International Journal of Soft Computing and Engineering (IJSCE)
I SSN: 2231-2307, Volume-2, | ssue-6, January 2013

Load Balancing Management by Efficient
Controlling Mobiles Agents

Mohamed Bahaj, Abdellatif Soklabi, Ilias Cherti

Abstract- Load balancing is a computer
methodology which allows the distribution of the wookdd
across multiple computers or computing devices,lsas central
processing units, disk drives, or other resourcsreach optimal
resource utilization, reduce response time, maxienthroughput
and circumvent overload. The Use of multiple comerg with
load balancing, instead of a single computer, mapyciease
reliability through redundancy.

Our contribution outlines the adaptation of the SHaw
approach used to control mobiles agents for devéigpa load
balancing management algorithm in distributed systs. This
approach does not only distribute the loads on thedes and
collect its running result, but it also manages thasks execution
places during all the execution time. Thereby, wet ge self-
organized load balancing infrastructure.

Keywords— distributed computing, load balancing, mobiles

agents.

[. INTRODUCTION

networking

Besides, our suggestion also involves adding in&tion
about the node load from which the request was teetiite
time to live sending to shadow agent.

This article is basically divided into many sectpeach
of which analogically underlines all the aspectshaf load
balancing based approach. The second section,npsetbe
relationship between load balancing and mobilesntsge
The third section, describes how Mobile agent-based
applications may run out of resources. The fortttiss,
discusses the Based on Resource Management. The fif
section, concerns itself with a detailed preseomatf the
Shadow agent model, and the last section deals théh
load balancing management by controlling mobilesnés

[I. LOAD BALANCING AND MOBILES AGENTS:

The mobile agent technology can provide various
answers to solve the problems of distributing tedlin a
set of computational entities. Migration of proaEssvas

Load balancing in distributed computation is veryraditionally a solution to this problem, generaligder the

important to equilibrate the use of resources which
valuable to both applications and system [1] [6]][112]
[13] [17]. Both the applications and the systemehanly a
limited amount of them. So it is preferable thaplagations
can utilize resources of different nodes to minenthe
running time.

A mobile agent is a computer entity capable of saasy,
running in another remote site, searching and gaipehe
results, cooperate with other mobile agents, andnig to
its home site after completing the attributed ta€4g19].
Mobile Agent based applications research are ise@and

are used to solve many problems of distributedesyst

[18].

The shadow approach constructs an artificial links
between shadow and agents. The shadow agent regiordd’
dependent agents’ location. Removing the shadowntag

implies that all dependent agents are affirmed anpand
finally be terminated. It creates agent proxieg thaintain

a path from Shadow agent to every dependent agégnt [

This approach can be used to terminate a groumerita
even if the location of each single agent is unkmow

In this paper we will underscore a new solutioridad
balancing using mobile agent control,

detection to allow the balance of the resourcessem the

distributed systems, and also by adding a receigent in
charge of sending information about its home nodel |

Manuscript received on January, 2013.

especially b

developing shadow protocol, which is used in orpha

supervision of a centralized controller. In a maoder
perspective, multi agents systems can decentralize
distribution of the computational load. In factcamplex
application is divided into autonomous parts, eafctvhich
delegated to one or more mobiles agents. Each enagént
is in charge of searching for the node of the netwehich
offers the most convenient resources, where tout&eits
own part of code. During the execution, agentsroame to
other nodes where more computational resources
available, in order to better distribute the load][

are

Ill. PROBLEM DESCRIPTION

Mobile agent-based applications are planned toetle
umber of agent to augment across several nodé&soui
aking into consideration the agent’s mobility dhgritheir
ifetime. When the agents are activated, they comesa lot
of system resources, such as processor power anubnye
If an agent is attached to a certain nodes, itnoftepends
on the resources available by them. Hence, if tidenruns
out of resources, the quality of the service predlithy the
mobile agent may decrease.

Moreover, extra resources might not work in an ropti

F/ay, as it is possible that different nodes areargiitable

0 run the agent, because of which some nodes maydr
loaded, others may be under loaded or some of thaynbe
even inactive. Hence, to avoid this type of stasource
management plays an important role and helps ichieg
better performance. Therefore, well-placed agentshie
network reinforce the optimal use of the resources

Mohamed Bahaj, Department of Mathematics and Computer Sciencethroughout the system [6] [7].

