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Abstract  The present work aims the vibration and parametric instability of functionally graded material 
rectangular plates with simply supported boundary condition, subjected to a biaxial in-plane periodic loading. First 
order shear deformation theory is used for theoretical formulation of FGM plates. The properties of the functionally 
graded material plates are assumed to vary along the thickness direction according to a power law distribution in 
terms of the volume fractions of the constituents. Hamilton’s principle is employed to convert the governing 
equations into a linear system of Mathieu–Hill equations from which the boundary of stable and unstable regions are 
determined by using Floquet’s theory on the parameter space. Natural frequency and buckling analysis are also 
discussed. Numerical results are presented in both dimensionless parameters and graphical forms for FGM plates 
made of steel and alumina. The influences of various parameters such as index value, aspect ratio on the buckling 
load and natural frequencies are examined. Power law index value and aspect ratio effects on the dynamic stability 
regions also studied in detail. 
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1. Introduction 
Functionally graded materials (FGM) are designed in 

such way to overcome the demerits of ordinary materials. 
It is so called as FGM because the properties changes as 
thickness changes which is not observed in ordinary 
materials. These materials have many advantages such as 
high resistance to temperature gradients, high wear 
resistance, reduction in residual and thermal stresses, and 
an increase in strength to weight ratio because of these 
inherent properties stability is also increases. Due to the 
outstanding properties of Functionally graded materials 
(FGMs) are used in many engineering applications such as 
the aerospace, aircraft, automobile, defence, biomedical 
and electronic industries. Many structural components can 
be modelled as plates like structural. Plate like structures 
are often subjected to various types of dynamic loads, 
among which the periodically in-plane time-varying force 
may cause dynamic instability, in which there is an 
unbounded exponential built up of the response. In 
practice the dynamic loads are dependent on time and may 
change their direction. It is enormous practical importance 
to clarify the dynamic stability of dynamic systems under 
periodic loads. Therefore, a broad understanding of the 
dynamic stability characteristics of structural materials in 
periodic loading environments is a matter of important 
weight for the design of the structural failure. 

FGMs are made of a ceramic and a metal in such a way 
that the ceramic can resist the thermal loading from the 
high temperature environment. The material properties of 
FGMs vary continuously from one surface to the other 
surface, this results in eliminating surface problems of 
composite materials and achieving the smooth stress 
distribution. Theoretical modelling and analysis of FGM 
plates has become important topic to discussion at the 
present stage. The classical laminated plate theory has 
become the most widespread engineering application, a lot 
of articles about FGM plates and shells based on the 
classical laminated plate theory were reported. The recent 
advancement in the characterization, modelling and 
analysis of FGM has been reviewed Victor Birman and 
Larry [1] in this work focussed on research published 
since 2000. Due to the broad and rapidly developing field 
to various aspects of theory and applications of FGM are 
reflected in this effort. They reflect some of the 
observations of the authors based on the published 
research and their own analysis of the subject on FGM. 
The physical neutral surface and geometric middle surface 
are the same in homogenous symmetrical plates. The 
concept of neutral surface was derived based on the 
classical nonlinear plate theory for the FGM plates by Da-
Guang and You-He [2]. Theoretical formulation and finite 
element modals for functionally graded plates based on 
the third-order shear deformation theory presented by 
Reddy [3]. In this the finite element model that accounts for 
the thermo mechanical coupling and geometric non-linearity.  
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Free vibration analysis of FGM rectangular plates has 
been numerically performed by number of researchers. 
Zhao X. et al. [4] have studied a method for analyzing the 
free vibration of FGPs with arbitrary boundary conditions 
using the element-free kp-Ritz method. In their analysis a 
mesh-free kernel particle functions ware used to 
approximate the two-dimensional displacement fields. 
Refined two-dimensional shear deformation theory 
investigated by Fares et al. [5] for orthotropic FG Plates. 
For obtaining this theory a modified version of the mixed 
variational principle of Reissner was used. This theory 
does not require any shear correction factor. An exact 
analytical solution was developed by Hasani Baferani et al. 
[6] for free vibration analysis of thin FG rectangular plates 
by using the classical plate theory. In their analysis the 
effects of in-plane displacement on the vibration of FG 
rectangular plates are studied and also a closed-form 
solution for finding the natural frequency of FG simply 
supported rectangular plates. A 2-D higher-order theory is 
developed by Hiroyuki [7] for analyzing natural 
frequencies and buckling stresses of FG plates. Here the 
Hamilton’s principle was used for dynamic analysis of a 
two-dimensional (2-D) higher-order theory for rectangular 
functionally graded (FG) plates. A finite element method 
(FEM) of B-spline wavelet on the interval (BSWI) was 
used to solve the free vibration and buckling analysis of 
plates by Zhibo Yang et al. [8]. In their analysis BSWI 
functions are considered for Structural analysis, the 
proposed method can obtained a fast convergence and a 
satisfying numerical accuracy with fewer degrees of 
freedoms (DOF). Serge [9] performing a direct analysis 
for natural frequencies of FG plates can be easily 
calculated from those known isotropic material results. 
Senthil and Batra [10] investigated an exact solution for 
the vibration of simply supported rectangular thick plates. 
They assumed that the plate is made of an isotropic 
material with material properties varying in the thickness 
direction only. 

