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Abstract. Let W be a finite reflection group acting orthogonally on Rn and
P = {p1, . . . , pn} be a set of basic polynomial invariants. We show that
the algebra of composite mappings P ∗(Er(P (Rn))) is a Fréchet subspace of
the space of r-regular jets of order hr, where h is the highest degree of the
polynomials pi (the largest Coxeter number of the irreducible components of
W ). The algebra homomorphism P ∗ is a Fréchet isomorphism that identifies
this space with the space of functions of class Cr of the polynomial invariants.
This study needs the Whitney 1-regularity property of P (Rn) and by lack of
a reference we had to complete a proof of this property given in [7] with a
lemma that was not proved for all Coxeter groups.

1. Introduction

Let W be a finite reflection group acting orthogonally on Rn. The algebra of
W -invariant polynomials is generated by n algebraically independent W -invariant
homogeneous polynomials and the degrees of these basic invariants are uniquely
determined [12], [5]. Let p1, . . . , pn be a set of basic invariants, we define the
‘Chevalley’ mapping

P : Rn −→ Rn, P (x) =
(
p1(x), . . . , pn(x)

)
.

Glaeser’s theorem [9] shows that W -invariant functions of class C∞, may be ex-
pressed as C∞ functions of the basic invariants, and actually that the subalgebra
P ∗(C∞(Rn)) of composite mappings of the form F ◦P with F of class C∞, is closed
in C∞(Rn). In finite class of differentiability, the situation is not this simple. Let
h be the highest degree of the coordinate polynomials in P , equal to the greatest
Coxeter number of the irreducible components of W . In [4] it is shown that if a
function f ∈ Cr(Rn) is invariant by W , there exists an F of class [r/h], the integer
part of r/h, such that f = F ◦P . A general counterexample shows that this result is
the best possible. However if F is of class Cr, in general f = F ◦P is of class Cr and
not of class Chr. Here we study the algebra of composite mappings P ∗(Cr(Rn)).
The functions in this algebra induce jets in a Fréchet space which may be identified
with the space of functions of class Cr of the invariants. For this study, we need to
show first that the image set P (Rn) is Whitney 1-regular.

Definition 1.1. [15][13] A compact set K ⊂ Rn, connected by rectifiable arcs,
is Whitney 1-regular if the geodesic distance in K is equivalent to the Euclidean
distance: there exists kK > 0 such that for all (x, x′) ∈ K2, there exists a rectifiable
arc from x to x′ in K with length `(x, x′) ≤ kK |x− x′|.
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A closed set is Whitney 1-regular if it is a union of Whitney 1-regular compact sets.
The 1-regularity of P (Rn) which is of interest by itself, was conjectured in [4]

and already in [7]. By lack of a better reference we state and prove this property
in section 3, using the results in [7] and the results given in [10] for the symmetric
group that apply for any Coxeter group, mutatis mutandis

2. Whitney Functions and r-regular, m-continuous jets.

One may find a study of Whitney functions in [13], the notations of which will
be used freely.

A jet of order m ∈ N, on a locally closed set E ⊂ Rn is a collection A = (ak) k∈Nn

|k|≤m

of real valued functions ak continuous on E. At each point x ∈ E the jet A
determines a polynomial Ax(X), and we sometimes speak of continuous polynomial
fields instead of jets. As a function, Ax acts upon vectors x′ − x tangent to Rn at
x and we write somewhat inconsistently:

Ax : x′ 7→ Ax(x′) =
∑

k

1
k!

ak(x) (x′ − x)k.

The space Jm(E) of jets of order m on E is naturally provided with the Fréchet
topology induced by the family of semi-norms: |A|Kn

m = sup x∈Kn
|k|≤m

| 1
k!ak(x)|, where

Kn runs through a countable exhaustive collection of compact sets of E.
By formal derivation of A of order q ∈ Nn, |q| ≤ m, we get jets of the form
(aq+k)|k|≤m−|q| inducing polynomials

(DqA)x(x′) =
(

∂|q|A
∂xq

)

x

(x′) = aq(x) +
∑
k>q
|k|≤m

1
(k − q)!

ak(x) (x′ − x)k−q.

For 0 ≤ |q| ≤ r ≤ m, we put:

(RxA)q(x′) = (DqA)x′(x′)− (DqA)x(x′).

