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Abstract 
MITRE'S Evolvable Real-Time Comma& Control, 

and Communications (C3) project funa'ed under the Air 
Force Mission Oriented Investigation and Experimentation 
(MOIE) program attempts to develop an approach that 
would enable current real-time systems to evolve into the 
systems of the future. The project has chosen Airbonze 
Warning and Control System (AWACS) as an example to 
test the concepts and architectures to be developed In this 
paper we discuss the requirements for the infrartructure for 
next generation complex real-time command and control 
systems. This discussion also includes an overview of the 
infiastrucmm requirements for each of the three 
architectures that we b e  considered [BENS95]. 

1. Introduction 
Between now and the early part of the next century, 

significant portions of today's real-time Command, 
Control, and Communication systems will become either 
functionally inadequate or logistically insupportable. 
Furthermore, due to the continuing budget reductions, new 
developments of next generation real-time C3 systems 
may not be possible. Therefore, current real-time C3 
systems need to become easier, faster, and less costly to 
upgrade in capability and easier to support. What is needed 
is an approach to evolve current real-time C3 systems into 
the extensible systems required for the future. 
MITRE'S Evolvable Real-Time C3 project funded 

under the Air Force Mission Oriented Investigation ad 
Experimentation (MOIE) program attempts to develop an 
approach that would enable current real-time systems to 
evolve into the systems of the future. The candidate 
evolution approach is to leverage off near-term system 
upgrade and/or P31 (Pre Planned Product Improvement) 
activity to put a new architecture framework in place. The 
emphasis is on transitioning to open architectures, which 
are modular and free from proprietary or unnecessarily 
complex software designs. The open framework can also 
accommodate new upgrades more easily. Availability of 
an infrastructure to support a suitable software architecture 
is key for this approach to succeed. The investment plan 
would continue incremental transition of current systems 
into more flexible systems. The extensible system 

architecture would ultimately replace the current hardware 
and s o h a r e  architecture. 

The project has chosen AWACS as an example to test 
the concepts and architectures to be developed. Currently, 
its centralized design is a closed architecture with 
monolithic custom software, that does not take 
advantages of state-of-the-art hardware and makes 
processing upgrades time-consuming and expensive. The 
project has chosen Multi-Sensor Integration (MSI) 
function ~ A L ' D O ] ,  because of its support of important 
combat identification capabilities, as a starting point for 
transitioning AWACS to an open architecture. Also, MSI 
function's impact on data and display processing provides 
a thorough test of the concept. The technical challenge is 
to demonstrate the applicability of open software 
technology to AWACS and other real-time C3 systems. 
The successful execution of this project would facilitate 
the transition to open systems. 

The specific goals of our project are the following: 
To identify real-time infrastructure requirements (RTIS) 
to support AWACS and other real-time C3 systems. 
Determine how existing C3 systems could be 
transitioned into such a software infrastructure. 
Demonstrate feasibility of the approach through 
modeling, prototyping, and evaluation of commercial 
products. 
In this article we discuss the requirements for the 

infrastructure for next generation real-time command and 
control systems. This discussion also includes an 
overview of the real-time infrastructure requirements for 
each of the three architectures that we have considered 
@ENS95]. We first provide a brief overview of OUT 
approach to designing evolvable systems as well as 
summarize the three architectures in section 2. A detailed 
discussion of the requirements for the real-time 
infrastructure are given in section 3. In section 4 we 
provide separate requirements for data management. We 
conclude the paper by discussing current directions in 
section 5. 

2. Background 

2.1 
In order to provide an evolution path for real-time C3 

systems, one needs to understand the requirements of 
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current real-time C3 systems and how they designed. ll-ie 
major goals of the initiative include determining the 
software infrastructure requirements and identifying the 
migration path for legacy systems. The infrasmcture is a 
collection of all non-application specific software services. 
This infrastructure provides the software backplane €or 
applications and insulates application software from 
hardware. Ideally, we want to use Commercial-Off-the- 
Shelf (COTS) products for the infrastructure. Figure 2-1 
illustrates the infrastructure. 

Hardware 

Figure 2- 1. Infrastructure 

The services provided by the infrastructure include real- 
time operating systems services such as memory 
management and real-time scheduling, real-time 
communication services such as interprocess and 
intraprocess communications, real-time dab management 
services such as data sharing, queqing, updating, 
transaction management, and enforces integity and timing 
constraints. The infrastructure also provides the 
mechanisms for interaction between the software 
components. All of the services must provide an 
integated priority scheme and perfoxmance predictability. 