University Hassan 1st, Fsts, Labo Liten, Settatrddoo.
Abdellatif Soklabi,
Science, University Hassan 1st, Fsts, Labo Litetta§ Morocco.

Department of Mathematics And Computer

To solve this problem, we need a self-organizedl loa
balancing [8] infrastructure which can quickly resd to

Ilias Cherti, Department of Mathematics and Computer Sciencet,he various changes in the demand of the variotwanke

University Hassan 1st, Fsts, Labo Liten, Settatrddco.

24

resources.

L oad Balancing M anagement by Efficient Controlling M obiles Agents

IV. STATEOFTHE ART IN RESOURCE
MANAGEMENT

When tasks enter into a distributed system, thevwahg
methods are developed with the goal to dispersm the
the various processors [1].

A. Task Assignment Approach

This approach considers each process as a cotiegfio
linked tasks which are scheduled to the appropnaidges
so as to get better performance. In this it is iaipthat
process is already opening into tasks. It concatker that
the power of each processor, processing cost afydask
on every node, inter-process communication amosksta
resource requirements of the tasks and availaBleuree at
each node are known. Based on above all information
optimal assignment of tasks is found. But reassgrtnof
the tasks is in general not possible in this apgroa

B. Load Balancing Approach:
In this approach, all processes submitted by tleesuare

dispersed among the network nodes so as to balhece

resumed on the target nodes. In addition, JIAC du#s
take for granted that agents are independent &f ether.

The problem is that we are not capable to run dasmo
that report exact and up-to-date sub-cluster nadéuss
information to the centralized scheduling softwaléde
only information that we receive from a remote nigléhe
execution time of the last job, and if several jolere run,
we also receive from the remote node the averageution
time. The classic expression of static and dynamic
scheduling is no longer completely appropriate thuéts
inability to explain run-time job assignment algbms,
which use minimal information about remote noddsese
algorithms are not strictly static as job placemést
performed at run-time. They are also not stricthad
balancing algorithms in the sense that a centdilize
algorithm decides job placement and task until jabs
really ready to be executed [2].

Comet is load balancing algorithm [20] based on the
technique of calculating credit by the formula:
Ci= —x1wi+x2hi—x3gi
computational load of

Where wi: an agenai

workload among the nodes by evidently t_ransferringi: intra-machine communication load of an ageit
workload from lightly loaded nodes to heavily lodde gi: inter-machine communication load of an aggnt

nodes. Static algorithms employ only informatiommatbthe

x1, x2 andx3 are application dependent coefficients used

average behavior of the system ignoring the curreg astimate the affinity of the agent to the maehin

situation of the system. Dynamic algorithms reactthe
system situation that changes dynamically.
algorithms are further classified as Deterministersus
Probabilistic. Deterministic algorithms use the lected
information about the nodes properties and the gases
character to deterministically distribute processesodes.
Probabilistic algorithms uses

processing capability of the nodes and network ltapoto
simplify placement system.

C. Load balancing using mobile agent:

The majority of mobile agent systems are limitedveak
mobility [11]. There are a few ones which suppdré t
strong mobility, such as JIAC [12] and NOMADS [13]
implement strong agent mobility, NOMADS is built tme
top of a particular Java Virtual Machine that ipa&hle to
capture then restore the running state of a Javaathon
different computers. Organic Grid approaches ardetsul
in a way to simulate complex biological systemsaoige
themselves, by dividing a large computational tasto
sufficiently small subtasks. Each task will be gsed to
one or more mobiles agents, who are then releasatieo
Grid and discover computational resources
autonomous behavior.

JIAC adopts an approach that gives a languageentsig
implementation, which is
Runtime. Strong mobility used in a multi-agent eyst
accelerates the dynamic resource sharing, as oV

diverse Grid systems. However, most Grid computing

systems can only decide at which host to starbaajud do
not transfer load in a dynamic manner.

In the JIAC infrastructure the agents can be inactr
very busy while waiting for new requests, but thesg up
resources while reacting to a service requestompaiting
infrastructures, downtimes of service providersustidbe

To calculate a machine Load the algorithm uses the

Statig|lowing formula:

Lk = Z(wi + ui)
M) =k
Where Lk is the charge of the machine Mk calculaigd

information concegninthe sum of agents who have located on this machine,
system static attributes such as the number of :jod&nowing

that:
ui: the sum of the costs of communication withindan
between machines.
ui = hi + gi
C = Z(ai,aj)+ ZC (ai,aj)
M) = M(aj) M) #M (@))

Wherec (ai, aj) number of ticks (unit of time) needed to
establish communication between two agents ai gnd a
F: factor of degradation of the bandwidth in inteachines
communication.

