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Abstract

Law enforcement agencies frequently must allocate limited
resources to protect targets embedded in a network, such as
important buildings in a city road network. Since intelligent
attackers may observe and exploit patterns in the allocation,
it is crucial that the allocations be randomized. We cast this
problem as an attacker-defender Stackelberg game: the de-
fender’s goal is to obtain an optimal mixed strategy for allo-
cating resources. The defender’s strategy space is exponential
in the number of resources, and the attacker’s exponential in
the network size. Existing algorithms are therefore useless
for all but the smallest networks.

We present a solution approach based on two key ideas: (i) A
polynomial-sized game model obtained via an approximation
of the strategy space, solved efficiently using a linear pro-
gram; (ii) Two efficient techniques that map solutions from
the approximate game to the original, with proofs of correct-
ness under certain assumptions. We present in-depth experi-
mental results, including an evaluation on part of the Mumbai
road network.

Introduction

Protecting targets against potential attacks is an important
problem for security forces worldwide. The general setting
is as follows: An attacker assigns different values to reach-
ing (and damaging or destroying) one of multiple targets.
A defender wants to allocate resources (such as patrol cars
or canine units) to capture the attacker before he reaches a
target. In many of these situations, the domain has struc-
ture that is naturally modeled as a graph. For example, city
maps can be modeled with intersections as nodes and roads
as edges, where nodes are targets for attackers. In order to
prevent attacks, security forces can schedule checkpoints on
edges (e.g., roads) to detect intruders. For instance, in re-
sponse to the devastating terrorist attacks in 2008 (Chandran
and Beitchman 29 November 2008), Mumbai police deploy
randomized checkpoints as one countermeasure to prevent
future attacks (Ali 4 August 2009). The strategy for placing
these checkpoints must necessarily be decided in advance of
attack attempts, should account for targets of differing im-
portance, and should anticipate an intelligent adversary who
can observe the strategy prior to attacking.
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In light of these requirements, game-theoretic approaches
have been developed to assist in generating randomized se-
curity strategies in real-world domains, including applica-
tions in use by the Los Angeles International Airport (Pita
et al. 2008) and the Federal Air Marshals Service (Tsai
et al. 2009). To account for the attacker’s ability to ob-
serve deployment patterns, these methods model the prob-
lem as a Stackelberg game and solve for an optimal prob-
ability distribution over the possible deployments to ensure
unpredictability. Novel solvers for such security games have
recently been developed (Basilico, Gatti, and Amigoni 2009;
Paruchuri et al. 2008; Conitzer and Sandholm 2006), but all
take time at least polynomial in the number of actions of
both players. In our setting, every path from an entry point
to a target is an attacker action, and every set of r or fewer
edges is a defender action, where r is the maximum number
of checkpoints. Since the attacker’s actions grow exponen-
tially with the size of the network, and the defender’s ac-
tions grow exponentially with r, existing methods quickly
become too slow when applied to large real-world domains.

In this work, we develop an efficient procedure for gen-
erating checkpoint deployments based on two key ideas:
(i) a polynomial-sized approximation of the strategy space
solved using a linear program; (ii) two efficient sampling
techniques to map solutions back to the original space. To
avoid the exponential strategy space over all possible combi-
nations of checkpoint placements (the joint distribution), our
methods operate on the marginal probabilities of edges, i.e.,
the total probability of placing a checkpoint on an edge. Our
linear program, RANGER, upper-bounds the capture proba-
bilities along paths by the sum of marginal probabilities.

Our sampling algorithms efficiently generate joint distri-
butions in the original problem space from RANGER’s so-
lution of marginal probabilities. We prove that under certain
conditions, the actual capture probabilities of our algorithms
match the upper bounds of RANGER, and thus necessar-
ily give optimal payoff. Radius Sampling generates optimal
joint distributions if certain conditions on the marginal dis-
tribution are met. Comb Sampling generates distributions
which are optimal against an approximating attacker who
calculates the expected value of an attack by summing the
marginal probabilities in the path.

In addition to our theoretical results, we test our meth-
ods empirically. First, we evaluate the quality of RANGER



against an optimal solution technique, DOBSS, to verify the
accuracy of RANGER'’s approximation. Then, we evaluate
the sampling procedures by testing against an exact attacker
who plays a best response to the defender’s true joint distri-
bution. We also apply our methods to a game model of the
city of Mumbai and the targets attacked in 2008.