Definition 2.1. Let A be a jet of order m on E. For r ≤ m, A is r-regular on E,
if and only if for all compact set K in E, for (x, x′) ∈ K2, and for all q ∈ Nn with
|q| ≤ r, it satisfies the Whitney conditions.

(Wr
q ) (RxA)q(x′) = o(|x′ − x|r−|q|), when|x− x′| → 0.

Remark 2.2. If m > r there is no need to consider the truncated field Ar in stead
of A in the conditions (Wr

q ). Actually (RxAr)q(x′) and (RxA)q(x′) differ by a
sum of terms [ak(x)/(k − q)!] (x′ − x)k−q, with ak uniformly continuous on K and
|k| − |q| > r − |q|.

The space of r-regular jets of order m on E, is naturally provided with the
Fréchet topology defined by the family of semi-norms:

‖A‖Kn
r,m = |A|Kn

m + sup
(x,x′)∈K2

n
x6=x′, |k|≤r

( |(RxA)k(x′)|
|x− x′|r−|k|

)
.

This Fréchet space is denoted by Er,m(E).
If r = m, Er(E) is the space of Whitney fields of order r or Whitney functions

of class Cr on E. If E is open, Er(E) is the space of Taylor polynomial fields of
functions in Cr(E) and these two spaces may be identified.
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In general the norms ‖.‖K
r and |.|Kr are not equivalent on Er(K). Nevertheless,

Whitney showed:

Proposition 2.3. [15], [13] If K is 1-regular, the norms ‖.‖K
r and |.|Kr are equiv-

alent on Er(K).

Conversely, assuming that the compact K is connected by rectifiable arcs (or is
a finite union of sets connected by rectifiable arcs), Glaeser has proved :

Proposition 2.4. [8], [13] If the norms ‖.‖K
1 and |.|K1 are equivalent on E1(K),

then K is 1-regular.

For an example of functions in Er,m(E), let us consider the Chevalley polynomial
mapping P and the induced mapping

P ∗ : Er(P (Rn)) −→ Er(Rn), P ∗(F ) = F ◦ P.

For any (a, x) ∈ Rn ×Rn, by the Taylor formula for F between P (a) and P (x), we
have:
(2.1)

F [P (x)] = F [P (a)] +
∑

1≤|β|≤r

1
β!

DβF [P (a)] (P (x)− P (a))β + o(|P (x)− P (a)|r),

either by considering an extension of F to Er(Rn) by Whitney’s extension theorem
or by considering an integral Taylor’s remainder, along a integrable path satisfying
the inequality given by the 1-regularity property.

Expanding P (x)− P (a) by the polynomial Taylor formula we get a polynomial
in x− a of degree h. Hence for f = F ◦ P :

(2.2) f(x) = f(a) +
∑

1≤|α|≤hr

1
α!

fα(x) (x− a)α + o(|P (x)− P (a)|r).

On a compact K ⊂ Rn containing [a, x], there exists a constant CK such that
|P (x)− P (a)|r ≤ CK |x− a|r, and f ∈ Er,hr(Rn).

If f ∈ P ∗(Er(P (Rn))), it belongs to Er,hr(Rn), but the only partial derivatives
that will appear are those of order α = (α1, . . . , αn), |α| ≤ hr, that may be obtained
by the composition process with |β| ≤ r and degree of pi = ki.

About the countable exhaustive sequence of compact sets used to define the
topologies we may choose any such sequence of invariant compact sets Kn in Rn

and their images P (Kn) in P (Rn)) (or any such sequence of compact sets kn in
P (Rn) and their reciprocal image P−1(kn) that are W -invariant and compact since
P is proper).

Remark 2.5. If for some closed set E ⊂ Rn we consider the field of Taylor’s poly-
nomials of order r of f on E, say T r

Ef , its extension given by Whitney’s Theorem

[14] will not be in P ∗(Er(Rn)). It is the field f with fx =
∑

|k| ≤ hr

1
k!

ak(x) (x− a)k

that carries the information about the fact that f = P ∗(F ) and not the truncated
field fr.
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3. Whitney 1-Regularity of P (Rn).

In this section, we give a proof of Whitney 1-regularity of the image P (Rn) of
the Chevalley mapping associated with any finite reflection group. In [7], theorem
3.1 below was stated but lemma 3.2 was not proved for all Coxeter groups.