4 

I Hardware 
Fiagre 2-2. Target C3 Extensible Architecture 
The target C3 extensible architecture is illustrated in 

Figure 2-2. Ideally, all of the application components 
should be hosted on the infrastructure. The application 
components for a system such as AWACS will include 
MSP, display, weapons, surveiIlance and tracking, and 
communication. The infrastructure provides the means for 
the application subsystems to access and share data as well 
as to communicate with each other. Implementing such a 
system will mean re-architecting the entire AWACS 
system. This is not feasible within the cunent budget. 
Therefore, our approach is to extract certain application 
subsystems and host them on the infrastructure while the 

other subsystems remain within the legacy environment. 
An intemediate architecture is illustrated in Figure 2-3 
where MSI is hosted on the infrastructure. 

2.2. Architecting a Robust Real-Time System 
We have considered three architectures[BENS95]. One 

is a centraked database architecture, the second is a 
distributed message passing architecture, and the third is 
based on a distributed-object client-server paradigm. 

2.2.1. Centralized Database Architecture 
The central database computer system architecture for 

C3 systems consists of subsystem functional units 
operating on possibly separate computer nodes each with 
their own local data manager and database (see Figure 2.4). 
The local databases are partial replicas of a central 
database. The central database is maintained on a central 
node which contains all data for inter-subsystem 
communication. A central data manager periodically 
receives inputs from each subsystem node, and 
periodically broadcasts the central database out to each 
subsystem node. Since all the subsystems report their new 
or modified data each cycle, and the subsystems receive a 
full copy of the central database each cycle, all data is 
comiIILicated between subsystems in a predictable, 
reliable way. 

Figure 2-3. AWACS MSI in an Extensible Infrastructure 

22.2. Message-Based Distributed 
In this architecture, each subsystem has its own 

individual database of all required data, and different 
subsystems shardexchange data via messages (see Figure 
2-5). Note that there is no central database to synchronize 
the local databases. Therefore, the local databases have to 
ensure that they are synchronized by exchanging 
messages. 

2.2.3. Distributed Object Management 
Architecture 

In a distributed object management system @OM), the 
components are encapsulated as objects and the objects 
communicate with each other through some from of 
object request broker. An example of a DOM is the Object 
Management Group's (OMG) Common Object Request 
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3, Real-3ime Infrastructure Requirement 

3.1. Overview 
The following real-time infrastructure requirements 

@TIS) have been identified and discussed in this chapter:' 
Real-Time Scheduling, 
Time Constraint Enforcement, 
Transaction Management, 
Scheduler Encapsulation, 
Real-Time Predictability, 
Admission Control, 
Overload Management, 
Real-Time Tasks, 
Red-Time Threads, 
Interthread Synchronization and Mutual Exclusion, 
InterprocessAnterthread Communication, 
Fault-Tolerance and Group Communication, 
Portability, 
Global Time, 
Evolvability and Extensibility 
Obiect-Orientedness. 

AIS; data management requirements are discussed 
separately in chapter 4. These requirements are intended to 
address many of the problems that we have observed in 
existing C3 systems [GINIS96]. The most important 
problem is the cost of maintenance (evolution and 
extension). A significant factor driving the cost is the use 
of cyclic executives, that results in a global, system-wide 
dispersal of the knowledge of real-time constraints and 
behavior of the system. We believe that some of the 
proposed techniques described below in the form of RTIS 
design requirements will ameliorate this problem 
significantly. Through our prototyping of RTIS, we will 
be able to test our hypothesis. 

I Component I 

t 

Figure 2-7. DOM With Distributed Data Management 

3.2. Real-Time Scheduling 
RTIS will provide an application with real-time 
scheduling support services, that include the assignment 
of operating system scheduling parameters on the basis 
of the application real-time workload to processes and 
threads with real-time constraints. 

INote that some of these requirements are design goals and 
constraints. These will be stated where appropriate. 
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Current real-time operating systems do not provide 
services to support the determination of scheduling 
priorities, on the basis of workload and timing 
constraints, which is left to an implementor. By applying 
existing scheduling theory, we can provide an RTIS 
service that will calculate scheduling parameters (priority) 
on the basis of workload and timing constraints. 

We believe that scheduling techniques with 
“preclictable” behavior must be used to achieve highly 
reliable, open real-time systems. One interpretation of 
“predictable” is that some type of simple analytic model 
must exist which when given a workload will provide us 
with a determination of its schedulability. Another 
desirable property would be a prediction of system 
behavior under overload conditions so that we can design 
the system to gracefully degrade when overloaded. 

