Services Specification, V 1, John Wiley and Sons, 1994.

[POSrX] Potrable Operating System Interface,
http://stdsbbs.ieee.org/groups/pasc/standing/sd 1 1 h tml

M A 9 3 1 K. Ramaritham, Real-Time Database Systems,
Journal of Parallel and Distributed Computing, Vol. 1,
1993.

[THUR96] B. Thuraisinghm, et al, Position Paper: On Real-
time Extensions to Object Request Brokers, Proceedings
WORDS '96, Feb. 1996.

WALT901 E. Waltz, J. Llinas. Multisensor Dara Fusion,
1990.

ACM, pp. 76-83, April 1996.

WOLF951 V. Wolfe, J. Black, B. Thurasingham, and P.
Krupp. Towards real-time method invocations in
distributed computing environment, Proceedings of fhe
International Conference OR High Pe$otbrmance
Computing, Dec. 1995.

[RTZIP] Zip Real-Time Database Management System Manual
Bbx, Inc., Cherryhill, NJ, 1993.

482

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 18:47:29 UTC from IEEE Xplore. Restrictions apply.

http://www.lynx.com
http://stdsbbs.ieee.org/groups/pasc/standing/sd