Since the 1-regularity is not altered by diffeomorphism, it does not depend on
the choice of coordinates. It does not depend on the choice of the set of basic
invariants either, since a change of basic invariants is an invertible polynomial map
on the target.

When W is reducible we may choose coordinates such that the Chevalley map P
is the product of the Chevalley maps P is associated with the irreducible components
W is of W acting on the subspaces Rni of Rn. If for each i, P i(Rni) is 1-regular,
so is P (Rn). As a consequence it is sufficient to prove the regularity when W is
irreducible and from now on in this section, we will assume W to be a finite Coxeter
group.

We will assume as we may that the degrees of the coordinate polynomials
p1, . . . , pn are in increasing order: 2 = k1 ≤ . . . ≤ kn = h.

Let R be the set of reflections different from identity in W . For each τ ∈ R, let
λτ be a linear form the kernel of which is the hyperplane Hτ = {x ∈ Rn|τ(x) = x}.
The jacobian of P is JP = c

∏
τ∈R λτ for some constant c 6= 0. The critical set is

the union of the Hτ when τ runs through R.

3.1. Strata of P (Rn) and minors of the jacobian. Let C be a Weyl Chamber,
a connected component of the regular set of P . There is a stratification of Rn by the
regular set

⋃
w∈W w(C), the reflecting hyperplanes Hτ and their intersections. The

mapping P induces an analytic diffeomorphism of C onto the interior of P (Rn) and
an homeomorphism that carries the stratification from the fundamental domain C̄
onto P (Rn). The walls of C̄ are contained in n hyperplanes (Hω)ω∈Ω, where Ω is a
subset of cardinal n in R.

A stratum S of dimension k in C̄ is the intersection of (n − k) of the Hω. The
λτ that are linear combinations of the λω vanishing on S will also vanish there, so
that p ≥ n− k hyperplanes Hτ , τ ∈ R will intersect along S.

The points in S have the same isotropy subgroup WS , generated by the reflections
in the p hyperplanes Hτ containing S. In a neighborhood of S, since P is WS

invariant we can write P = Q ◦ V , where Q is invertible and V is a Chevalley
mapping for WS .
We write WS = W 0×W 1×· · ·×W ` where W 0 is the identity on S and the W is are
the irreducible components of WS . If we choose coordinates fitted to the orthogonal
direct sum Rn = Rk ⊕ Rn1 ⊕ · · · ⊕ Rn` , we have V = Idk × V1 × · · · × V`.
The equation of an Hτ containing S depends of the xk+1, xk+2, . . . , xn but perhaps
not all of them. There is a partition among the xis, k + 1 ≤ i ≤ n and a corre-
sponding one among the λτ . Let r < s, xk+r and xk+s are equivalent if there is a
sequence (xk+`), k + r < k + ` < k + s and forms λτ such that any two consecutive
xk+` appear in the equation of a form λτ . Two forms λτ are equivalent if two
equivalent xk+r appear in their equations. In each class, the Hτ are the reflecting
hyperplanes of an irreducible component of WS .
The jacobian matrix JV is block diagonal. Let Ik, JV1 , . . . , JV`

be the diagonal
blocks, the determinants |JV1 |, . . . , |JV`

|, all vanish on S. The k × k minor in the
upper left corner is 1 but all the bordering (k + 1)× (k + 1) minors vanish on S.
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When restricted to a stratum S, P|S = Q ◦V|S is an analytic isomorphism on its
image and onto each of its projections on the spaces R`, k ≤ ` ≤ n−1. The closure
S̄ of S, is a fundamental domain for a subgroup of W generated by reflections in
hyperplanes that do not contain S, and Q is a polynomial mapping, invariant by
this subgroup. On S̄, P = Q is an homeomorphism onto P (S̄) and each of its
projections on the spaces R`.

3.2. The varieties P−1
k [Pk(x)]. We set Pk = (p1, p2, . . . , pk) : Rn → Rk, and

analogously Qk = (q1, q2, . . . , qk). We denote with Πk the image Pk(Rn).

Let mk ∈ Πk, then

P−1
k (mk) = {x ∈ Rn; p1(x) = m1, . . . , pk(x) = mk}

is a compact algebraic variety of co-dimension k.