One of the design goals of RTIS is to take advantage 
of the recent developments in the area of real-time 
scheduling theory as implemented in recent COTS real- 
time operating systems such as LynxOS and as 
defined in emerging real-time operating systems standards 
such as POSIX 1003.lb, Id and lj [POSIX]. The trend is 
towards preemptive, priority-based scheduling (dynamic 
and static priorities); including rate-monotonic scheduling 
and earliest deadline first- Best-effort scheduling (as in the 
real-time extensions to OSFMach developed at the 
OSFResearch Institute) is closely related, but not strictly 
speaking a priority-based scheduling scheme. The trend is 
away from time-driven cyclic executive schedulers a d  
towards event-driven schedulers based on various priority 
schemes. 

It is possible to apply existing scheduling techniques 
to provide both schedulability analysis and graceful 
degradation. One example of a technique that has these 
properties is rate-monotonic Scheduling. To do so requir;eS 
assigning scheduling priorities to each thread (task) in the 
system according to its period (for periodic tasks) or 
minimum inter-arrival time (for sporadic tasks). To 
properly assign priorities to a particular task pequires 
knowledge of the entire processor workload. This is an 
example of a service that RTIS can provide that will ease 
the difficulty in using modem real-time scheduling 
techniques. 

3.3. Time Constraint Enforcements 
5 RTIS will provide time constraint (real-time and CPU- 
time) enforcement services. An application will be able 
to request notification of time-constraint violations 
(e.g., Wk faults) and then elecr to specifj, fault 
recovery processing which may include applicatian 
routines. 
In our initial exploration of how to implement this 

requirement, we found that a significant design issue was 
the problem of aborting the execution of a thread cleanly. 
The POSM 1003.lc, lj  standards is of little help in this 
area since it does not provide for the automatic cleanup of 
a thread when it is aborted. The standard however does 
provide for user specified cleanup handlers that are 

executed when a thread is aborted. 
necessary, seems unsatisfactory in 

This. while certainlv 
its level of supporl. 

Drawing an analogy between a UNIX-style process and a 
POSIX thread, it would be convenient if threads were 
cleaned up (resources reclaimed) as when a UNM process 
is terminated. The operating system kernel cleans up in  
most cases and reclaims process resources when a process 
is terminated. This does not happen with a thread, and if a 
thread is simply aborted resources such as semaphores, 
mutexes, and the heap that are process-wide can be left in 
an ill-defined state. 

A second issue is how to carry out the timing fault 
recovery processing without causing a cascade of other 
timing faults. If the fault-recovery processing consumes 
additional processor time, other threads may fail to meet 
their constraints because of reduced processor time 
availability or because the thread that has failed also fails 
to release other needed, shared resources on time. Our 
current strategy to resolve these conflicting requirements 
is to require the application to reserve time for recovery by 
setting a high water mark for both CPU-time constraints 
and real-time constraints. When the high water mark is 
met, the application is notified, it then has time 
remaining to carry out its recovery. This we believe is a 
simple, effective way to enforce real-time constraints and 
provide for clean recovery from timing faults. 

3.4. Transaction Manager Support 
* RTIS will provide the services needed to s 

implementation of a real-time transaction manager m 
part of a r d - W  data manager. 

From our exploration of the problem of enforcing 
timing-constraints, we believe that there is a need for a 
real-time transaction manager that supports atomic 
transactions. Transactions implemented as threads must be 
cleaned up by the RTIS without significant operating 
system support. The data manager component of RTIS 
must provide this support (see section 4). We found that 
the problem of cIean termination was a significant barrier 
to the use of COTS real-time data managers such as ZIP 
Real-Time Management System (Zrp 
R’l”]. Since ZIP-RTDBMS did no 
transactions or any means of cleanly terminating in- 
progress operation on data under its management, we 
could not easily use it as a basis for implemention hard 
real-time database operations. 

3.5. Real-Time Scheduler Encapsulation 
e An application shall have no explicit knowledge of the 

scheduling Bchnique being zised by the real-time 
operating system. 