Related Work

Aside from the literature on Stackelberg games for security,
our approach is also based on insights from network inter-
diction (Washburn and Wood 1995; Israeli and Wood 2002).
These are the special case of our model when there is a sin-
gle target, or — equivalently — all targets have identical val-
ues. For such games, Washburn and Wood (1995) give an
algorithm finding optimal strategies for both players based
on Min-Cut computations. However, different target values
can cause their algorithm to perform arbitrarily poorly, as
we see in our experiments.

Two additional lines of work are somewhat related.
Mavronicolas et al. (2008) define and analyze a network
security game where each attacker can attack any node of
the network, and the defender chooses a path to patrol to
capture as many attackers as possible. Because the at-
tacker is not restricted to paths, the types of results for this
game are different from ours, and the focus in (Mavroni-
colas et al. 2008) is on understanding the impact of self-
ish behavior by defenders rather than optimal strategies.
Hider-seeker games (Basilico, Gatti, and Amigoni 2009;
Halvorson, Conitzer, and Parr 2009) are also studied on
graphs, but here, the attacker’s goal is only to evade capture,
not to reach any particular target.

Problem Description

A graph-based security game models an attacker and a de-
fender who take actions on a graph G (V,E), with
n = |V| nodes and m = |E| edges. The attacker starts
at one of the source nodes s € S C V of his choosing and
travels along a path in an attempt to reach one of the tar-
getst € T' C V. The attacker’s pure strategies are thus all
s-t paths P, denoted by B, from some source s to some tar-
get t. The defender tries to capture the attacker before he
reaches a target, by placing up to r resources on edges of
the graph. The defender’s pure strategies are subsets of r or
fewer edges; we denote the set of all such sets by £. Assum-
ing that the defender plays L € L and the attacker P € B,
the attacker is captured whenever P N L # (), and succeeds
in his attack when P N L = ().

Unsuccessful attacks always have a payoff of c for the de-
fender, while successful ones have a penalty of D(t). We
make the natural restriction that D(t) < c¢. We also as-
sume that the game is zero-sum, meaning that the attacker’s
payoff for a successful attack on target ¢ is —D(t), and —c
for an unsuccessful one. We stress here that targets may
have vastly different payoffs associated with them, unlike
in (Washburn and Wood 1995). This distinction is crucial
to model real security domains, and thus to bridge the gap
between theory and practice.
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Since the attacker can choose which source to enter from,
for our analysis, we merge all sources into a single source
without loss of generality. More formally, we reform the
graph so that all original source-incident edges are incident
to the new source. While this operation obviously changes
the graph, it does so only in a way that does not impact
the game: no rational attacker would ever include multiple
sources in his path, and therefore, a defender will never se-
lect an edge between two sources. Those are the only edges
that disappear from the problem. Thus, to simplify presen-
tation and analysis, we will assume that the attacker always
enters from a unique known source s.

In a world of increasingly sophisticated and determined
attackers, a good defender strategy must take into account
the fact that the attacker will observe and exploit patterns in
the defender’s behavior. Thus, the game is naturally mod-
eled as a Stackelberg game, an approach also taken (for the
same reasons) in past work in security settings (Gatti 2008;
Kiekintveld et al. 2009). The defender is modeled as the
leader and moves first, by selecting a mixed strategy A € A
that assigns a probability to each pure strategy L € L. The
attacker is the follower and chooses a strategy after observ-
ing the defender’s mixed strategy. There is always a pure-
strategy best response for the attacker, so we restrict the at-
tacker to pure strategies without loss of generality. Thus, the
attacker’s Stackelberg strategy is a function f : A — P. For
any pair of strategy profiles (), f), the expected rewards for
the defender (Rp) and attacker (R 4) are given by:

Rp(A, f) p-c+(1—p)- D(2) (1)
Ra(\ f) p-—c+(1—p)-—D(t) (2)

where t is the target at the end of the path specified by
f(X\), and p the probability that the attacker is captured on
the path to ¢ given the defender’s strategy A. Although the
optimal defender strategy is a Stackelberg Equilibrium, in a
zero-sum this is equivalent to a Maximin strategy. Unfor-
tunately, as £ has size ©(m"), and B has size exponential
in n, existing methods for computing such strategies do not
scale to realistic problem sizes. We therefore develop a lin-
ear program and two accompanying sampling methods to
efficiently solve graph-based security games.