Theorem 3.1. [7] For almost all mk, the intersection of a fundamental domain C̄
and P−1

k (mk) is either empty or contractible.

By Sard’s lemma, for almost all mk, the variety P−1
k (mk) is a non singular

manifold. Of course if mk is on the border of Πk, the variety is singular, but even if
mk belongs to the interior of Πk, it may be the image of both regular and singular
points.

Lemma 3.2. Let P−1
k (mk) be a non singular manifold. On this manifold, pk+1

is a Morse function with no critical point on the strata of positive dimension in
P−1

k (mk)∩ C̄. Its critical points are the zero dimensional strata of the intersection.

Proof. On the non critical manifold P−1
k (mk), there is a k × k minor of the

matrix ∂(p1, . . . , pk)/∂(x1, · · · , xn) that does not vanish. We may assume that it is
the principal minor ∂(p1, . . . , pk)/∂(x1, . . . , xk) which is not 0.

The critical points of pk+1 on P−1
k (mk) are the points where:

∂pk+1

∂xi
− λk

∂pk

∂xi
− . . .− λ1

∂p1

∂xi
= 0, for i = 1, . . . , n.

For this system to have solutions in λis, 1 ≤ i ≤ k, the (k + 1)× (k + 1) bordering
minors ∂(p1, . . . , pk, pk+1)/∂(x1, . . . , xk, xk+s), s = 1, . . . , n − k must all be zero.
Therefore the jacobian and all minors of order ≥ (k + 1) × (k + 1) are 0 and the
rank of P is k at such points. These points belong to strata S of dimension k in C̄.
The critical points are the points of intersection of P−1

k (mk) and strata S; they are
points of 0-dimensional strata in P−1

k (mk) ∩ C̄.
If P−1

k (mk) is not singular, strata of lower dimension do not intersect it since
on such a stratum all k × k minors vanish. On strata of dimension > k, one of the
(k + 1)× (k + 1) minors does not vanish and there may not be critical points.

Let us show that the critical points of pk+1 on P−1(mk) are non degenerate. At
a critical point

∂pk+1

∂xi
− λk

∂pk

∂xi
− . . .− λ1

∂p1

∂xi
=

∑

j

(∂qk+1

∂vj
− λk

∂qk

∂vj
− . . .− λ1

∂q1

∂vj

)(∂vj

∂xi

)
= 0.

When 1 ≤ i ≤ k, ∂vj/∂xi = 1 if i = j, and = 0 otherwise. The only terms
remaining in the sum are the (∂qk+1/∂vi−λk∂qk/∂vi− . . .−λ1∂q1/∂vi) and these
are 0.
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When k + 1 ≤ i ≤ n, ∂vj/∂xi = 0 either because vj does not depend on xi or is an
homogeneous polynomial of degree ≥ 2 that vanishes with its derivatives on S, but
the (∂qk+1/∂vi − λk∂qk/∂vi − . . .− λ1∂q1/∂vi) are not all 0, since Q is invertible.

Actually the vectors (∂P/∂x1, . . . , ∂P/∂xk) = (∂Q/∂x1, . . . , ∂Q/∂xk) define the
tangent plane to P (S) of dimension k. The ∂P/∂xs, k + 1 ≤ s ≤ n are linear
combinations of them, hence the vanishing of the bordering minors. The ∂Q/∂xs,
k + 1 ≤ s ≤ n, however, span the complement of the tangent space, and they are
linearly independent. As a consequence the minors of order ≥ k +1 in the jacobian
of Q do not vanish, and for i ≥ k+1, ∂qk+1/∂vi−λk∂qk/∂vi− . . .−λ1∂q1/∂vi 6= 0.