The agent with the lowest credit will be selected f
migration, because this agent spends most of gstdion
time in communication with remote agents. The lorat
policy is to identify the remote agent that genedathe

usin@rgest flow communication with the agent to migrakhus

the machine where the agent is selected will benths
destination.

interpreted at Java Virtua The Limits of Comet is that it does not deal wittet

following cases:

- If the machine chosen by the location policioeded

If the agent selected by the selection policesdmot

communicate with any external agent, which mackine

choose?

- the algorithm does not specify whether the doieffits
x1, x2 andx3 agent would change after its migration to a
new machine or not.

In addition, the algorithm considers that mobilesr@g

decreased. JIAC offers relocation transparency Mwhisystem is the only system installed on the machonet, is

maintains that service requests never get losth Bbée
service provisioning activity and the agent movemane

25

not the case in reality, until now there is no epieg
system based on mobile agent, there is only managem

I nternational Journal of Soft Computing and Engineering (1JSCE)

software of mobiles agents, so the consumptioesdurces
is shared between applications of mobiles agerdsodmer
applications on the operating system.

V. THE SHADOW AGENT MODEL

The shadow agent model basically refers to the ejaiisc
of agents and placeescribed in detail in [14], [15] and [5].
Since the shadow is already within the system,athents
don't need to contact either the application or tha
computer system containing the application.

that do not have yet a related shadow agent. Tthew,are
considered as orphan agents and automatically redgnov
In case a new agent is created by another onasy#tem
assigns to the new agent the shadow of the creagjegt.
This process causes the agent to load more batarfgin

creating other agent, whereas the shadow agentskee

controlling the load balancing and the same remgini
(Fig.1).

Place

Shadow
agent

Fig.1 creating new agents

Durin
intervals calledtime to livethe system checks for agents

I SSN: 2231-2307, Volume-2, I ssue-6, January 2013

The agent’'s destination node is stored in the proxy
together with its ttl, when it migrates to anothede. When
the time to live becomes 0, the agent sends a seéqii¢he
ttl to the agent’'s shadow to extend its life; ttiere, the
agent's new place is made known to the Shadowfalcief
knowing the location of agents allows knowing timeoaint
of charge in each node.

The agent’s place decrement in regular intervadiine
to live until it becomes 0. At this time, a message

ontaining the ID of mobile agent and shadow iarredd to

e shadow agent. At the same time, a timer igergd

with a timeout and the agent enters the verificaperiod.
Each shadow has a particular timeout with the dimare
flexibility. However, this corrected by enteringpar-place
timeout. The chosen timeout is the minimum of agerd
place timeout.
Once the home place of the shadow receives thekchec
essage, it stops the timer that has been staréeibpsly,
and then the time to live is sent back to the corexd agent.
This allows detecting terminated agents. The agaqiests
ttl from the responsible shadow. This latter vesfthe ttl if
it is superior to 0. if it is so the system sendsack to the
requesting agent. When the agent receives the gestte
timer for the timeout stops, and the agent’s ttsé$. This
ends the agent’s check phase and allows it to roatits
work again. When an agent arrives at a place, genta
proxies are searched. If none exists, a new omeeisted,
and the agent gets a reference on it. As soon agyent
wants to depart, its ttl is checked. This is danprevent an
agent who is in the check phase to move arouritidfnot
in the check phase, the information in the ageokyris
updated to point to the target place. At the same ta
timer is started, that removes the path after tiditian of
remaining ttl and timeout [5].

The shadow can decide whether an agent’s lifetsme i

By removing a shadow agent all relied agents afee extended or not and by which interval. This sieai will

affirmed orphans. It guarantees that orphan detedtias

be clearly pored over when we discuss it in thedloa

removed all agents. Adding the path concept to thi@lancing by giving the shadow agent the possybit

approach allows more control of the mobiles ageftent
proxies maintain the relationship between the stadnd
its dependent agents, (that fortifies the use ef shadow
agent like a load balance controlling) thus creapath that
leads to the agent. Storing the last place of gentallows
us to find the beginning of a path for each ag&wen
though the path is lost, the agent will need totacinthe
shadow when the ttl becomes zero [5].