RANGER

We first introduce RANGER (Resource Allocation for
Network-based Games with Efficient Representations), a
linear program for finding an optimal set of marginal check-
point probabilities for the defender. We denote the marginal
probability associated with edge e by x.. Formally, . =
ZLeL,eeL AL, where A\, is the probability of the set L un-
der A\. We denote the marginal distribution by Z = (z.).

By reasoning over Z, we avoid the exponential size of the
defender’s space. The key insight of our approach is the
following simple consequence of the Union Bound: For any
path P, the capture probability under X is at most ) p Te.
We use this upper bound (the sum of x.) as an approxima-
tion of the true capture probability in deriving RANGER.
The power of our approach is that we subsequently present
ways to sample joint distributions where the total capture



probability matches this upper bound under certain condi-
tions; this immediately implies optimality of our procedures,
and retroactively justifies the approximation.

In the RANGER linear program below, x. is the marginal
probability of placing a checkpoint on edge e. The d,, are,
for each vertex v, the minimum sum of checkpoint probabili-
ties along any path from the source, s to v'. This is enforced
by the constraints (4)—(6). Constraint (7) enforces that at
most 7 checkpoints are placed, and Constraint (3) captures
the payoff for the defender.

Maximize Rp, s.t.:

Rp <(1—dy) - D(t)+d;-c 3
ds =0 4
dy, <min(1,d, + z.) Ve = (u,v) %)
0<z. <1 Vee F (6)
S ae<r )
eclE

We begin by verifying the claim that RANGER’s solution
is an overestimate of the optimal solution.

Theorem 1. Let \* be the optimal strategy and R* the cor-
responding defender reward. Then, R}, > R*, where R, is
the defender reward returned by the LP.

Proof. Let z* be the marginal probabilities of A*. Obvi-
ously, 0 <z < L,and ) pxl = > . |L[- AL <.
For each vertex v, let d;; be the probability (under \*) of
capturing the intruder assuming he chooses the best path to
reach v. Then 0 < d < 1, and for each edge e = (u,v),
dy, < d}+x, by the Union Bound. The attacker will choose
the path to maximize his own payoff R . Because the game
is zero-sum,

R* = —R%

m?x{(l —di)-—D(t)+dj - —c}
= mtin{(l —d;)-D(t)+df - c}.

Thus, for any target t, R* < (1—d;)-D(t)+d; - c. Thus,
the values R*, d* and 7* are feasible for the LP; because

RANGER finds the optimum feasible solution, we obtain
that R}, > R*. O

RANGER is an exponentially more compact represen-
tation of both the attacker and defender strategy spaces.
This can be seen by noticing that RANGER has a poly-
nomial number of variables with respect to n and m.
Any straightforward application of prior formulations would
have ©(m”) variables for the defender and exponentially
many (| B]) constraints for the attacker.

Constructing Joint Distributions

To deploy security resources, we require joint schedules,
drawn from a joint distribution over £. We develop sam-
pling procedures that use the #* computed by RANGER to
generate a distribution over joint schedules. The principle

'Recall that we can assume a single source w.l.0.g.
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behind these methods is to bring the actual capture proba-
bility for a target ¢ up to the value d;. One way to ensure this
would be if no deployment ever placed two checkpoints on
any s-t path to any target. More generally (and informally),
it is sufficient if this “checkpoint disjointness” is ensured for
“critical” s-t paths: those whose sum of marginal probabili-
ties are close to the minimal (d;).

Notice that placing checkpoints by independently sam-
pling from & violates this approach with increasing fre-
quency as 7 increases, and yields very suboptimal solutions.
Instead, we introduce two novel sampling procedures that
achieve a certain “checkpoint disjointness”, under some as-
sumptions, and are therefore optimal.

Radius Sampling

Radius Sampling (RS) interprets the marginal probabilities
as “distances”, and places a security ring around the source.
In this way, it avoids sampling multiple times on “critical
paths”, in a way we make precise now. For any h > 0,
we define the ring of radius h around s as Ry, := {e =
(u,v)|dy, < h < d,}, ie., the set of edges from a node
with probability of capture at most h from s to a node with
probability of capture more than A from s.

We define o := [~ |Rp|dh (a normalization constant),

and the density function ¢(h) := ‘RTJL‘. Notice that

o = Ze:(u,v)(d” - du) < Ze Te < T (8)

Our algorithm works as follows: Choose a radius h from
[0, 00] according to the density function ¢. Now, choose
of the edges in Rj, uniformly at random (or all edges in Ry,
if |[Rp| < r). Place checkpoints on these edges. We call
the resulting set L. Notice that both h and Ly are random
variables, and Ly is a set of at most  edges.