Hosseini Sh et al. [11] proposed a new exact closed-
form approach for free vibration analysis of thick 
rectangular FG plates based on the third-order shear 
deformation theory of Reddy. In their analysis Hamilton’s 
principle was used to extract the equations of dynamic 
equilibrium and natural boundary conditions of the plate. 
Mohammad and Singh [12] presented a higher order shear 
deformation theory with special modifications in the 
transverse displacement which contributes additional 
freedom to the displacements through the thickness and 
eliminates the over-correction. A meshless method was 
introduced by Ferreira et al. [13] for free vibration 
analysis of functionally graded plates with multiquadric 
radial basis functions to approximate the trial solution. 
The free vibration analysis of functionally graded material 
plates without enforcing zero transverse shear stress 
conditions on the top and bottom surfaces of the plate 
using higher order displacement model was presented by 
Suresh Kumar et al. [14]. Talha and Singh [15] studied the 
free vibration and static analysis of functionally graded 
material (FGM) plates using higher order shear 
deformation theory with special changes in the transverse 
displacement in conjunction with finite element models. In 
this the mechanical properties of the plate are assumed to 
vary continuously along the thickness direction by power-

law distribution in terms of the volume fractions of the 
constituents. 

In the past the stability analysis problems of 
functionally graded material plates have been dealt by 
some of the researchers. Buckling behaviour of simply 
supported functionally graded material (FGM) plates 
under constant and linearly varying in-plane compressive 
loads was investigated by Rohit and Maiti [16]. In their 
analysis the effect of shear deformation was studied using 
third order shear deformation theory and first order shear 
deformation theory. They concluded the influence of 
transverse shear on buckling loads is almost similar for all 
types of FGMs. Xinwei et al. [17] obtained the buckling 
analysis of thin rectangular plates with cosine-distributed 
load along two opposite plate edges, it was considerably 
complicated. They followed the first the plane elasticity 
problem to solve the distribution of in-plane stresses and 
then the buckling problem. Mokhtar et al. [18] 
investigated the Buckling analysis of rectangular thin 
functionally graded plates under uniaxial and biaxial 
compression by using classic plate theory and Navier’s 
solution. Andrzej [19] studied the parametric vibrations or 
dynamic stability of functionally graded rectangular plate 
described by geometrically nonlinear partial differential 
equations using the direct Liapunov method. In their 
analysis an oscillating temperature causes generation of 
in-plane time-dependent forces destabilizing plane state of 
the plate equilibrium. Review on free, forced vibration 
analysis and dynamic stability of ordinary and 
functionally grade material plates presented by Ramu and 
Mohanty [20,21]. Finite element method for functionally 
graded material thick plates discussed by Lucia and Paolo 
[22]. Ng et al. [23] found the parametric resonance or 
dynamic stability of functionally graded cylindrical shells 
under periodic axial loading, by using Bolotin’s [24] first 
approximation. In their work motivated by the increased 
general use of functionally graded materials and also need 
to understand their dynamic responses. Rath and Dash [25] 
studied the parametric instability of woven fiber laminated 
composite plates under in-plane periodic loadings in 
hygrothermal environment.  

The paper conducts the vibration and parametric 
instability of functionally grade material plates under in-
plane time-varying pulsating force. Four node rectangular 
elements are used for modelled as the FGM plate by using 
finite element method. Hamilton’s principle is employed 
to convert the governing equations into a linear system of 
Mathieu–Hill equations from which the boundary of stable 
and unstable regions are determined by using Floquet’s 
theory. For this analysis steel and alumina materials are 
used to make the FGM plate. Free vibration and static 
stability analysis are also discussed as parting problems. 
Numerical analyses are presented in both dimensionless 
parameters and graphical forms. The influences of various 
parameters on parametric instability of FGM plate studied 
in detail. 

