Database

Explorations

Essays on The Third Manifesto

and related topics

Revision 2, October 2013
(affecting chapters 1, 11, and 19, as previously published at www. theth%am’festo.com)

C. J. Date
and Hugh Darwen

© Copyright 2014 C.J. Date and Hugh Darwen

Hugh Darwen
Sticky Note
See also page 349 (the 367th PDF page) in Chapter 21, where HD added a "sticky note" like this on March 26th, 2016. It concerns possreps for subtypes of system-defined types.

Designations used by companies to distinguish their products are often claimed as trademarks or registered trademarks. In all instances where
the authors are aware of a claim, the product names appear in initial capital or all capital letters. However, readers should contact the
appropriate companies for more complete information regarding trademarks and registration.

There are two ways of constructing a software design:
One way is to make it so simple that there are obviously no deficiencies,
and the other way is to make it so complicated
that there are no obvious deficiencies.
—C. A. R. Hoare

——— ¢ ———

In science it often happens that scientists say, “You know, that’s a
really good argument, my position is mistaken,” and then they actually change
their minds, and you never hear that old view from them again. They really do it.
It doesn’t happen as often as it should, because scientists are human
and change is sometimes painful. But it happens every day.
I cannot recall the last time something like that happened
in politics or religion.

—Carl Sagan
——— ¢t ——
Experience is what allows us to recognize a mistake
when we make it the second time.
—Anon.

——— 44—

To all those who have contributed, and continue to contribute,
to our efforts to make The Third Manifesto
the best it can possibly be

PART I

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Contents
Preface xv
FOUNDATIONS 1
The Third Manifesto 3

RM prescriptions 4

RM proscriptions 12

OO prescriptions 12

OO proscriptions 13

RM very strong suggestions 13
OO very strong suggestions 14
Recent Manifesto changes 14

What's a Predicate? 17

Terms used in the literature 17

Predicates and sentences 19

Overlooking the distinction 21

Equal predicates 23

Equivalent predicates 23

References and bibliography 25
Appendix A: A survey of the literature 25

The Naming of Types 31

Scalar types 31

Relation types 32

Scalar values 35

Relation values 36

Revising the Manifesto (?) 36
References and bibliography 38

Setting the Record Straight
(Part 1 of 6): The Two Great Blunders 39

The Two Great Blunders 40
Logical inconsistencies (?) 40
References and bibliography 41

vi Contents

Chapter 5 Setting the Record Straight
(Part 2 of 6): Treating Operators as Relations 43

What we were trying to do 44

Responses to specific criticisms 44
Mathematical relations vs. database relations 46
Mapping binary m-relations to 77M-relations 48
Mapping TTM-relations to binary m-relations 49
Operator invocation 50

References and bibliography 52

Chapter 6 Setting the Record Straight
(Part 3 of 6): “Semantic Compositionality” 53

Detailed responses 53
References and bibliography 58

Chapter 7 Setting the Record Straight
(Part 4 of 6): Integrity and Assignment 59

What was changed? 60

What breach of integrity? 60
What erroneous conclusions? 60
A possible discipline 62
References and bibliography 62

Chapter 8 Setting the Record Straight
(Part 5 of 6): Relation Valued Attributes 63

A simple example 63

Representing propositions (I) 64
Representing propositions (II) 65
Dispensing with outer join 67
Database design issues 69
Summarization queries 71

Is our position “contrary to Codd”? 71
A remark on constraints 72

Are we complicating the relational model? 72
Implications for relational algebra 73
Concluding remarks 75

References and bibliography 76

Chapter 9

Chapter 10

PART II

Chapter 11

Setting the Record Straight
(Part 6 of 6): Nulls and Three-Valued Logic

General observations 77

What’s wrong with nulls and 3VL? 78
Gittens's suggestion 82

References and bibliography 84

How to Update Views 85

The running example 85

Updating is set at a time 86

The Golden Rule 87

The Assignment Principle 88

The cascade delete rule 89
Compensatory actions 91

The Principle of Interchangeability 93
More on information equivalence 94
The Principle of Database Relativity 95
More on compensatory actions 96
What about triggers? 101

Many to many joins 102
Summarization and aggregation 106
Other relational operations 110
Concluding remarks 110
Acknowledgments 111

References and bibliography 111

Appendix A: More on many to many joins 112
115

Appendix B: An important logical difference

Appendix C: Toward perfect view updating (?)