In restriction to the kernel of the first differential, which is the orthogonal of S,
in the quadratic differential

∂2pk+1

∂xi∂xj
− λk

∂2pk

∂xi∂xj
− . . .− λ1

∂2p1

∂xi∂xj

=
∑

r,s≥k+1

(
∂2qk+1

∂vr∂vs
− λk

∂2qk

∂vr∂vs
− . . .− λ1

∂2q1

∂vr∂vs
)(

∂vr

∂xi
)(

∂vs

∂xj
)

+
∑

r≥k+1

(
∂qk+1

∂vr
− λk

∂qk

∂vr
− . . .− λ1

∂q1

∂vr
)(

∂2vr

∂xi∂xj
)

the mixed derivatives are all 0 either because vj does not depend on xi or xj or is
an homogeneous polynomial of degree > 2 or a sum of squares of xis. For the same
reasons many terms in the pure derivatives also vanish, but some do not. In each
Vs : Rns → Rns , let v1

s be the first W s-invariant which is the sum of the squares
of the xi ∈ Rns . By the above remark, ∂qk+1/∂v1

s − λk∂qk/∂v1
s − . . .− λ1∂q1/∂v1

s

does not vanish, and for each xi ∈ Rns of which v1
s actually depends, we have

∂2v1
s/∂x2

i = 2, so that:

∂2pk+1

∂x2
i

− λk
∂2pk

∂x2
i

− . . .− λ1
∂2p1

∂x2
i

= 2(
∂qk+1

∂v1
s

− λk
∂qk

∂v1
s

− . . .− λ1
∂q1

∂v1
s

) 6= 0

Accordingly pk+1 = qk+1 ◦ V is a Morse function on P−1
k (mk).

Observe that for each irreducible component, the quadratic differential is definite
with the sign of ∂qk+1/∂v1

s − λk∂qk/∂v1
s − . . . − λ1∂q1/∂v1

s , but the sign may be
different for different irreducible components.
By the equivariant Morse lemma [2], in the neighborhood of a critical point at the
intersection of S and P−1

k (mk), pk+1 is WS-locally equivalent to a WS-invariant
quadratic form which is the direct sum of definite quadratic forms in each Rni . ¤
Lemma 3.3. [7] The reconstruction of the topology of a level set of a function on
Ra

+⊕Rb
+ in the neighborhood of the critical point 0⊕0 with the quadratic differential

Q+⊕Q− is trivial if a, b > 0 and consists of the birth (death) of a simplex otherwise.

Theorem 3.1 may now be proved by induction on k [7].

In particular, for almost all mk ∈ Πk, P−1
k (mk) ∩ C̄ is connected.

Corollary 3.4. Every variety P−1
k (mk) ∩ C̄, k = 1, . . . , n, is connected or empty.

The corollary may be be derived from 3.1, exactly as in [10]. Basically if mk is not
in the regular image, we have to consider two cases. First if for some j, 1 < j < k,
mj = (m1,m2, . . . , mj) belongs to the projection of a stratum of dimension less
than j but mk itself does not belong to the projection of any stratum of dimension
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less than k, then P−1
k (mk) is connected since almost all the P−1

k (nk) are, for nk

close enough to mk. Then there is the case when mk is on the projection of a
stratum of dimension less than k. For a given mk−1 this may happen but for a
finite number of mk. Since P−1

1 (m1) is connected, this case is taken care of by an
induction, using the following:

Lemma 3.5. [10] Let C be a connected compact set in Rn, and f a real valued
function continuous on C. If all but a finite number of the level sets of f in C are
connected, then they are all connected.

As a consequence, P (P−1
k (mk)) is connected or empty and in particular, we have:

Corollary 3.6. The fibres of the projections: Πk+1 → Πk are connected: they are
points or intervals.

3.3. End of the proof. Let us consider the lift-up (p1, . . . , pk) 7→ pk+1 of the
projection Pk(S) ⊂ Πk of a stratum of dimension k. The derivatives are obtained
by solving the system:

∂pk+1

∂xi
=

k∑

j=1

∂pk+1

∂pj

∂pj

∂xi
, i = 1, . . . , k

by Cramer’s method. Considering the subgroup of W generated by the reflections
in the hyperplanes that do not contain S, for j = 1, . . . , k the ∂pk+1/∂pj , are
quotients of two polynomials anti-invariant by this subgroup. So, they are rational
fractions the numerator and the denominator of which are invariant homogeneous
polynomials that do not vanish but at the origin. Since the degree of the numerator
is greater than the degree of the denominator the rational fractions have continuous
extensions on S̄.
If we restrict ourselves to some compact subset K of P (Rn), determined for instance
by p1 ≤ a, a > 0, the xis and as a consequence the ∂pk+1/∂pj , j = 1, . . . , k are
bounded on S ∩K.
P is an homeomorphism of S̄ onto its image P (S̄), and so is Pk (on any compact
it is continuous and one to one). Hence pk+1 which is continuous with respect to
the variables (x1, . . . , xk) on S̄, is also continuous in the variables (p1, . . . , pk) on
Pk(S̄) and moreover by the previous paragraph it is Lipschitz.