If an agent arrives at a place that has no proxythe
shadow (Fig. 2), one is created to retrieve theilresf
distributed computing.

Fig. 2 the use of proxy for the recuperation ofdlgent path

26

giving the agent the order to migrate to the uridaded
nodes.

VI. OURCONTRIBUTION:

A. How to estimate the nodes load:

To estimate workload of a particular node of thetem,
CPU utilization of the node is the measure uselre3hold
policy is used to decide whether a node is lighibded or
heavily loaded. It can be static where each node &a
predefined entry value depending on its processing
capability. Whereas in dynamic the threshold vatdiea
node is calculated Location policies [1]

B. The agent’s execution location:

At the start, the system stores in a database the
information on the load on all nodes and the oVeratem
load by creating a Receiver agent at every nodehef
network (fig. 3), The receiver agent is responsifide
sending information about resources and the nodd Ip
which it was created (Fig. 4). The receiver agéa bther
mobile agents also asks to continue the ttl exiatexving
the system to maintain its base of support provioleeach
machine update, which allows us to have a veryilflex
system change rapid weight, loads on the network.

L oad Balancing M anagement by Efficient Controlling M obiles Agents

> M. 3

Plsce or nade Shadow sgent ament

OO CE

Fig.3 Receiver agent

public wvoid sendlLoadCPU{Place place){
OperatingSystemMXBean besan =
ManagementFactory . getOperatingSystemMXBean ()
if (bean == null)
throw new
NullFointerException(“"Unable to collect
operating system metrics, jmx bean is null™);

ACLMessage msg = newMsgi
ACLMessage.PUERY _REF);
String receiverbLocatiom =
this.currentPlace. getAddress();
String content =
String.valueof(bean. getAvailableProcessors())=""
+5tring. valuedf(bean. getSystemloadAverage(})+" "+
receiwerlLocation;
msg. setContent{ content);
msg.addReceiver(place.getAID()):
send{msg);
¥

AfLMessage newMsg{ int perf)
ACLMcs sage msg — now ACLMessage(perf) ;

return msg;

¥

Fig.4 function of the Receiver agent used in the
application that allows the recuperation of the ead

Then a shadow agent will be created in the sanmeemé

Fig.5the function treating the ttl demand for createerag

The principle of our solution lies in the fact thte
request message ttl is accompanied by informationhe
implementation status of the agent, which is thdentwad
from which the request was sent. Whenever the shado
agent receives a ttl request, it verifies the ekienwstate of
the agent. If the agent has already finished itk tdne
shadow renews the ttl. If not, if the agent is dimgi
execution, the shadow seeks in the database all the
neighbors of the node that contains the agentgbat the
request and compares ttl node load with the loadaah
neighboring node. If it finds that the node thahteins the
agent is less loaded it renews the ttl. If not beoanpanied
the ttl by an order of migration to the neighbodeaawith
the lightest load (Fig. 6).

| receiving the TTL

e T T—— YES
= the agent has finished its task ———=——

WO

‘mtsm‘gtbnhgn-udmnfﬂumdzthtmﬁiuth

the node that contains the application sourceilltaigo use
the information stored in the database, in whicke th
networks nodes load information have been togethere
the receptor agents managed the agent’s migratighe
least loaded neighbor nodes.

Each time an agent wants to redistribute a new;ldad
sends a message to the shadow agent statingatgion to
create new agents (Fig. 5). Then, the shadow agams a
response containing the ttl assigned to the nevntaged
creates nodes that contain best offers in ternavafability
of resources it needs to send an established dgebé
executed.

public wvoid receiweCheckCreatAgents(Location
From, ATN shadowTd, ATN agentTd,l oration targst)

if (timeToLiwve > @)

i
shadow = shadowList.find(shadowId);
timeTolive = shadow.timeTolLiwe{from, agentId);
Agent createdAgent = new Agemt();
int newTimeTolLive = shadow.timeTolLive(from,
createdAgent.getAID());

startTimer(timeTolLive +
shadow. getTimeQut(agentId), shadow, agentId);

if(newTimeToLive>@)

{

shadow. getTimeQut(createdAgent.getAID()), shadow,
createdAgent.getATID()):
createdAgent.doMove(target);

-

agent whe requested for the TIL
-—‘_‘___________ Ei_i;]; Bo ntighlm-r_u_uaé _________'_':—-—
____ﬂ_____
compare the load of the sede that contans the agent
with the load of eack of itz neighbor node