An important design objective of RTIS is to reduce 
the cost of the maintenance (extension and evolution) of 
distributed real-time applications. What we have observed 
in existing applications is that knowledge of the real-time 
scheduling technique is typically distributed throughout 
the application source code. This increases the cost and 
complexity of the evolution of real-time systems. The 
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application should not be concemed with how real-time 
constraints are met, only with what the constraints are and 
what should be done if they are not met. The application 
will d e k e  its scheduling requirements (timdresource 
constraints), pass them to RTIS which will be responsible 
for selecting the appropriate scheduling technique and 
calculating the appropriate scheduling parameters. By 
providing scheduling support services that keep track of 
all the application real-time constraints, RTIS can 
calculate the scheduling priority using rate-monotonic 
priority assignment rules. Later on if it is desired to use 
dynamic scheduling with the EDF (earliest deadline first) 
rule, (and the underlying real-time operating system 
supports it), the RTIS could substitute that method of 
scheduling without requiring any changes to application 
source code. We plan on seeing how far this idea can be 
extended. Our experience this year supports our claim that 
knowledge of the operating system scheduling mechanism 
can be encapsulated within the RTIS. The only real issue 
is the fact that different schedulers have different levels of 
efficiency in scheduling and different behavior under 
overload conditions. We will need to determine through 
experimentation if this tradeoff of encapsulation vs. 
scheduling efficiency is worthwhile. We expect that it is. 

3.6. Real-Time Predictability 
RTIS will support the implementation of ‘‘pr-ble” 

real-time applications. 
The principal design issue is what do we mean by 

“predictability.” Our interpretation here is that we will 
only use real-time scheduling algorithms in RTIS for 
which tractable theories exist: simple schedulability 
models as in rate-monotonic scheduling, deadline- 
monotonic Scheduling, or earliestdeadline-first; or 
schedulers that empirically have acceptable behavior such 
as best-effort scheduling. Standard “feedbackqueue” 
schedulers used in most mainframe time-sharing and 
UNM: systems, emphasizing fairness and deterministic 
timing behavior, are not acceptable and will not be used. 
Currently, only static priority-based preemptive 
scheduling techniques are universally supported in COTS 
real-time operating systems. 

3.7. Admission Control 
RTIS will support the optional use of admission 

control. When admission control is enabk4 all 
requests for the creaiion of thread with real-time ard 
CPU-time constraints me checked for admissibility 
and are created only if the new workload is schedulable. 
This requirement is imposed because in hard real-time 

applications, timing faults lead to system failure. 
Admission control enables the application to monitor the 
workload through RTIS. Additional units of work 
(threads) will be rejected when they are created instead of 
when they fail or trigger other failures. This capability is 
not needed for all real-time applications, only those that 
have critical timing constraints. The application will 
enable or disable admission control as part of its initial 

configuration. We have made this decision in order to 
simplify the design of RTIS and see no need to 
dynamically enable or disable this capability. When 
enabled, it will permit admission control to restrict the 
creation of real-time threads to those that constitute 
“analyzable” architectures for the underlying real-time 
operating system. This means that an application that 
uses this capability will not necessarily be portable to 
other platforms that support other (different) analyzable 
real-time scheduling algorithms. 

3.8. Overload Manager 
RTIS will support the “gmceful” degr&n of an 
application under overload 
An RTIS application gracefully degrades missed in the 

order of criticality when the real-time constraints of an 
application are. When a workload is not schedulable, there 
is an overload condition. The application will enable or 
disable overload management when it is initialized. A 
design issue that we have not resolved, satisfactorily, is 
how to specify the “criticality” of a thread. We will 
initially simply permit the application to specify a 
ranking with an integer. Another issue is that overload 
management is only well understood for a few real-time 
scheduling techniques: rate-monotonic, deadline- 
monotonic, and best-effort scheduling. RTIS will only 
support overload management for these scheduling 
techniques. 

3.9. Real-Time Tasks 
RTIS will support the creation of a real-time task (a 

native operating system process) that provides the 
address space for a set of RTIS and application threads 
that contain per-task (per-process) resources. 
This is analogous to the Mach concept of a task as a 

container for threads (a UNIX process without its single 
thread of control). This is RTIS notion of a process and 
easily maps on to processes in all modem operating 
systems. It is a convenient way of managing per-process 
@er-task) resources such as applidon-created 
communication ports, RTIScreated communication ports 
(for task control and monitoring), and RTIS service 
threads needed to carry out RTIS control functions. 

3.10. Real-Time Threads 
RTIS will support the creation of time-constrained real- 

time thread: both periodic and sporadic. RTIS will 
also support the creation of non-real-time t h r d  for 
activities that have no critical time-constraints. 
The real-time threads described here are intended to map 

on to POSM 1003.lb,lc threads. If appropriate 
scheduling algorithms are supported, they could be 
mapped onto other types of operating system supported 
threads, such as Mach threads. Two types of real-time 
threads will be supported, periodic and sporadic. A periodic 
thread will have a default deadline that coincides with the 
end of the period. A deadline that is earlier or later than the 
period may be specified. If admission control is enabled, a 
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CPU-time quota €or the thread must be specified. A 
sporadic thread will have a minimum inter-arrival time 
specified (it will not automatically be invoked 
periodically). If a request for a sporadic task arrives earlier 
than permitted it will be either dropped or queued as 
specified when the thread is created. Non-real-time threads 
with have no time-constraints can be created (pe r idc  and 
aperiodic-no minimum inter-arrival time). RTfS will 
ensure that they are scheduled in such a manner that they 
do not conflict with the execution of real-time threads. 