2. Methodology 

2.1. Formulation of the problem  
The FGM plate is of uniform rectangular cross-section 

having a length L, width W and thickness h. The plate is 
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subjected to a pulsating axial force, acting along its axial 
axis. Ω is the excitation frequency of the dynamic load 
component, Ps is the static and Pt is the amplitude of the 
time dependent component of the load. A typical FGM 
plate subjected to in plane biaxial in plane dynamic loads 
as show in Figure 1. 

 

Figure 1. FGM plate subjected to in plane biaxial in plane dynamic loads 

2.2. Functionally Graded Material Plates 
The extensive use of plates the various types of 

functionally graded material plates was considerable 
interests to many researchers in the field of modelling, 
analysis and design of these structures. Accurate 
prediction of structural response characteristics is a 
demanding problem for the analysis of functionally graded 
materials due to the anisotropic structural behaviour and 
the presence of various types of complicated constituents. 
This is possible because the material composition of an 
FGM changes gradually through-the-thickness. The 
graphical representation Vc and Vm (volume fraction of 
ceramic and metal) of FGM through along the thickness 
direction of the specimen.  

2.3. The Simple Power Law 
More common in the analysis for functionally graded 

materials with two constituent materials the variations 
through the thickness of material properties P can be 
expressed as  

 ( ) ( ) ( )m c m cP z P P P V z= + − ×  (1) 

Here P can represent Young's modulus E, Poisson ratio μ, 
and the mass density ρ, and Vc (z) is the volume fraction 
variation of the ceramic material, and it is assumed to 
follow a simple power-law distribution as 

 ( )1 2 n
cV z h= +  (2) 

Where -h/ 2≤ z ≤ h/ 2 is coordinate through the thickness 
from the middle surface to ceramic and metal sides, and n 
is a gradient index. Working range of design requirements 
in this case is based on a grading indexed.  

 

Figure 2. Geometry of the FGM plate 
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Figure 3. Variation of young’s modulus along the thickness of the FGM 
plate 

2.4. Physical Neutral Surface of the FGM 
Plate 

In the present work neutral axis concept has been 
employed for analysis. For a FGM plate due to the 
variation of the material properties along thickness, the 
neutral plane does not coincide with the geometrical mid-
plane of the plane shown in Figure 2. The distance of the 
neutral surface (d) from the geometric mid-surface may be 
expressed as 
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2.5. Kinematics 
Plate structures made of functionally graded materials 

are characterized by first order shear deformation theory 
so that the extension of the classical model suggested by 
(Reissner and Mindlin 2004) to the case of graded 
material plates provides a good compromise between 
numerical accuracy and computational load. In-plane 
displacements u and v and the normal displacement w are 
therefore given the form: 

 
( ) ( )
( ) ( )
( ) ( )

, , , ,

, , , ,

, , ,

x

y

u x y z z x y

v x y z z x y

w x y z w x y

θ

θ

=

=

=

 (4) 

where xθ and yθ are the rotations of the normal to the 
undeformed middle surface in the x–z and y–z planes, 
respectively.  

 
Figure 4. Plate structure before and after deformation 
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In-plane and out-of-plane strain-displacement 
constitutive law relations may written as 
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 (5) 

The normal stress-strain and shear stress-strain 
relationships of the functionally graded plate in the global 
x-y coordinates system can be written as 
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whereas grading matrices D and S are defined as 
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Moments and shear forces are obtained via standard 
integration over the thickness, i.e. 
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2.6. Energy equations  

The potential strain energy ( )eU  of the plate can be 
written in terms of the stress resultants and strain 
components through integrating by parts with respect to 
coordinates as follows 

 
( )

( )x y y xy xy

1
2

e T

v
e

x

U dv

U dxdydz

ε σ

σ δε σ δε τ δγ

=

= + +

∫∫∫

∫∫∫
 (8) 

The kinetic energy of the plate follows as  

 ( )
2.1

2
e

A
V h w dAρ= ∫∫  (9) 

Work done by in plane loading of plate is 

  
221 1

2 2e x y
A A

w wW N dA N dA
x y

 ∂ ∂ = +   ∂ ∂   
∫ ∫  (10) 

where Nx and Ny are the in-plane compression loads. 