The border of Πk+1 is contained in the images Pk+1(S̄) of closed strata of di-
mension k. These images are graphs of functions pk+1 on Pk(S̄). By 3.6, the graph
of one of the pk+1, say pmax

k+1, is above the others and another, say the graph of
pmin

k+1, is below the others. In Πk, the images of the closure of strata of dimension k
will intersect along the images of strata of lesser dimension. Above such points of
intersection the mapping pmax

k+1 (resp. pmin
k+1) may and will change but globally pmax

k+1

(resp. pmin
k+1) will still be continuous and Lipschitz since the functions above the

two strata are glued by their common value above the stratum of lesser dimension
along which they intersect.

Now, it would be easy to give for any two points A and B in a compact K ⊂
P (Rn), the construction of a continuous arc AB ⊂ K of length `(AB) ≤ kK |AB|,
following the method in [10] and already in [3]. This kind of construction justifies
the statement in [1]: the prism between graphs of Lipschitz functions over a Whitney
1-regular domain is Whitney 1-regular.
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Π1 is Whitney 1-regular. By induction, assuming Πk to be Whitney 1-regular,
the prism Πk+1 over it and between the graphs of the Lipschitz functions pmin

k+1 and
pmax

k+1 will also be Whitney 1-regular. Hence all the Πk and in particular Πn = P (Rn)
are Whitney 1-regular and we can state:

Theorem 3.7. The image of the Chevalley mapping P (Rn) is Whitney 1-regular.

Corollary 3.8. On Er(P (Rn)) the semi-norms ‖.‖K
r and |.|Kr are equivalent.

4. P ∗(Er(P (Rn))) is a closed subalgebra of Er,hr(Rn)

Besides a geometric property of P (Rn) which is of interest by itself, Whitney 1-
regularity plays a part when studying the algebras of composite mappings invariant
by reflection groups in finite class of differentiability.

In [4] we had already noticed that even though the proof would be basically the
same, the 1-regularity would make it simpler because the continuity on P (Rn) of
the field F of class Cr on the interior of P (Rn) would bring its r-regularity without
any need of an extension to P−1(Rn).

Here we are interested in P ∗(Er(P (Rn))). Let us begin with a lemma.

Definition 4.1. We say that f ∈ Jhr(Rn) pointwise belongs to P ∗(Jr(P (Rn))), if
for each x there exists an F ∈ Jr(P (Rn)) such that fx = (F ◦ P )x.

This means that for each x ∈ Rn, the polynomial fx(X) is W -invariant. Of
course it is necessary that f be W -invariant but it is not sufficient.

Lemma 4.2. If f ∈ Jhr(Rn) pointwise belongs to P ∗(Jr(P (Rn))), and we write
f = F ◦ P , then for 0 ≤ |β| ≤ r, Fβ ◦ P (x) is a linear combination of some
fα(x), 0 ≤ |α| ≤ hr. In particular the Fβ are continuous, F ∈ Jr(P (Rn))) and
f ∈ P ∗(Jr(P (Rn))).

Clearly f0(x) = F0(P (x)).
By induction, let us first assume r = 1. We identify

fx(x′) = f0(x) +
∑

1≤|α|≤h

1
α!

fα(x)(x′1 − x1)α1 ...(x′` − x`)αl , with

fx(x′) = F0(P (x)) +
l∑
1

Fi ◦ P (x)(
ki∑

|α|=1

1
α!

∂|α|pi

∂xα(x)
(x′ − x)α)

where Fi stands for Fβ , βi = 1, βj = 0 if i 6= j.
For | α |= ki, α1 ≥ α2 ≥ ... ≥ αn, we get:

(4.1) fα = Fi ◦ P
∂kipi

∂xα
+

∑

s>i

Fs ◦ P
∂kips

∂xα
.