3.11. Interthread Synchronization and Mutual 
Exclusion 
0 RTIS shall provide interthread mutual exclusion ancl 

synchronization services that me integrated with red- 
time scheduling such that a real-time thread with high 
criticality cannot be delayed i&+inetaly by a less 
critical real-time thread. 
The synchronization constructs are intended to map 

onto POSE 1003.lb,lc synchronization and mutual 
exclusion services: semaphores, condition variables, and 
mutexes. The key issue here is the avoidance of 
unbounded delays due to tasks with low priority holding 
resources that high priority tasks need (unbounded priority 
inversion). Unbounded priority inversion may be avoided 
hough  the use of the priority inheritance and priority 
ceiling protocols. POSE 1003.1c71j draft shdards 
recognize this problem and provide support for its 
solution. The real-time data manager requires this support 
for its implementation of atomic transactions and 
semantic locking. 

3.12. InterprocessLCnterthread Communication 
e RTIS will provide IFCATC services by supporting 

communication objects called ports. 
The communication model we have adopted from 

Mach is simply an extension of the existing model 
implemented by COTS real-time operating systems. It has 
been extended so that thread-to-thread communication can 
take place. Process-to-process communication does not 
provide a sufficiently fine level of granularity. IPCATC 
wiIl follow the Mach model: RTIS will provide services 
necessary to createldestroy communication objects d e d  
ports (a port is similar to a PQSIX/Lynx OS message 
queue). A thread can send a message using a port as a 
target and can also receive a using a port as a receiving 
endpoint. Both blocking and non-blocking sends and 
receives will be supported. A blocking send will wait 
until an acknowledgment from the receiving point is 
received (as a blocking RPC does). RTIS will support 
sends and receives between threads in the same process and 
different processes on either the same processor or different 
processors. 

RTIS will provide a name service for the registration 
of ports. A thread can then advertise the availability of a 
port by an agreed upon name. RTIS will support the 
transmission of ports (as objects) from any thread to any 
other thread. In a heterogeneous environment RTIS will 

make the machine-dependent representation conversions of 
messages (byte-ordering, integers, floating point). 

3.13. FauIt-Tolerance 
6 RTIS will support faULt-tolerance by providing group 

communication services (reliable multicast, atomic 
multicast, causal multicast, and group membership 
services). 
The ISIS model demonstrated support for fault- 

tolerance and distributed computing outside of the normal 
point-to-point communication model, which we adopted 
€or RTIS WIRM96, ISIS, HORUS]. T h i s  supports fault- 
tolerance by permitting replication of data, real-time 
processes, and threads. The following group 
communication services will be supported: reliable 
multicast, atomic multicast, causal multicast. The 
associated orderings in message delivery will be e n f o d  
with respect to changes in group membership. RTIS will 
provide support for thread groups: the creation and naming 
of a thread group, the destruction of a thread group, and 
the addition and removal of a thread from a thread group. 
The name of a thread group will be associated with a 
thread group address. A disbibuted name service will 
permit any thread to find the address of a thread group by 
asking the name service for its address. When a thread 
group is created, it will be registered with its specified 
name with the thread group name service. when a thread 
group is destroyed, it will be deregistered from the ihread 
group name service. 

3.14. Global Time Service 
6 RTIS will provide a global time service using clock 

synchronization protocols to keep processor clocks 
synchronized within a specij?ed upper bound. The 
application will be able to qwv RTIS as to the 
accuracy and maximum skew of the time service. 
A disbibuted time service will be provided to 

synchronize clocks across the network. For this project we 
will use publicly available N T P  (Network Time Protocol) 
that has been ported to a variety of UNIX-like platforms. 
Its accuracy should be sufficient for this project. Another 
choice is the Ravio-Christian's fault-tolerant clock 
synchronization service [CRISBOI that had been 
implemented by the OSF as part of an x-kemel 
distribution. To use it we need to port the x-kernel (a 
network protocol implementation kit) to our current real- 
time operating system (LynxOS). 

