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Abstract

We present a distributed planar object manipula-

tion algorithm inspired by human behavior. The sys-

tem, which we call pusher-watcher, enables the co-

operative manipulation of large objects by teams of au-

tonomous mobile robots. The robots are not equipped

with gripping devices, but instead move objects by

pushing against them. The pusher robots have no

global positioning information, and cannot see over

the object; thus a watcher robot has the responsibil-

ity for leading the team (and object) to the goal, which

only it can perceive. The system is entirely distributed,

with each robot under local control. Through the use

of Murdoch, a resource-centric general purpose task-

allocation framework, roles in the team are automati-

cally assigned in an eÆcient manner. Further, robot

failures are easily tolerated and, when possible, auto-

matically recovered. We present results and analysis

from a battery of experiments with pusher-watcher

implemented on a group of three Pioneer 2 mobile

robots.

1 Introduction

Multi-robot coordination is a complex control prob-
lem, especially in tightly-coupled tasks, which involve
a mutual dependence of the robots on each other's
performance. The problem may be made even more
complex through the use of heterogeneous robots, with
di�erent physical and/or behavioral capabilities. How
can groups of such heterogeneous robots coordinate
their behavior so as to execute tightly-coupled tasks?

In previous work [5], we proposed a partial answer
to this question in the form of Murdoch, a general-
purpose task-allocation system. Murdoch was de-
signed for use on physically embodied robots living

and working in noisy, dynamic environments in which
they have little information and even less control. In
this paper, we apply Murdoch to the particularly
diÆcult problem of multi-robot box-pushing. Using
Murdoch, we have implemented a distributed con-
trol system, called pusher-watcher, that enables a
team of three heterogeneous robots to cooperatively
relocate a large box to a speci�ed goal, despite having
no global position information and no detailed model
of the box or its physical properties. We evaluate the
system in four sets of experiments and present quan-
titative results and analysis.

2 Related Work

Box-pushing has long been one of the canonical task
domains for robot researchers. In [10], Mason presents
pioneering work in the analysis and planning of push-
ing operations, albeit in the context of �xed manipula-
tors. As for pushing by mobile robots, several (but not
many) systems have been demonstrated; we highlight
the relevant ones here.

At one extreme, [7] and [8] describe a swarm-like
method for moving a large box with many small, lo-
cally controlled robots; the system could fairly be de-
scribed as emergent. In stark contrast is the planner-
based master-slave pushing system described in [12].
A similarly deliberative approach is taken in [3]; the
authors focus on the analysis of various two-robot
pushing protocols with regard to information require-
ments. Some middle ground is found by the two-robot
behavior-based approach presented in [11], with an
emphasis on the robots' learning policies to enable
e�ective cooperation. In [13], a fault-tolerant two-
robot box-pushing system is developed, and proof-of-
concept demonstrations are given. More recently, a
method for single-robot box-pushing through an ob-



stacle �eld (in the context of robot soccer) is given in
[4].

With regard to the pushing control system itself,
the work we present in this paper is most similar to
the pusher-steerer protocol in [3] and, to a lesser
extent, the pusher-supervisor system in [12]. How-
ever, neither of these architectures made any provision
for robot failures. Of the other three multi-robot sys-
tems, only [11] is goal-directed, and in that case, both
pushing robots could directly perceive the goal, some-
what reducing the need for cooperation.

A great deal of work has also been reported on
multi-agent coordination systems, though the agents
themselves are seldom physically embodied (e.g., [9],
[15]). Notable exceptions are BLE [16], and the AL-
LIANCE architecture [14], both of which have been
applied to a multi-target tracking task with groups
of robots. ALLIANCE was also applied to a box-
pushing task [13], but the system runs open-loop,
whereas we have closed the control loop through the
use of our watcher, with the side-e�ect of adding
new opportunities for cooperation. Further, while AL-
LIANCE relies on an expertly-built structure of in-
terconnected motivational behaviors, Murdoch [5]
provides a general-purpose, resource-centric, �tness-
based task-allocation system that is independent of a
robot's internal control system (e.g., Murdoch does
not require the use of behavior-based methods for in-
ternal robot control).

3 Algorithm

The task we address is cooperatively moving a box,
large relative to the size of the robots, from some ini-
tial location to some observable goal location. In solv-
ing this problem, we take inspiration from human co-
ordination behavior commonly observed when people
move large pieces of furniture. If the people who are
pushing or carrying the piece of furniture cannot see
where they are going, another person stands between
the carried object and the goal and periodically directs
them. This \watcher" can see both the current posi-
tion of the object and the goal, and thus can compute
the error signal, perhaps in the form of a correction
angle, that can be communicated to the \pushers"1.