-:_ e ol ol thee e by e MI]!:IJIiEBhﬂnh‘: S

—— R
—— e
i

"
sccompanies tae TIL with '
the order of migration fo ;:dfm

the least louded node o

e

Fig.6 processing algorithm of ttl demand

C. When the agent will change the place:

The case of load balancing applications requiras tte
application should be restored exactly as it wdsrbethe
movement of agents, for it must be transparenth® t
application itself. This requires a strong mobility
mechanism [11], which in turns recommends the exatu
o lar LT e { e TimeToLive + state to be transferred and resumed at the destinabde.
However, some recent works have shown that peculiar
object-oriented support structures can allow loathticing

¥

¥

27

by means of object migration mechanisms which db no
require strong mobility [1]. The advantage of approach

is that it works with both mechanisms- since mobients
can keep their states of execution.

I nternational Journal of Soft Computing and Engineering (1JSCE)

To detect neighbor nodes of the node that conttdias
receiver agent diffuses into the network a Checgheor

I SSN: 2231-2307, Volume-2, I ssue-6, January 2013

VIl. APPLICATION
To illustrate our solution with an example, we have

message. Each time the CheckNeighbor message 9@R8sen JADE for its qualities as it is an open seiit is

through a node the nodes number counter of trafersgympjiant with the FIPA (the Foundation for Intgéint
nodes will be incremented by 1. When the Rece'vqfhysical Agents) and can be compiled for deviceth wi

receives the agent CheckNeighbor message, it egrifie
number of nodes that the message has traverded dqual
to 1, it responds by ImYourNeighbor message coimtgin

the IP address of the node that contains it. Orfee t

Receiver agent receives the response it transfetoed
shadow Home Place after adding the IP addresseafidde
that contains it. The Shadow Home Place handlesoup
insert received data in the given database. Lilks, thve
have the list of all neighboring nodes of the netkwd his
database will be used by the given shadow agent

determine the most suitable node to receive thelynew

created or migratory agentsig. 7).
D. Tasks performed by different agents:

Once the stain of an agent is accomplished, it juoiist

the shadow agent to provide the result of the task

accomplished. However, in case an agent takesgatiome

to terminate its task, the system will need to munits

state. In doing so, it has to find its locationistican be
done with the use of the information stored in #gent
proxies. If the agent is in the local list of aetimgents, it is
already found. If not, the related agent proxyeiarshed. If
it is not found, an error is returned. If it is ciwered, a
find request is sent to the target found in thexpradt the

target place the list of active agents is againremad. If

the agent is found, a message containing its locasi sent
back. If not, the related agent proxy is searctgaira If no

proxy exists, an error is sent back. Otherwise niessage
is sent on. This is repeated until the agent ismdoar the
path ends (see Fig. 8).

L]

———C,
broadcast Chockeighbor message =

1
“message sent L2
YES,

= be ready fo receive messages

1

no . o - YES

s 8 CheckNeighbors message =

NG T L]
s a In'ourhieighbor messsge the mumber of nodes traversed by the meseage = 1 -

o i YES = = L]
ES
L]

desiroy the message.

e 1
20 e Ip aoaresses of the node that -
hotte the agenito the mesangeard | [P MY @usighbor messags,
‘3end It 30 the Home Piace of Shadaw

a

gent

Fig.7 algorithm for the detection of neighboringleo

public String find{AID agentId)
£

2f {agentList. fird{agentId) !'= mull)
return] currentPLlace . getID])] o
mlee iFzhadret ict Find(agersTd] I= nall)

sendrind(This, currercrlace, sgencid);
returnl currsntPFlace | et IO
=

FETUrn null;
=

public woid sendFind{Location place, Location
currentPlace, AID agentID])
K

ACLMessage msyg = newMsg(ACLMessags QUERY REF
5:

String contant — plece. gethees]is" =
currentPlace. gethame(| 774 agentID. gethame(] :

m=zg.setCortent{ contenmt):

mgantEmeey . cand{meg) ;

Fig.8 Finding Agents function used in the applicati

28

limited resources. JADE must be installed on atle® In

our example, we have installed it on tree machines
including a physical machine and the two others on
VMWARE (Fig.9) and (Fig.10). Agents will be created

the node that is the least efficient and the sysidlirtake
care of balancing the load on other nodes.