3.15. Portability 
6 RTIS will be constructed as a layer above POSTx.l,lb. 

I€ this requirement can be met, RTIS should be 
portable to any POSJX.1,lb compliant platform. As part 
of OLE project we will test this hypothesis. An RTIS 
application will be portable if it obtains its 
through RTIS API. 

3.16. Evolvability & Extensibility (Design Goal) 
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RTIS will be designed such that if additional capability 
needs to be adde4 existing CO& does not need to be 
modified 
This is really a constraint on the design of RTIS. We 

have adopted an object-oriented approach in the hope that 
through the use of classes and inheritance we will be able 
to design and implement RTIS in a manner that permits 
us to add functionality by inheriting from existing RTIS 
classes and overriding or adding methods to new RTIS 
classes. Through the mechanism of inheritance and object 
composition only new classes need to be added. This goal 
(while not easily or clearly attainable) is an ideal that 
should be striven for, if and extensibility are to be 
properties of RTIS. This is an hypothesis that has been 
shown to be true for other applications of object-oriented 
design. We intend to test its applicability to the design 
and implementation of RTIS. 

3.17. Object-Oriented (Design Goal & Constraint) 
The API for RTIS will be implemented as a C++ class 

library. RTIS will serve as an object-oriented 
framework for MSI applications. 
This is needed to support the design goal of 

evolvability and extensibility. To attain evolvability and 
extensibility of RTIS and applications using RTIS, we 
believe we need a CORBA-like distributed object approach 
[ALLENgQ KOF961. We are investigating some 
implementations of distributed object managers that are 
available from other projects, like ILU (Interlanguage 
Unification) from Xerox PARC. That would allow RTIS 
to support a number of languages and extend the object- 
oriented paradigm to include distributed objects. 

Since our project is about the evolvability of C3 
systems and MSI is our test application, an objective of 
RTIS is to act as on object-oriented h e w o r k  for MSI 
applications. This provides a significantly higher level of 
reuse and support for an application than a simple class 
library. It will enable us to build a collection of 
collaborating classes which we believe is important if we 
are to support complex real-time, distributed MSI 
applications. Since this is desirable and not necessarily 
achievable with the time and resources available, it is only 
listed as a design goal and not a requirement. 

4. Features of Real-Time Data Managers2 
C3 systems cannot be just a simple blend of real-time 

and data management requirements. While a real-time data 
manager (RTDM) must have many features of database 
management systems that service complex, multi-user 
systems, such as multithreading and locking, it must also 
support real-time systems requirements, such as the 
performance of transactions within predicted execution 
times. In addition, it must support the data representation 
requirements of the applications. For example, not only 
should the entities of the application and the relationships 
between the entities be represented, it should also be 

[RAMA93] provides good introduction to RTDMs. 

possible to represent the data dependencies between the 
processes which operate on the data. 

Thus, there are a set of additional issues which arise 
which are distinct and particular to the maintenance and 
access of temporal data combined with real-time 
constraints imposed by priorities, deadlines, and fault 
tolerance. These issues lead to approaches such as fuzzy 
responses to satisfy query deadlines and relaxation of 
serializability. Basic features that data managers are 
expected to provide are: 

Multi-user access with data locking for serializability, 
preventing inadvertent corruption of data. 
Data views and dam manipulation language on logical 
views of persistent data. 
Isolation from physical layout and storage of data. 
Indices and/or other optimized mechanisms for fast data 
access. 
Query and update capability. 
Atomic transactions to maintain data consistency and 
integrity. 
Backup and recovery facilities. 
Many modem data managers also provide additional 

features which the users have grown to expect as part of a 
basic data manager: 

Report generators. 
Ad hoc query capability. 
GUI (Graphical User Interface) builders. 
GUI front end. 
Fourth generation application builders. 
Distributed databases. 
Multiple platform support. 
Bridges to other data managers. 
RTDMs have to meet additional requirements that do 

not apply to traditional data managers. Data is time- 
stamped and transactions are timeconstrained, they have a 
deadIine and they have a value to the system which varies 
depending on whether or not they met that deadline. 

In some cases, missing the deadline may be 
catastrophic. Other new aspects which must be considered 
when scheduling transactions are: What is the expected 
execution time, and is the required data sufficiently upto- 
date? While temporal data managers also contain time- 
stamped data, these data managers do not require the kind 
of scheduling that is necessary to meet strict deadlines, as 
requiredfor functionally complete RTDMs. In addition, a 
RTDM must also provide the facility to represent the 
application and be able to analyze the application for data 
dependencies and determine potential inconsistencies. 