2.7. FE formulation of a 4-noded Rectangular 
Element 

Rectangular four node element is having one node at 
each corner as shown in Figure 5. There are three degrees 
of freedom at each node, the displacement component 
along the thickness (w), and two rotations along X and Y 
directions in terms of the (x, y) coordinates (Ramu I and 
Mohanty S C 2012). The element consists of four nodes 1, 
2, 3 and 4 with w, θx and θy as the w is the transverse 
displacement and θx and θy represents the rotations about x 
and y axis. 

 , ,x xz y yz
w ww
x y

θ γ θ γ∂ ∂
= − = −
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 (11) 

 

Figure 5. Geometry of the rectangular element 
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Here [ ],e i i
i yx

w w θ θ=  Ni displacement vector and 

the appropriate shape functions, n number of nodes in the 
element.  

The element stiffness matrix, geometric stiffness and 
mass matrices are derived on the basis of principle of 
minimum potential, kinetic energy and work done.  

The element stiffness matrix is derived as 

 [ ] [ ] [ ][ ]T
ek B D B dv= ∫∫∫  (13) 
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Element mass matrix is derived as  

 [ ] [ ] [ ]T
eM N N dvρ= ∫∫∫  (14) 

The element geometric stiffness matrix is derived as 
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3. Governing Equations of Motion 
The element equation of motion for a plate subjected to 

axial force is obtained by using Hamilton’s principle. 

 ( )
2

1

0
t

t
U V W dtδ − + =∫  (16) 

By dividing the plate in to number of elements and 
assembling the element matrices, the potential energy and 
the kinetic energy for element can be written in terms of 
global displacement vector as 
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Here { } { }e eq w=  

 ( ) ( ){ } ( ) ( ){ }. .1
2

Te e e eV q M q =   
 (18) 

The equation of motion of plate element in matrix form 
for the axially loaded discretised system is obtained as 
follows  

 ( ) { } ( ) { } ( ) ( ) { }.. 0e e e
s gM q K q P t K q     + − =          

 (19) 

The governing equation of motion of plate in terms of 
global displacement matrix obtained as follows  

 [ ]{ } [ ]{ } ( ) { }.. 0s gM q K q P t K q + − =   (20) 

Here [ ] [ ],sK M  and gK    are global stiffness, global 

mass and geometric stiffness matrix respectively. 
Where sP  is the static and tP  the amplitude of time 

dependent component of the load, can be represented as 
function of fundamental static buckling load crP  of the plate 
and having all sides simply supported boundary conditions. 
Hence substituting, ( ) coscr crP t P P tα β= + Ω  with α  
and β  are called static and dynamic load factors 
respectively 
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Where g s
K    and g t

K    reflect the influence of sp  

and tp respectively. If the static and time dependent 
components of the load are applied in the same manner then,  

 g g gt s
K K K     = =       

3.1. Parametric Instability Regions 

From the above equation (21) represents a system of 
second order differential equations with periodic 
coefficients the Mathieu-Hill type. From the theory of 
Mathieu function is evident that the nature of solution is 
dependent on the choice of load frequency and load 
amplitude. The frequency amplitude domain is divided in 
two regions, which give raise to stable solutions and to 
regions, which cause unstable solutions. According to the 
Floquet’s theory the periodic solutions characterize the 
boundary conditions between the dynamic stability and 
instability zones. So the periodic solution can be 
expressed as Fourier series. 

A solution with period 2T is represented by: 
The boundaries of the principal instability regions with 

period 2T are of practical importance. 

 ( ) { } { }
1,3,..

sin cos
2 2k k

k

k t k tq t c d
∝

=

Ω Ω = +  
∑  (22) 

If the series expansions of eq. (22), term wise 
comparisons of the sine and cosine coefficients will give 
infinite system of homogeneous algebraic equations for 
the vectors { }kc  and { }kd  for the solutions on the 
stability borders. Non-trivial solutions exist if the 
determinant of the coefficient matrices of these equation 
systems of infinite order vanishes.  

Substituting the first order (k=1) Fourier series 
expansion of eq. (22) in eq. (21) and comparing the 

coefficients of cos
2
tΩ  and sin

2
tΩ  terms, the condition 

for existence of these boundary solutions with period 2T is 
given by 

 [ ] [ ] { }
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0
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 Ω   − ± × − =       
 (23) 

The above equation represents an eigenvalue problem 
for known values of β  and crp . This equation gives two 
sets of eigenvalues Ω  bounding the regions of stability 
due to the presence of plus and minus sign. The instability 
boundaries can be determined from the solution of the 
equation. 