Node Mumber of BAM Hard disk
numbear | processors
processor speed
to 1 1L/2GHz 156 MB 0GB
2 22GHz 512 MB 0GB
3 L/2GHz 1GB 0GB

Fig.9 used nodes configuration

Wirtual Host 1

R1

Yirtual Host 2

prhysical Host

JRE O #

Fig.10 JADE Agent Platform distributed over several
containers used in the application

We have chosen the example of buyers and Sellers,
which is integrated with JADE. At first, all Selerand
Buyers agents are created in the less high-perfuizena
node. Sellers agents must communicate with eacér,oth
and they should have a high speed of executioret hne
demands of parallel Buyers agents and vice verdaergV/
does the need to use a load balancing approach to
accelerate their response? In our application, awe lused
three Sellers and 60 buyers to implement the load
balancing approach using shadow agent. While swingi
the load on various nodes of the network, the systéll
execute the Sellers Agents in nodes providing thst b
deals in terms of resources.

Buyers Agents request quotes from Sellers Agerga th
proceed to buy at the cheapest price, if it is witthe
budget, otherwise they require a different set obtgs.
Sellers respond to requests with a price that lisl ar a
limited time. The Sellers keep an eye on the ptluey
guote to each customer and accept a purchase fribe
offered is equal to the sum quoted and also ifrtugiest is
received in time. Sellers must be able to managerak
parallel inquiries (Fig.11).

L oad Balancing M anagement by Efficient Controlling M obiles Agents

O Y 300
cepddfiHh FC BE |3 250 /
: F:I ;:-T-llwr-.:-r'ﬂI1..-:|-.‘--.'|._.r-|:-z- T 200 /
150
B an (A 1000/ A0E 100

| == e 1 AL

B h |lr--“.l'-'- STEEATILE D SR EARE
o BE Cortainer-t
i 50 -

D T T 1
0 20 40 60

Al 2 L R e
wpiobempeimih ,_,_w.'ﬁffu'_, Fig.14 Application hardness according to the nunafer
Buyers agents using the Shadow approach
riusibAS 1 ORI
T 1 DFHISCE We note that the execution time of the applicatims
o been reduced by integrating the results of the mhaabent
3 LACE load balancing approach in the application. Theilteof
the shadow approach are more interesting, espeeiién
the number of agents increases.

v Bl Cooevain 3
B buver T0ErtuaEm:

[4

VIIl. CONCLUSION

The more that load balancing by controlling moliteent
significantly reduces application's tasks executiome. It
also allows them total control. The force of theado
Fig.11 screenshot of the application executingclipse balancing by using mobiles agents is reflectechenrnade

We will create a special agent for the applicatiof@t @gents may create other mobiles agents anghass

execution time recovery, which is possible by teeovery them a par:}; r?f tasks akt) ?nyIUm?‘ of the applltln(ano
system date of its creation and its destructiog. (). execution, which improves balancing the use ofriivor

resource. The approach can be further expanded by
improving the communication time between agentsiciwh
are still a subject of considerable research.

peblic class Hawdness extends Agent

long applicetiomStarTime =
Eysten.currentTimetillis() ;

g : o REFERENCES

public lomg getAppliceticnHardress (M . . .
lomg applicaticnEndTine = [1] R. Jadhav, S. Kamlapur I. Priyadarshini, “Perforoeavaluation in

SyctER: pmrentTimeE LIS)) distributed systems, using dynamic load balancinglhternational

uPFEiHﬁ';ﬁ;;::‘i’ﬁf_ T oaptice branEndTiec: - Journal of Applied Information Systems (IJAIS), Rdation of
return hardaess: Computer Science FCS, pages 36-41 February 2012.

[2] H.A. James, K.A. Hawick_and P.D. Coddington, “Saiied)
Independent Tasks on Metacomputing Systems”, Diged and
High Performance Computing Group, 9 March 1999.

[3] N. Spanoudakis, P. Moraitis, “Modular JADE Ageiiissign and

Iy
F

Fig. 12 recovery execution time part code Implementation using ASEME" in IEEE Internationanéerence on
web intelligence and intelligent agent technologgges 221-228,
2010.
500 [4] P. Moraitis and N. Spanoudakis, “The Gaia2JADE Essdor Multi-

Agent Systems Development”, Applied Artificial Ifitigence Journal
20(4-5), pages 251-273, 2006.
400 / [5] J. Baumann, K. Rothermel, “The Shadow Approach,Caphan

Detection Protocol for Mobile Agent”, July 1998.
[6] A. Singh, “An Efficient Load Balancing Algorithm fo Grid

300 ’/ Computing using Mobile Agent” in Anand Singh / Imtational

Journal of Engineering Science and Technology (IJE$®ages
4744-4747, 6 June 2011.