Theorem 2. If for all h, |Ry| > r or |Rp| = 0, then RS
produces an optimal distribution for the defender.

Theorem 2 follows from Lemma 3 and Theorem 1 as fol-
lows: By Lemma 3, the capture probability for any s-¢ path
is at least d;, i.e., RANGER’s value. Therefore, the de-
fender’s payoff is at least RANGER’s, which by Theorem
1 is at least the payoff with the optimum mixed strategy.

Lemma 3. Under the assumptions of Theorem 2, let P be
any s-v path and w the node maximizing d,, among all nodes
on P. The capture probability along P is at least d,,,.

Proof. We prove the lemma by induction on | P|, the number
of edges on path P. In the base case | P| = 0, the only node
v with a path from s is s itself, and the statement holds.

For the inductive step, let P be a path of length £ + 1 and
e = (v',v) the last edge of P. Let P’ = P\ {e} be the path
of length ¢ from s to v, and w’ the node on P’ maximizing
dy. By Induction Hypothesis, Prob[Lr N P’ # (] > d,.

We distinguish two cases. If d,,y > d,, then

Prob[LRﬂP# @] > PI‘Ob[LRﬂP, 7é @]
Z dw’ Z d'u7
implying the claim.
If d, > d,, then consider the event £ [h >
dyw and e € Lg|. £ is the event when we include e in Lg



and h is sufficiently large that no edge from P’ can also be
sampled. The probability of & is

J d; Proble € Lg | h = z]¢(w)dz
v r R, vdy
= fd“, Rl ‘ L ‘de = jdw’ adx > dy — dy.

Here, we substituted the definitions of the sampling process,
and then used that 3 > 1 from Equation (8).

Whenever L intersects P/, by definition, we must have
that h < d, (because no edge ¢/ € P’ is in Ry, for h >
dy). Thus, the events £ and [Ry, N P’ # (] are disjoint, and

Prob[R, NP # (] > Prob[[R, NP #0]UE]
Prob[Rj, N P" # (] + Prob[£]
du + (dy — du)

U

A1

The penultimate step used the induction hypothesis as well
as the inequality Prob[&] > d,, — d,, derived above. O

To implement RS, we need to find d,, values to each node,
determine the edges and weights for each Ry, and sample
according to the above procedure. Each step takes time poly-
nomial in n. Thus, we have a polynomial-time procedure
that optimally solves a graph-based security game under the
conditions of Theorem 2. Previously known techniques ei-
ther required time exponential in the graph size or can not
provide quality guarantees. However, since we cannot guar-
antee performance when Radius Sampling’s condition is not
met, we also explore another sampling algorithm.

Comb Sampling

Now, we consider a somewhat simpler case for the defender:
the attacker only observes marginal distributions and ap-
proximates the capture probability on any path by adding
the probabilities. This may occur because observing the
full joint probability distribution is much more time- and
resource-intensive than observing the marginals. When only
able to observe marginals, adding probabilities is a reason-
able and conservative approximation for the attacker.

Comb Sampling (CS) is based on two ideas: (1) If the
marginals of the joint distribution match RANGER’s z. val-
ues, then an attacker summing probabilities will choose the
target t and path P predicted by RANGER. (2) If the edges
on P are chosen mutually exclusively, then the capture prob-
ability on P matches that of RANGER.

Let ey, ..., e p| be the edges on the path P (in arbitrary
order), and e|p|y1, - - -, & the remaining edges, in arbitrary
order. Foreach1l < 5 < m, let X; = Zi<j x;, and de-
fine the interval I; = [X;, X, + x;). Because >, x; = 7
(w.l.o.g.), the I; form a disjoint cover of the interval [0, 7).
We now generate a deployment, L, as follows: Pick a num-
ber y € [0, 1) uniformly at random, and include in L¢ all
edges e; such that y + k € I; for some integer k. In other
words, include exactly the edges which “own” the intervals
containing the points y,y + 1,y + 2,...,y +r — 1. This
samples exactly r edges.