A basic RTDM may not have to supply the additional 
features in the second list above, since it is generally in a 
specialized environment and not expected to be a general 
purpose data manager. In addition, some of the traditional 
basic features listed for data managers such as data 
consistency, locking, and transaction serializability are 
modified when time-constraints and priorities must be 
considered. 

4.2. Discussion of Requirements 
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4.2.1. Representation and Analysis 
Representing the application is a major requirement. 

The entities of the application, the relationships between 
the entities, the constraints, and the data dependencies have 
to be specified. Constraints include logical consistency 
constraints, temporal consistency constraints, and timing 
constraints. Data dependency consmints include 
statements like transaction T1 can read data item 0 only 
after T2 has updated 0. An appropriate dab model is 
needed to represent the application. 

4.2.2. Temporal Data Management 
The temporal data requirements of the C3 systems we 

have been concerned with, when expressed explicitly, wiIl 
affect both the data and the transactions to that data. Time- 
stamped data will have an acquisition time-stamp and a 
time-decay attribute which describes its interlude of 
validity. This may be a value, another time-stamp, or a 
function. Not all the data in the system will be temporal 
but all data could be time-stamped. A ground installation 
might be stamped as valid forever, for instance. When data 
is no longer valid, it could be removed from the darabase 
or ignored, depending upon the policy decided upon. 

Temporally consistent data is required in order to derive 
other data or conclusions, or to display a coherent picture 
of a situation. What is considered temporally consistent is 
determined by the semantics of the application but must 
be explicitly specified so that the system can enforce it. 
There are two kinds of temporal consistencies to consider 
(1) consistency with the extemal h e  of reference 
(absolute consistency); (2) consistency with other data in 
database (relative consistency). Note that, unlike temporal 
databases, a composite object in a RTDM may have data 
attributes witb different timestamps. Thus, the altitude of 
an aircraft may have been reported at a somewhat Merent 
point in time as either its speed or latitude-longitude. 

4.2.3. Storage and Main-Memory Databases 
Other characteristics of RTDMs have led to a 

rethinking of storage and backup techniques. As 
mentioned above, one cannot effectively schedule a set of 
operations which will complete within a given time 
period without knowing what the worst case execution 
time of each of these operations are, and what 
dependencies they have upon each other. Thus, when 
performing transaction scheduling, execution time and 
resource usage need to be known or computable so that a 
guaranteed schedule can be produced a-priori. When this is 
not possible, a best-effort schedule is made with 
provisions for aborting, delaying, or omitting tnnsactions 
which will cause violations of the most serious 
constraints. There are algorithms for choosing and 
strategies to choose from. However, there are no 
guarantees. 

One technique that has the advantage of predictability 
is to maintain all the data in main memory, or, at a 
minimum, all the data which is used by any of the time- 

critical transactions. This may, indeed, be reasonable for 
some of the C3 systems we are currently examining, 
given the increasing availability of large, relatively 
inexpensive memory and the possibility of using multiple 
processors. Use of main memory for data has other 
advantages; it enables transactions to execute quickly and 
prevents Inputloutput WO) operations from adding a 
large degree of uncertainty to the system. 

When main memory is being used for data storage, 
specialized hardware or software is needed to ensure 
continuing system operation during power-down is needed, 
such as battery back-up of power sources, rapid logging 
devices, and checkpointing that runs off shadow copies of 
the &base, so as not to interfere with on-going data 
processing. Analysis of main-memory databases has 
identified storage and access algorithms which perform 
better for memory database than when disk I/O is the 
critic$ factor. For instance, B-tree type indexing is useful 
with disk-based data managers to minimize UO. On the 
other hand, hashing may be used for main memory data 
managers to minimize CPU usage. New designs, with and 
without caches, have been developed for RT memory 
usage which can be applied to RTDMs. There are also RT 
access algorithms for disks which are sensitive to 
priorities and deadlines. 

Ultimately, we believe that a multi-level storage 
management policy will be used by next-generation 
RTDM, using main memory, shared memory, local 
processor memory, disks, tapes, and new devices. 

4.2.4. Transaction Management 
As has been iterated before, in order to pepform hard- 

real-time scheduling, transactions need predictable, 
computable execution times. If the execution of the 
transaction is not time-critical, then in addition to the 
worst-case execution time, the average time and a measure 
of variance &om the average could be used to schedule. 
There has been much work on scheduling periodic tasks 
for real-time systems. When aperiodic tasks can be treated 
as if they were periodic ones, this work also applies. 