In the cooperative mobile robot domain, we for-
mally de�ne this problem with a set of constraints.
First, both the box and the goal are observable, and

1Actually, the watcher likely will not communicate the raw

angle, but rather some higher-level command, such as \push

more on the right"; we do the same (see Section 4).

Figure 1: Our experimental box-pushing setup. The

task is for the pushers to move the box to the goal

with the help of the watcher. (Image 1 of 3 taken

from an experimental trial; see Figures 3 & 4.)

there is an obstacle-free path between them that is
wide enough for the box and robots to pass (i.e., we
do not consider negotiating obstacles in a coordinated
fashion, only as part of individual low-level control).
Second, the box is large compared to the robots2.
Third, the robots can only move the box by pushing
through frictional contact. Finally, the pushing robots
cannot directly perceive the goal due to the size of the
box.

Given these constraints, we have implemented a
multi-robot control system, called pusher-watcher,
that is similar to the common human solution for this
task. As shown in Figure 1, two robots act as pushers,
and a third performs the watcher role. The pushers
can see the box, and the watcher can see the goal.
In addition, the watcher, while servoing on the goal,
can accurately perceive (using a scanning laser range-
�nder) the angular error of the box's orientation with
respect to the path from the box to the goal. Our
aim, then, is to rotate the box until that angular error
is zero (i.e., the box is orthogonal to the path to the
goal), while simultaneously translating it toward the
goal.

In order to implement this algorithm, we must �rst
determine the pushers' velocities. To this end, as
shown in Figure 2, we model the box and watcher to-
gether as a rigid body; we attach an imaginary link
between the center of the watcher, C, and the center
of the side of the box, orthogonal to the box. The box
and link together rotate freely about C. The pushers
are assumed to be point velocities that act on this
rigid body (for simplicity, we disregard mass and ac-
celeration). At each point in time, the watcher is
rotated away from the normal to the box by an an-

2Speci�cally, the intended contact surfaces should allow at

least two robots to be pushing simultaneously.
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Figure 2: The model used to derive the pushing veloc-

ities for moving the box along the desired trajectory.

gle �, and is moving toward the goal with a velocity
vw. These translational and angular velocities of the
box will then be governed, respectively, by two simple
equations:

vt = vw cos �

(d+ w) _� = vw sin �

After solving for _�, we can distribute it di�erentially
to the two pushing points:

vd =
l

2

vw

(d+ w)
sin �

Now, we compute the two pusher velocities:

vp = vt � vd

The velocities given by vp, if applied continuously
at either end of the box, will ensure that a con-
stant distance is maintained between the box and the
watcher and that the angular error � tends toward

zero. The actual trajectory will be a curve that ap-
proaches the path to the goal with the box's orienta-
tion tending toward orthogonality with respect to that
path.

The astute reader will note that in certain situa-
tions (e.g., when � is large), this control law can yield
negative pushing velocities; such implementation-
speci�c issues are addressed in Section 5.

4 Communication Model

As previously mentioned, we have implemented the
pusher-watcher system using the task-allocation fa-
cilities provided by Murdoch. We will give a brief
overview of Murdoch and how it is applied to the
multi-robot box-pushing problem. For a more com-
plete discussion of Murdoch itself, see [5].
Murdoch is a general-purpose task-allocation sys-

tem designed for use in dynamic environments in
which many robots may come and go at any time. In
order to support this kind of transience, communica-
tion in Murdoch is fundamentally anonymous, and
we treat the entire collective as a pool of resources
that can be applied to tasks that we want done. We
achieve anonymity through the use of the increasingly
popular publish/subscribe paradigm [2],[1]: messages
are not addressed to individual robots, but rather are
tagged with a descriptive subject and are published

onto the network for anyone to hear. A robot regis-
ters interest in a particular subject by subscribing to
it; that robot will receive a published message if the
message's subject(s)3 match the robot's subscription
list.

Since we are concerned with the allocation of re-
sources to tasks, we use subjects in Murdoch to rep-
resent resources. Resources can be physical devices,
such as a camera or a microphone. They can also
be more abstract representations of a robot's capabil-
ities or current state, such as the possession of a map
of the building, or having suÆcient energy reserves.
Each robot is always subscribed to the set of subjects
representing its currently available resources. So, to
send a message to every robot that has a laser and
camera, we address the message as: flaser camerag.

On top of this resource-centric addressing scheme
we implement an eÆcient auction-based negotiation
protocol that is used to allocate tasks. This proto-
col is best explained by way of example, so, in the

3We generalize the basic single-subject matching criterion to

include subset-matching; a message is published to an unordered

set of subjects, and will be received by those robots for whom

that set forms a proper subset of their subscription list.



interest of brevity, we will simultaneously explain the
general protocol and its speci�c instantiation for use
in pusher-watcher.