 [ ] [ ] { }
2

0
2 4

cr
s gK P K M qβα Ω   − ± × − =    

 (24) 

Also the equation represents the solution to a number of 
related problems 

(1) For natural frequencies:  

 0, 0 .
2

andα β ω Ω
= = =  

The equation becomes  

 [ ] [ ]( ){ }2 0sK M qω− =  (25) 

(2) For static stability or buckling analysis: 

 1, 0 0andα β ω= = =  

The equation becomes 

 [ ]( ){ } 0cr
s gK P K q − × =   (26) 
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(3) For dynamic instability, when all terms are present 
Let 

  1
1

ω
ω
 Ω

Ω = × 
 

 

Where the 1ω is the fundamental frequency of the plate 
having the different boundary conditions, equation then 
becomes 
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ωβα ψ

ψ
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=  
 

 (27) 

The region of parametric instability can be determined 
by using equation (27). 

4. Results and Discussions  

4.1. Validation of Results  
The results for FGM plate free vibration and buckling 

analysis obtained by applying first order shear 
deformation theory in this study are compared by the ref. 

results Talha & Singh [15]. The natural frequencies are 
obtained by considering a combination of Al/ZrO2 and 
SUS304/Si3N4 where the top surface is ceramic rich and 
the bottom surface is metal rich. In according to the ϖ  
the dimensionless frequency parameter from Talha & 
Singh [15] is:  

 ( ) ( )2 2 2 4 212 1 c cL W E hϖ ω ϑ ρ π= × × − × × ×  

where Ec and ρc are young’s modulus and density of 
ceramic material. Validation has been done by considering 
the values of thickness, length, width, Poisson’s ratio, 
density and young’s modulus in the ceramic and metal as:  

Al, ρ=2702kg/m3, E=70×109Pa, ϑ =0.3 

ZrO2, ρ=3,000kg/m3, E=151×109Pa, ϑ =0.3 
SUS304, ρ=8,166kg/m3, E=207.78×109Pa, ϑ=0.3177 
Si3N4, ρ=2,370kg/m3, E=322.27×109Pa, ϑ=0.24 
Table 1 and 2 shows the natural frequency parameter 

obtained from the present study using first order shear 
deformation theory and Talha & Singh [15]. There is a 
good matching between the presented results and those 
from ref. [15], particularly for simply supported case. 
There is less difference between the results predicted by 
first order shear deformation theory and higher order 
theories.  

Table 1. Variation of the frequency parameter (ϖ) with the volume fraction index n for (CCCC) square (Al/Al2O3 FGM plates (a/h = 10) 
 Ceramic n=0.5 n=1 n=5 

S.N. Ref.[15] Present Ref.[15] Present Ref.[15] Present Ref.[15] Present 

1 3.41 3.46 3.089 3.11 2.94 2.88 2.71 2.25 

2 6.70 6.68 6.078 5.99 5.78 5.55 5.29 4.33 

3 6.70 6.68 6.078 5.99 5.78 5.55 5.29 4.33 

4 9.46 9.28 8.593 8.33 8.17 7.72 7.44 6.02 

5 11.6 11.2 10.57 10.0 10.0 9.34 9.11 7.29 

Table 2. Variation of the frequency parameter (ϖ) with the volume fraction index n for (SSSS) square (Al/Al2O3FGM plates (a/h = 10) 
 Ceramic n=0.5 n=1 n=5 

S.N. Ref.[15] Present Ref.[15] Present Ref.[15] Present Ref.[15] Present 

1 1.93 1.96 1.75 1.76 1.685 1.63 1.569 1.27 

2 4.72 4.75 4.26 4.26 4.060 3.95 3.765 3.08 

3 4.72 4.75 4.26 4.26 4.060 3.95 3.765 3.08 

4 7.27 7.24 6.58 6.50 6.275 6.02 5.786 4.70 

5 9.11 9.00 8.27 8.07 7.876 7.48 7.049 5.84 

Table 3. Comparison of the critical buckling load (MN/m) for a 
FGM plate (L = 1, h = 0.01) 