Most of the work on scheduling of red-time tasks is 
relevant to the scheduling of real-time transactions. Note 
that the arrival of periodic (every x secs) transactions is 
predictable. The arrival of aperiodic transactions are not 
predictabIe. Transactions may arrive based on conditions 
in system or from extemal world. Constraints may be 
violated and this will cause transactions to be initiated for 
repair. This may occur either via an application, a data 
manager constraint checker, or an active RTDM. 

Transactions will have time constraints, i.e., deadlines, 
and priorities, with some policy such as: cannot miss 
deadline (sometimes called hard); abort if can't be executed 
by deadline; has some value even if executed after deadline. 
If the system is expected to guarantee that no hard 
deadlines will be missed, then executable schedules for 
hard deadline transactions must be predetermined and a 
plan to ensure that they will be executed, despite 
unexpected events, must be in place. 
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As mentioned, transactions may have a value 
(importance of execution) function, and may have 
predetermined priorities. If a priority doesn't preexist, and 
the transaction does not inherit it from the task it belongs 
to, priority will be computed on basis of deadline, value, 
etc. 

4.2.5. Common RTDM and Operating System 
Needs 

Most of the work of RT scheduling is perfoxmed 
within some layer of the real-time operating system. The 
RTDM scheduling issues are so close to those of the 
operating system (OS), that we feel that collaborative 
scheduling algorithms will emerge in the next several 
years, where the OS will consult with the RTDM about 
the data resources needed for a task to run. Tasks are units 
which typically perform a number of database transactions 
in the process of their execution. With a little extra 
information about the transactions within a task, the 
initial schedule generated could avoid data conflicts, which 
are not considered now. 

Some traditional large data managers avoid using the 
services of the OS they are layered on top of, managing as 
much of the memory management, buffering, I/O, and 
threads as they can. Since they have specialized needs and 
do not have to provide a general service to all 
applications, they optimized these critical functions for 
the purpose of maximizing data manager throughput and 
average response time. Real-time operating systems (RT 
OSs), however, are designed with most of the same goals 
as the RTDM, and if the RTDM can use the services 
provided (and they are real-time POSIX compliant), the 
total C3 system will be simpler, as well as more portable. 

4.2.6.Conflict and overload management 
Conflict resolution is needed when competing for 

resources, such as data locks, prevent priority inversion 
with some form of priority inheritance, abort (and restart) 
all but one of the transactions, wait until completion of 
blocking transactions, and relax serialization requirements. 

Another issue is whether to prevent conflicts rather 
than resolution, and if so, what are the techniques for 
conflict prevention. Optimistic locking avoids conflict for 
some time but may add some overhead. The system needs 
to identify and shed transactions or whole tasks to reduce 
overload. However, it must be ensured that the hard real- 
time transactions meet deadlines. 

Another issue is to reduce quality of responses rather 
than no response in a crisis situation. Some current 
research here is to use altemate algorithms such as 
sampling data, using older data, extrapolating, and 
executing partial and imprecise computations. 

4.2.7. Recovery Management 
An issue here is to recover only temporally consistent 

and meaningful data. Logging for recovery may add to 
overload or cause deadlines to be missed. Recovery 
algorithms must be part of schedulable tasks, suspendable 

temporarily and resumed later, yet maintaining required 
consistency of the database. 

5. Summary --- Current Directions 
This paper has built on our previous paper on 

evolvable real-time C3 systems. While our previous 
paper provided an overview of the project and described 
three architectures in detail, this paper descxibes the 
infrastructure requirements. In particular, the requirements 
for operating system, data manager, and communications 
are discussed. The architecture study as well as the 
requirements discussed in this paper have formed the basis 
of our continuing investigation on this project. 

Our current directions are the following. We have 
carried out an evaluation of the various approaches 
proposed and have chosen a distributed object management 
CORBA-like architecture for the system. Since an 
evolvable design was a major consideration, we were 
influenced by object-oriented design and implementation. 
Our infrastructure is essentially a collection of objects 
interacting with each other. Existing applications as well 
as new applications can be encapsulated as objects. 
Furthermore, we have chosen a distributed databaw 
approach rather than centralizing the database. We have 
carried out a more extensive investigation of the 
requirements for the ini?astructure. We have also carried 
out the design and implementation of the infixstructure, 
data manager, and are now integrating it with the MSI 
application. Some preliminary results are reported in 
[BENS96]. We have also made progress in investigating 
real-time issues for distributed object management 
systems -61. At present, we are using Xerox 
Corporation's ILU system to integrate the various 
components of the infrastructure and the application. 
Some of the details of our real-time CORBA work as well 
as the design and implementation of the complete system 
will be described in future papers. 
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