At the start, we have two robots with cameras, and
a third with both a camera and a laser range-�nder.
We, as users, pose a relocate-box task toMurdoch;
this task is hierarchical and is in fact composed of a
watch-box task that has two children push-box tasks.
The watch-box task is published as a task announce-

ment, and is addressed to fmobile laser camerag.
The one robot with those resources responds, claim-
ing the task and becoming our watcher. The watcher
begins executing the watch-box task, which consists
of: �nding the goal, determining the angular error of
the box, evaluating the control equations given in Sec-
tion 3, and announcing new pushing tasks.

Each push-box task is announced to fmobile

camerag, and is accompanied by a metric that po-
tential pushers can use to score themselves as to their
�tness for the task. In general, metrics can involve
any arbitrary computation and take as input any part
of the robot's state; in this case, the metric is a mea-
sure of how well-positioned the robot is for pushing
on a certain end of the box. For example, when the
task is to push on the right end, the metric will re-

ect whether the box is o�set to the left in the robot's
camera image. Each candidate executes the metric
and publishes its score back to the others, and so ev-
eryone immediately knows which robot was the winner
(the robots are honest, and tie-breaking mechanisms
are built-in). The watcher, as auctioneer, awards the
winner a time-limited task contract, then enters the
monitoring phase. Left and right pushing tasks are
allocated in pairs, parameterized with appropriate ve-
locities, based on the orientation of the box.

We use time-limited contracts both because we can-
not be sure of a robot's ability to complete a given
task and because we may soon want to assign a di�er-
ent task. In our box-pushing domain, each push-box

task lasts 3 seconds. During those 3 seconds, the
watcher can, if it sees �t, renew either or both pend-
ing contracts; alternatively, the contracts can expire,
and new, more appropriate tasks can be assigned.

In a typical run of pusher-watcher, the watcher

initially announces left and right push-box tasks with
proper velocities, and lets them push until the box's
orientation changes suÆciently to warrant di�erent
pushing velocities and thus new tasks. At that point,
the current contracts are allowed to expire, and new
ones are formed. This reactivity to world conditions is
the feature that enablesMurdoch to dynamically re-
assign tasks in the face of robot failure. For example,

when only a single robot is available (see Figure 3), the
watcherwill actually try to allocate two pushing tasks
as usual, but only one (the one with the higher velocity
and thus higher priority) will be claimed. That sin-
gle contract is renewed and the robot pushes on one
end of the box until the orientation changes enough
that it is more important to push the other end, at
which point the robot will simply switch sides. When
another robot is introduced, it will claim the next
available pushing task and the two robots will work
together at pushing the box.

5 Robotic Platform

We tested the pusher-watcher system on a
group of ActivMedia Pioneer 2-DX mobile robots.
These robots are non-holonomic, achieving locomotion
through di�erential steering of two front drive wheels,
with a passive caster in back. Many sensor con�gu-
rations are possible with the Pioneers; for these ex-
periments, each robot is equipped with a front sonar
ring, a color camera, and a vision system that performs
real-time color segmentation. The watcher robot is
additionally equipped with a SICK laser range-�nder,
used to determine the relative orientation of the object
being pushed.

Internally, each robot houses a Pentium-based com-
puter running Linux, which executes its control pro-
gram. Also onboard is Player [6], a freely available
device server developed at USC that handles low-level
sensor and actuator control. Inter-robot communi-
cation is provided by way of wireless Ethernet; the
topology is such that every robot on the network can
communicate freely with every other robot.

As is the case with any choice of robots, our de-
cision to implement pusher-watcher on this particu-
lar platform added extra constraints to the problem.
We account for these constraints by implementing not
the exact algorithm given in Section 3, but rather a
suitable approximation. For example, although the
algorithm can result in negative pushing velocities,
the robots can only push, not pull, the box. Thus
we bound the pushing velocities below by zero, which
has the e�ect of increasing the minimum turning ra-
dius of the box (see Section 7). Further, it turns out
that some pairs of pushing velocities, especially those
with large di�erences, are extremely diÆcult to exe-
cute robustly in practice. This diÆcultly is due mostly
to the non-holonomicity of our robots, which cannot
move laterally; if a robot slips o� the end of the box,
it cannot re-acquire it without performing a sort of
\parallel-parking" maneuver, which is challenging in



Figure 3: Fault-tolerance in action: after we induced a

single robot failure, the remaining robot is left to push

on its own. (Image 2 of 3 taken from an experimental

trial; see Figures 1 & 4.)

Figure 4: We \revived" the failed robot, it was rein-

tegrated into the team, and they completed the task

together. (Image 3 of 3 taken from an experimental

trial; see Figures 1 & 3.)

a dynamic environment. For this reason, we discretize
the box's orientation space into bins (currently �ve)
for which the resultant pushing velocities are practi-
cal.