In particular for α with | α |= h, α1 ≥ α2 ≥ ... ≥ αn, we have:

fα = Fn ◦ P
∂hpn

∂xα
,

and since pn is of degree h, there is a ∂hpn/∂xα which is not 0. Hence the result
for Fn.
Solving the equations (4.1) in succession gives the result for the Fi ◦P, i = 1, ..., n.
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For more explicit computations, observe that if W is reducible, it would be
sufficient to study each irreducible component in each subspace Rni and gather
the results at the end. For an irreducible component, we may use the polynomial
invariants given in [11]. Disregarding Dn for a while, for all the other groups
the ki are distinct and there is an invariant set of real linear forms {L1, . . . , Lv}
such that their symmetric functions

∑v
i=1 Lk

i are W -invariant, and we may take
pi(X) =

∑v
j=1[Lj(X)]ki with ki as determined in [6]. At least one of the Lj(X)

contains a monomial in X1, bringing in pi(X) a monomial in Xki
1 that cannot be

canceled since the ki are all even, with 2 exceptions: An and I2(p). For I2(p) we
may choose p1(X) = X2

1 +X2
2 and p2(X) =

∑p
i=1(X1 cos 2iθ+X2 sin 2iθ)p in which

the coefficient of Xp
1 is

∑p
i=1(cos 2iθ)p 6= 0. For An we may take Li(X) = Xi, i =

1, . . . , n + 1 and there is no possible cancelation either.
Finally, for Dn we can choose as basic invariant polynomials pj(x) =

∑n
i=1 x2j

i ,
j = 1, . . . , n − 1 and pn(x) = x1x2 . . . xn. We may use the above method when
1 ≤ j ≤ n− 1, and consider ∂npn/∂x1 . . . ∂xn = 1 to get the continuity of F̃n ◦ P .

Anyway ∂knpn/∂xkn
1 = kn!cn for some coefficient cn 6= 0, while for j < n,

∂knpj/∂xkn
1 = 0, since the greatest exponent of x1 in pj(x) is kj < kn.

The identification shows that cnFn ◦ P (x) = (1/kn!)fkn,0,...,0(x) with cn 6= 0.
Assuming that when s > i, the Fs ◦P are linear combinations of fα, |α| ≤ h, since
pi(x) contains a monomial in xki

1 , we have ∂kipi/∂xki
1 = ki!ci for some coefficient

ci 6= 0, while as above for j < i, ∂kipj/∂xki
1 = 0. The identification now gives:

(1/ki!)fki,0,...,0 = ciFi ◦ P +
∑

s>i Fs ◦ P (1/ki!) ∂kips/∂xki
1 .

By using the induction assumption we get the result for Fi ◦ P , and by decreasing
induction for all the Fj ◦ P, j = 1, . . . , n.

Let us assume that the lemma is true when r ≤ k. When |β| = k, Fβ ◦ P is
a linear combination of some fαs with |α| ≤ hk. By using the basis step of the
induction for the function g(x) = Fβ ◦P (x) = G ◦P (x), we get that the Gi ◦P are
linear combinations of gα, |α| ≤ h and using the induction assumption for g we get
that for |γ| = k + 1, Fγ ◦P is a linear combination of fαs with |α| ≤ h(k + 1). This
achieves the induction and the proof of first part of the lemma.

Since f ∈ Jhr(Rn), the fα, |α| ≤ hr are continuous. Hence the Fβ ◦ P are also
continuous for |β| ≤ r and since P is proper, the Fβ themselves are continuous, so
that F ∈ Jr(P (Rn)). ¤

From the lemma, we get at once that there exists a numerical constant CK that
depends only on K and W , such that |F |P (K)

r ≤ CK |f |Khr. Then, by using the
1-regularity there is a constant C1

K such that ‖F‖P (K)
r ≤ C1

K |f |Khr.
Let us consider a function of class Cr of the polynomial invariants. In terms of

the variables x it is a function in P ∗(Er(P (Rn)).
The algebra homomorphism:

P ∗ : Er(P (Rn) −→ Er,rh(Rn), P ∗(F ) = F ◦ P,

is injective and surjective onto its image. From (2.1) and (2.2) we see that a
‘truncated’ Faa di Bruno formula applies and |f |Krh ≤ C2

K |F |P (K)
r for some constant

C2
K that depends on the compact K, a fortiori |f |Krh ≤ C2

K‖F‖P (K)
r , and the linear

mapping P ∗ is continuous. (Observe that we didn’t use the Whitney 1-regularity).