Lemma 4. Given a marginal distribution T, CS will exactly
meet all marginal probabilities, x..
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Proof. Consider any edge e;, and two cases. If I; C [k, k+
1) for some k (i.e., I; contains no integer point), then e,
is included if and only if k¥ 4+ y € I;, which happens with
probability |I;| = x;. On the other hand, if I; = [X;, k) U
[k, X + x;), then ¢; is included if and only if y + k£ — 1 €
(X, k) ory + k € [k, X; + x;); because z;, < 1, this
happens with probability (k—X;)+(X;4+x;—k) = z;. O

Lemma 4 ensures that the attacker will follow the path
predicted by RANGER. Now consider P. If 3} _p 7. > 1,
then for any y, some edge e € P will be included, so the
attacker is always captured. Otherwise, an edge from P is
included if and only if y < . p ., which happens with
probability ) . p 2, i.e., the sum of marginals on P. Com-
bined with Lemma 4, this guarantees that RANGER’s re-
ward is achievable using CS if the defender faces an approx-
imating attacker. The sampling time is clearly polynomial in
the graph size. Thus, we have a polynomial-time procedure
to optimally defend against an approximating attacker.

Experiments
Quality Comparison

Our first evaluation studies the solution quality generated by
Radius and Comb Sampling in the general case, against both
exact and approximating attackers, as defined in the Intro-
duction. Neither method is guaranteed to achieve the op-
timal value against an exact attacker, so we evaluate their
approximation quality. We compare them against DOBSS,
which computes the optimal solution against an exact at-
tacker. DOBSS may not be optimal against an approximat-
ing attacker, so we also report the quality of DOBSS against
approximating attackers, labeled DOBSS Marginal. As a
benchmark, we include a simple Independent Sampling (IS)
strategy, wherein for each checkpoint, edge e is selected in-
dependently with probability Z=.

We generate random graphs that are representative of the
domains of interest. First, we test on random geometric
graphs to estimate performance for road network domains.
Then we test on scale-free graphs as an analogy for subway
networks. For each graph type, we generate 500 instances
each of 4, 5, and 6-node, zero-sum games and report re-
sults in Table 1. Every graph has one source, between 1 and
|V| — 1 targets with values from -1 to -10 for the defender
when successfully attacked, and 1 to 3 checkpoints. The
payoffs for capture are all 0. Graphs were kept simple so
DOBSS could solve them within a reasonable time limit.

For each graph, we run each sampling method on the
marginals produced by RANGER and calculate the actual
capture probabilities for the joint distribution generated. Us-
ing the true capture probabilities, we select an optimal target
for the attacker and compute expected payoffs based on this
choice. We compare these rewards against DOBSS to eval-
uate the quality of our methodology.

Table 1 shows the number of cases where a difference in
quality of more than 0.001 existed between methods. Empir-
ically, RANGER computes very good estimates of the op-
timal reward value, never differing from DOBSS for more
than 5% of cases. Unsurprisingly, Independent Sampling



frequently results in suboptimal distributions (44%—78%).
Remarkably, CS attains the optimal expected reward in ev-
ery single one of the 3,000 graphs tested. RS also per-
forms very well, never differing from DOBSS for more than
11% of the games. DOBSS Marginal never differs from
DOBSS or RANGER, indicating that DOBSS remains op-
timal against an approximating attacker (not shown). How-
ever, as runtime experiments will show, DOBSS is com-
pletely incapable of solving reasonable game sizes.

Random Geo. Scale-Free
Nodes | 4 [ 5 [ 6 ] 4] 516
RG > DOBSS | 12 8 5 0 4 22
IS < DOBSS | 220 | 283 | 280 || 389 | 347 | 247
CS < DOBSS 0 0 0 0 0 0
RS < DOBSS 0 0 3 0 29 53

Table 1: Results by number of cases (RG - RANGER).

Mumbai

As a real-world trial, we use our algorithms to create se-
curity policies for the southern tip of Mumbai, shown in
Figure 1, which was an area of heavy terrorist activity in
2008. The region is modeled as a graph with 35 nodes and
58 edges. Attackers can potentially enter from any entry
node, chosen based on historical and likely entry points. A
total of four target nodes are chosen based on historical at-
tacks, marked with black circles in Figure 1. These are held
constant throughout testing. Payoffs are decided as in the
Quality Comparison experiments.