[7] J. Stender, S. Kaiser, S. Albayrak, “Mobility-badedntime Load
Balancing in Multi-Agent Systems” 18th Internatib@onference on
Software Engineering and Knowledge Engineering,dReed City,

100 CA, USA

[8] J. Chakravarti, G. Baumgartner, M. Lauria, “The &ng Grid, Self-
Organizing Computation on a Peer-to-Peer NetworlEEHR

200

0 T T] TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS,
2005.
0 20 40 60 [9] K. Rothermel, M. Schwehm, “MOBILE AGENTS”, in Endgpedia

for Computer Science and Technology, 1998.
[10] P. Sinha, “Distributed Operating Systems Concepid Besign”,

Fig.13 Application hardness according to the nunatfer IEEE Computer Society Press.

. [11] G. Cabri, L. Leonardi, F. Zambonelli, “Weak andddty Mobility in
Buyers agents without Shadow approach Mobile Agent Applications.

29

I nternational Journal of Soft Computing and Engineering (1JSCE)

[12] S. Fricke, K. Bsufka, J.Keiser, T. Schmidt, R. &&= and S.
Albayrak. “Agent based telematic services and teteapplications”.
In communications of the ACM, 2001.

[13] N. Suri, J. Bradshaw, T. Groth, R. Breedy, A. Hilid R. Jeffers.
“Strong mobility and fine-grained resource coniroNOMADS” in
Fourth international symposium on Mobile Agents)@0

[14] J. Baumann, F. Hohl, N. Radouniklis, K. Rothermel.
“Communication Concepts for Mobile Agent Systems” Mobile
Agents springer-Verlag, pp. 123 - 135, 1997.

[15] J. Baumann, N. Radouniklis. “Agent Groups for MebiRgent
Systems*, in Distributed Applications and Intergdde Systems,
1997.

[16] F. Bellifemine, G. Caire, T. Trucco, G. Rimassa.ADE
PROGRAMMER’S GUIDE", last update: 08-April-2010. Dk 4.0

[17] J. Cao, Y. Sun, X. Wang, S. Das, “Scalable LoadaBzhg on
Distributed Web Servers Using Mobile Agents”.

[18] F. BOUZERAA, “Agents Mobiles et Systéemes Distéislil4
December 2009.

[19] A. Outtagarts, “Mobile Agent-based Applications:Sairvey”, in
International Journal of Computer Science and Netw®ecurity,
VOL.9 No.11, November 2009.

[20] K. Chow, Y. Kwok, H. Jin, Kai Hwang “Comet: A Commication-
Efficient Load Balancing Strategy for Multi-Agent IuSter
Computing”

Bahaj Mohamed was born in 1964, in Ouezzane, Morocco. He got his
PhD in Applied Mathematics, from University of P&rance, in 1993. He

is now working as a Professor at the DepartmenMathematics &
Computer Sciences, University of Hassan ler, Faocoft Sciences &
Technology of Settat, Morocco. His research intsresclude pattern
recognition, Load Balancing & Controls of mobilegeats, Semantic web

& Ontology in MAS.

Soklabi Abdellatif was born in 1985, in El
JADIDA, Morocco. He had a license degree in
computer engineering in 2009 and a master's
degree in computer systems and networks in 2011.
Now he is a PhD researcher in mobiles agents and
web services in Department of Mathematics &
Computer Sciences, University of Hassan ler,
Faculty of Sciences & Technology of Settat,
Morocco. His research interests include, Load
Balancing & Controls of mobiles agents,
Interoperability between different MAS.

Cherti llias was born in 1963, in Oujda, Morocco. He got hiDRh
Applied Mathematics, from University of Rabat, Moco, in 2007. He is
now working as a Professor at the Department of hbtagatics &
Computer Sciences, University of Hassan ler, Facoit Sciences &
Technology of Settat, Morocco. His research interésclude Semantic
web & Ontology in MAS, Controls of mobiles agents.

30

I SSN: 2231-2307, Volume-2, I ssue-6, January 2013