Theorem 4.3. P ∗(Er(P (Rn)) is closed in Er,rh(Rn). P ∗ is an isomorphism of
Fréchet space from Er(P (Rn) onto its image.
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Let (fn)n∈N be a Cauchy sequence in P ∗(Er(P (Rn)). This sequence converges
in Er,rh(Rn). For each n there exists an Fn ∈ Er(P (Rn) such that fn = Fn ◦ P ,
and since ‖F‖r

P (K) ≤ C1
K |f |hr

K , the sequence (Fn)n∈N is a Cauchy sequence for
the topology defined by the semi-norms ‖F‖r

P (K). Hence (Fn)n∈N converges to an
F ∈ Er(P (Rn). If we take the limit in fn = Fn ◦ P we see that f = F ◦ P is also
in P ∗(Er(P (Rn)). So P ∗(Er(P (Rn)) is closed in the Fréchet space Er,rh(Rn) and
then a Fréchet space itself.

We have noticed that P ∗ is injective, surjective onto its image and continuous.
Since its image is a Fréchet space, by Banach theorem, P ∗ is an isomorphism
between its source and its image.

This means that P ∗ identifies the space of functions of class Cr of the invariant
polynomials (by [14], a function in Er(P (Rn) has an extension to Cr(Rn)) and a
Fréchet subspace of W -invariant functions in Cr(Rn)W .

Proposition 4.4. P ∗(Er(P (Rn)) is closed in Er,rh(Rn) if and only if P (Rn) is
Whitney 1-regular.

Let us assume that P ∗(Er(P (Rn)) is closed and consider a sequence (Fn)n∈N in
E1(P (Rn), which is Cauchy for the topology induced by the semi-norms | |P (K)

1 .
The sequence (fn = Fn ◦P )n∈N in P ∗(E1(P (Rn)) ⊂ E1,h(Rn) which is also Cauchy
by Faa di Bruno’s formula, converges to an f in P ∗(E1(P (Rn)) which is closed
by assumption. As a consequence, the limit F of (Fn)n∈N with f = F ◦ P is in
E1(P (Rn). Thus E1(P (Rn)) is complete for the topology induced by the semi-norms
| |P (K)

1 and the Banach isomorphism theorem shows that this topology is equivalent
to the topology induced by the semi-norms ‖ ‖P (K)

1 . Glaeser’s proposition 2.4 then
shows that P (Rn) is Whitney 1-regular.

Remark 4.5. Finally, one might wish to prove the 1-regularity of P (Rn) by us-
ing Glaeser’s proposition 2.4. By Banach theorem, we just have to prove that
E1(P (Rn)) is complete for the topology induced by the semi-norms | |P (K)

1 . So
we consider a sequence (Fn)n∈N ⊂ E1(P (Rn) which is Cauchy for the topology
induced by the semi-norms | |P (K)

1 . The sequence (fn = Fn ◦ P )n∈N is Cauchy in
E1,h(Rn) since as we already noticed |f |Kh ≤ C2

K |F |P (K)
1 , hence (fn) converges to

an f ∈ E1,h(Rn), which is of the form F ◦ P with F = limn Fn.
f induces a formally holomorphic jet still denoted by f ∈ H1,h(Rn) (see [13]

and [4]). If there was an extension f̃ to H1,h(P−1(Rn)) of the form f̃ = F̃ ◦ P , F̃
might be identified with F on P (Rn), would be of class C1 on the regular image of
P in Rn, and 1-continuous everywhere by 4.2. Conclusion, since the critical image
is contained in the null set of the discriminant polynomial, F̃ which is continuous
everywhere and of class C1 when the discriminant does not vanish, would be of class
C1 everywhere in Rn, and in particular F ∈ E1(P (Rn)). Unfortunately, no such
extension is available. As mentioned above, Whitney’s extension does not take into
account the part of jet f beyond degree r. It is possible to provide a linear and
continuous version of ÃLojasiewicz extension operator (see [13]) that would give an
f̃ ∈ H1,h(P−1(Rn)), but it is not an algebra isomorphism and f̃ would not be of
the form F̃ ◦ P with a F̃ of degree 1 and lemma 4.2 would not apply.
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