6 Experiments

In order to evaluate the pusher-watcher sys-
tem, we performed four sets of experiments on
our group of Pioneer robots, as described below.
Video footage of all of these experiments is available
at: http://fnord.usc.edu/~gerkey/videos. During
the experiments, we measured two quantities: suc-
cess/failure and elapsed time. We de�ne success as
the situation in which the watcher declares that the
task is terminated, and the center of the box is posi-
tioned within 0:25 meters of the target location (see
Figure 4); we do not specify a target orientation for
the box. Conversely, a trial is a failure if either the
watcher declares termination when the box is not

Experiment � �

No failure 31:22 0:44
Pusher failure 132:75 26:94
Pusher failure & recovery 116:44 37:72

Table 1: Mean (�) and standard deviation (�) of the

elapsed time (in seconds) for the successful pushing

trials in each of the three experiments.

close enough to the goal, or the box is rotated so far
that the watcher can no longer perceive it using its
laser range�nder (this threshold is approximately 70Æ).

In Experiment Set 1, as a control, two pusher

robots had to move the box approximately 3 meters
along a straight-line path (90% of the length of our
lab). In Experiment Set 2, we tested the system's tol-
erance to individual robot failure. The setup is the
same as in Experiment Set 1, with two pushers, but,
after they pushed the box approximately 1.2 meters,
we simulated a robot failure by seizing one pusher

and shutting it o�. As a result, the remaining pusher
was left to push the box by itself, alternating sides
under the direction of the watcher (see Figure 3). In
Experiment Set 3, we tested the system's dynamic re-
sponse by inducing both failure and recovery. We �rst
let them both push approximately 0.6 meters, then
seized one pusher to simulate failure. After the re-
maining pusher had single-handedly pushed the box
another 1.2 meters or so, we reintroduced the failed
pusher, at which point they had to �nish the task to-
gether (see Figure 4). In Experiment Set 4, we tested
the ability of the system to execute curved trajectories
by placing the goal marker o� to one side. In order
to follow this non-straight path, the robots had to be-
have in a tightly coordinated fashion, making a series
of rotational and translational adjustments.

7 Results

We performed 10 trials each from Experiments Sets
1{3. In the 30 trials, there were a total of three fail-
ures, one occurring in each set. Two failures were due
to over-rotation of the box, and the third was due
to premature termination on the part of the watcher,
presumably because of sensor noise. With 27 successes
in 30 trials, the two-sided 95% binomial con�dence
interval for the overall success rate of the system is:
p 2 (0:73; 0:98)

We also analyzed the time elapsed during the suc-



cessful trials, as a measure of relative eÆciency among
the di�erent experiments. The results are shown in
Table 1. Using a t-test, we �nd that the system's
behavior in the base-case di�ers signi�cantly (with
� = :005) from the other two experiments; this is not
surprising, given that two robots pushing the box to-
gether is much more e�ective than one on its own. By
the same test, the two experiments involving robot
failure do not di�er from each other. The fact that
the standard deviation increases monotonically is in-
tuitive, since, as the complexity of the situation grows,
the exact behavior of the system quickly becomes less
repeatable, due to the numerous interacting dynamic
processes (e.g., variable torque output from motors,
friction between the box and the 
oor).

We note that, in Experiment Set 3, the two pushers
switched sides when appropriate, which was in half
the trials. The appropriateness of switching was deter-
mined by the con�guration of the box and the remain-
ing pusher at the time of reintroduction, and this con-
�guration was in turn a result of the complex system
dynamics mentioned above. However, the fact that
the pushers automatically switched sides at the right
times, with no detriment to the performance, demon-
strates that our task-allocation system performs as
speci�ed.

From trials in Experiment Set 4 we found that there
is an envelope of initial o�set angles � (see Figure 2)
for which the system can reliably execute the curved
trajectory. This envelope, which e�ectively limits the
turning radius of pusher-watcher in this implemen-
tation, is due to the physical constraints discussed in
Section 5. We derived empirically that the reliable
range at present is f�30Æ < � < 30Æg, insuÆcient
to runs laps in our lab, which is one of our goals. We
are investigating system modi�cations that can extend
this range.

8 Conclusion

We have described the design and implementation
of pusher-watcher, a novel distributed control system
for box-pushing by teams of mobile robots. Based on
the negotiation-style task-allocation facilities provided
by Murdoch, pusher-watcher is tolerant to robot
failures, and eÆcient in its use of resources. We have
demonstrated this system through a series of experi-
ments on a group of Pioneer mobile robots. The re-
sults from these experiments are encouraging, and we
are currently exploring other directions of this work,
including di�erent control laws, better task metrics,
and more robots (both pushers and watchers). We

plan to use this system to push large objects through
more complex environments, such as building corri-
dors and obstacle �elds.
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