Figure 2a shows the averaged defender rewards obtained
across eight configurations, each with their own setup of tar-
get values and sources, with each configuration being run
with checkpoints varying from 2 to 10. Figure 2b shows
results averaged across a different set of eight configura-
tions, each with their own setup of target values and 4 check-
points, with each configuration being run with the number of
sources increasing from 1 to 7.
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Figure 2: Rewards in Mumbai domain.
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Since DOBSS is unable to solve even the simplest case
within the 20-minute limit, we include only CS, RS, Mini-
mum Cut (Mincut), as well as three natural defense strate-
gies: Uniform Random (Uniform), Entry-Adjacent (Entry-
Adj) and Weighted-Target-Adjacent (Target-Adj). MC, as
introduced by (Washburn and Wood 1995), contracts all
sources into a super-source and all targets into a super-target
and finds the minimum cut on the resulting graph, uniformly
randomizing resources across it. This effectively ignores
target value variation, but is extremely efficient. Uniform
randomizes checkpoints uniformly across all edges in the
graph. Entry-Adj places checkpoints on edges incident to
entry nodes with equal probability. Target-Adj places check-
points on edges incident to target nodes, weighted according
to their payoff. The y-axis shows the expected reward in
both graphs of Figure 2. The x-axis of Figure 2a shows the
number of checkpoints allowed and the number of sources
in Figure 2b. RANGER ran in 0.2 seconds in all trials.

In all cases, the two sampling methods developed here
outperformed all others, with RS performing worse than CS
when its optimality condition was violated more severely.
MC, which does not prioritize targets, performs worse than
the Uniform strategy in some situations, which sometimes
places more coverage on higher value targets simply because
there are more roads to them.

RANGER actually exploits resources differently and to
better effect, which we explore in Figure 3. Data was used
from the games in Figure 2b. Figure 3a shows the aver-
age number of edges with non-zero marginal probability in
Entry-Adj and RANGER strategies as the number of sources
increases. Clearly, RANGER uses fewer edges than Entry-
Adj as the number of entry points increases, but uses them
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Figure 4: Runtimes for RANGER, ERASER, and DOBSS.

to better effect.

Figure 3b shows the standard deviation of marginal prob-
abilities of edges. While Entry-Incident remains constant at
0, RANGER’s results vary from 0 (with only one source) to
0.2, which is a standard deviation of 20% in marginal prob-
ability on edges. Although we cannot provide guarantees
on the performance of Radius or Comb Sampling against
an exact attacker in general, the techniques yield non-trivial
mixed strategies of high quality in practice that outperform
the sensible alternatives explored here.

Runtime Comparison

We have discussed the exponentially smaller solution space
RANGER, RS, and CS operate in; we now show runtime
comparisons to verify our conclusions empirically. Specif-
ically, we evaluate the runtime performance of RANGER
against the fastest-known exact algorithm for solving gen-
eral Bayesian Stackelberg games, DOBSS (Paruchuri et
al. 2008), as well as a faster solver for security games,
ERASER (Kiekintveld et al. 2009). DOBSS serves as a
benchmark, since it provides the optimal solution against
exact attackers. ERASER exploits structural properties that
exist in many security domains, but requires that defender
actions be independent from each other, which is violated in
our domain since placing two checkpoints on one path will
violate this assumption. Thus, ERASER can be used as an
efficient, approximate alternative to DOBSS, so we compare
RANGER’s runtime against it.

Figure 4 shows the scaling of each method’s runtime with
respect to n. In these experiments, we use complete graphs
(3 to 8 vertices) and random geometric graphs (4 to 12 ver-
tices), each with one source, one target (value -1 to -10 for
defender), and two checkpoints. The z-axis shows the num-
ber of vertices in the graph, and the y-axis shows runtime
in seconds. Each result was averaged over 10 trials. Unsur-
prisingly, DOBSS and ERASER scale poorly and are only
able to solve the problem with up to 7 vertices for com-
plete graphs and 8 (DOBSS) and 11 (ERASER) vertices on
random geometric graphs. RANGER is capable of solving
games with 400 vertices within the time limit (not shown).

Conclusions

In this work, we provide three primary contributions. First,
we develop a linear program, RANGER, to efficiently cre-

886

ate optimal marginal distributions for placing checkpoints
and prove that the reward found is an overestimate of the
true optimal reward. Second, we introduce Radius Sam-
pling, which we show produces optimal joint distributions
under specific conditions. Third, we develop Comb Sam-
pling, which we prove guarantees optimality against an ap-
proximating attacker. We complete the discussion by pro-
viding experimental verification of the high quality of our
techniques on random graphs and a real-world domain.
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