Index value n L/W 
Uniaxial compression Biaxial compression 

Ref [18] Present Ref [18] Present 

n=0 

0.5 2.14655 2.1375 1.71724 1.71621 

1 1.37379 1.3673 0.686896 0.68366 

1.5 1.61230 1.4824 0.49609 0.49288 

n=1 

0.5 1.06993 1.0654 0.85594 0.85233 

1 0.68475 0.68293 0.34238 0.33879 

1.5 0.80363 0.74048 0.24727 0.24567 

n=2 

0.5 0.83488 0.83136 0.66791 0.66509 

1 0.53433 0.5329 0.26716 0.26437 

1.5 0.62709 0. 57781 0.19295 0.19176 

FGM plate buckling analysis has been compared and 
studied. The buckling analysis is performed for FGM 
rectangular plate’s different values of power law index, 
for aluminium-alumina FGM. The Young’s modulus and 
Poisson’s ratio for aluminium are: 70 GPa and 0.3 and for 
alumina: 380 GPa and 0.3, respectively. To validate the 
derived equation, the obtained critical buckling loads of 
simply supported FGM plates shown in Table 3. They are 
good matching between the calculated and results of 
Mokhtar et al. [18] for low values of L/h. 

4.2. Numerical Results  

4.2.1. Natural Frequency and Buckling Analysis 
The following numerical results are obtained by 

considering the steel as the bottom surface and alumina as 
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the top surface in FGM plate according to index value. 
The geometry of plate and material properties is as 
follows:  

L=1 m (length), W=1 m (width), h=0.1 m (thickness). 
SUS304, ρ=7,800kg/m3, E=201×109Pa, ϑ=0.3 
Al2O3, ρ=2,707kg/m3, E=380×109Pa, ϑ=0.3. 
The variations of natural frequency parameter in FGM 

(SUS304/Al2O3) plate with different boundary conditions 
are shows in Figure 6 and Figure 7. The effect of power 

law index n on the frequencies can be seen by different 
boundary conditions. As expected, the increasing index 
value leads to reduce the natural frequency. The increase 
power law index reduces the ceramic volume fraction; it 
affects the effective material properties.  

In Figure 8 shows the results of critical buckling load of 
a FGM rectangular plate based CPT was presented. This 
figure shows that the critical buckling load decreases 
when the power law index value increases. 

 

Figure 6. Variation of frequency parameter with index value (a) SFSF and (b) SSSS boundary conditions 

 

Figure 7. Variation of frequency parameter with index value (a) SCSC and (b) CCCC boundary conditions 

 

Figure 8. Variation of critical buckling load verses index value with (a) uniaxial and (b) biaxial compression 

4.2.2. Dynamic Stability Analysis 
The dynamic stability of FGM plates under parametric 

excitation was investigated. The power law index value, 
the length, the width and the thickness of the FGM plates 

were varied to assess their effects on the parametric 
instability behaviour of the FGM plates. Figure 9 shows 
the dynamic stability of simply supported FGM plate 
aspect ratio L/W=0.5, 1, 1.5 and plate thickness h=0.1m. 
The effects of aspect ratios on the first three instability 
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regions for simply supported plate are presented in Figure 9a, 
Figure 9b, Figure 9c. Increase the aspect ratio L/W the 
unstable region is located father from dynamic load axis, it 
shows that reduces the dynamic instability of simply 
supported rectangular FGM plate. Figure 10a, Figure 10b 
and Figure 10c shows the first three parametric instability 
regions of FGM plate of rectangular cross-section with 

various index values and aspect ratio is examined. It can 
be seen that the instability regions are shifted towards the 
dynamic load axis with increases power law index value at 
lower excitation frequency. The effect is much more 
significant on another three instability regions than on the 
first region. Increase in power law index increases the 
dynamic stability.  

 

Figure 9. Dynamic stability regions for simply supported FGM plate with various aspect ratios L/W=0.5, 1, 1.5 

 

Figure 10. Dynamic stability regions for simply supported FGM plate with different index values n=1, 2, 3 

5. Conclusions  
Finite element modelling of rectangular FGM plate has 

been developed using first order shear deformation theory. 

Based on the above formulation various types of analyses 
i.e. free vibration, buckling and dynamic stability have 
been carried out. In case of FGM plate with increase of 
power law index value, the first five natural frequencies 
decrease. If L/W ratio is increased the critical buckling 
load decreases for each case of loading and it is also 
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observed that as the power law index value increases 
critical buckling load decreases. FGM plate vibration and 
static characteristics can be improved by developing 
proper material grading. Increase in aspect ratio L/W=0.5, 
1 and 1.5 of rectangular plate results in overall 
enhancement of instability of the plate. With increase of 
the power index value n=1, 2 and 3 instability regions 
moves closer to dynamic load axis with the different 
aspect ratios, it shows that there is deterioration of the 
dynamic stability. 
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