LANGUAGE DESIGN 125
Tutorial D 127

Common constructs 130
Scalar definitions 133

Tuple definitions 136
Relational definitions 136
Scalar operations 138

Tuple operations 142
Relational operations 146
Relations and arrays 155
Statements 156

Recent language changes 158
Acknowledgments 160
References and bibliography 161

Contents

77

122

vii

viii Contents

Appendix A: A remark on syntax 161
Appendix B: Empty lists and commalists 162

Chapter 12 A Brief History of the Relational Divide Operator 169

The running example 169

Codd’s divide 170

Issues with Codd’s divide 175

The Small Divide 178

Todd’s divide 180

The Great Divide 182

Generalizing the Small Divide 184
Generalizing the Great Divide 185
Darwen’s divide 186

Conclusions 189

Acknowledgments 190

References and bibliography 191
Appendix A: Relational comparisons 192
Appendix B: Predicate logic 194
Appendix C: A remark on SQL 195
Appendix D: We can all make mistakes 196

Chapter 13 Inclusion Dependencies and Foreign Keys 199

Foreign keys 200

Example 1: A one to one relationship 205
Example 2: More on one to one relationships 208
Example 3: A sixth normal form design 209
Example 4: Simple renaming 210

Example 5: More on renaming 212

Example 6: Generalizing the target 214
Example 7: More on generalizing the target 215
Example 8: Generalizing the source 216
Example 9: More than one target 218

Example 10: Compensatory actions 220

Some implementation issues 223

Concluding remarks 226

References and bibliography 228

Appendix A: A little history 229

Appendix B: Foreign keys vs. pointers 235

Chapter 14 Image Relations 237

Definitions 239

Terminology and notation 242

Image relations and WHERE clauses 244
Image relations and EXTEND 247

Chapter 15

Chapter 16

Chapter 17

Image relations and constraints 252
Detailed specifications 254
Conclusions 257

Acknowledgments 261

References and bibliography 261
Appendix A: A little history 262
Appendix B: Examples 1-15in SQL 266

N-adic vs. Dyadic Operators: An Investigation 273

Commutativity and associativity 274
The COMPOSE operator 276
Logical operators (I) 279

A remark on syntax 281

Logical operators (II) 281

Exclusive union 283

Concluding remarks 284

Toward an Industrial Strength Dialect of Tutorial D

Built in scalar types 285

Named constants 285

Keys 287

Foreign keys 288

Relational read-only operators 288
Image relations 292

Relational update operators 294
Other changes 295

Further possibilities 295
References and bibliography 296

A Remark on Prenex Normal Form 297

Background 297

Prenex normal form 298
Transforming predicates 299
The PNF conjecture 300
Shedding some light (?) 300
What do we conclude? 302
Acknowledgments 303
References and bibliography 303

285

Contents

ix

X Contents

Chapter 18

PART III

Chapter 19

Chapter 20

Chapter 21

Orthogonal Language Design: How Not to Do It 305
References and bibliography 308

TYPE INHERITANCE 309

The Inheritance Model 311

IM prescriptions 311

The Inheritance Model: What Was Changed and Why 319

IM prescription 1~ 319
IM prescription 2 320
IM prescription 3 320
IM prescription4 320
IM prescription 5 320
IM prescription 6 320
IM prescription 7 321
IM prescription 8 322
IM prescription 9 325
IM prescription 10 326
IM prescription 11~ 326
IM prescription 12 326
IM prescription 13 327
IM prescription 14 330
IM prescription 15 330
IM prescription 16 330
IM prescription 17 331
IM prescription 18 334
IM prescription 19 334
IM prescription 20 334
IM prescription 21 336
IM prescription 22 337
IM prescription 23 337
IM prescription 24 339
IM prescription 25 341
IM prescription 26 344
Concluding remarks 345

Extending Tutorial D to Support the Inheritance Model 347

Selectors for system defined types 347
Scalar type definitions 349

Operator definitions 350

TREAT and related operations 351
Type testing and related operations 353

Chapter 22

PART IV

Chapter 23

Chapter 24

Appendix A: Union types 354
Toward a Better Understanding of Numeric Data Types

The inheritance model 358

Integer pairs and rational numbers 361

More on rational addition and multiplication 364
The field of rational numbers 365

Overloading and inclusion polymorphism 366
Integers aren’t rational numbers 367

The true situation 368

Conclusions 370

Acknowledgments 370

References and bibliography 371

MISSING INFORMATION 373
The Decomposition Approach 375

Vertical decomposition 376
Horizontal decomposition 378
Constraints 381

Multiple assignment 383

Queries 384

How much can be done today? 387
References and bibliography 388

The Multirelational Approach 391

Some relational terminology 394
What’s a multirelation? 395
Selector operators 397
Comparison operators 399
Algebraic operators 399
Multirelation variables 419
Constraints 419

Normal forms 422

Update operators 423

Virtual relvars and multirelvars 425
Interpretation 425

Potential applications 427
Some outstanding questions 428
Acknowledgments 429
References and bibliography 429

357

Contents

xi

xii Contents
Chapter 25 An Inheritance Approach 431

The running example 432

Introducing PM_ types 433

Union and dummy types 435

The complete type schema 436

Some implications of the foregoing 437
Tentative conclusions 442

How many “missing values” do we need? 443
References and bibliography 443

Chapter 26 An Approach Using Relation Valued Attributes 445

The running example 445

Queries 448

Constraints 450

Updates 450

Some possible shorthands 450

Could subtyping help? 454

Recording reasons for information being missing 455
Concluding remarks 455

Chapter 27 Is SQL’s Three-Valued Logic Truth Functionally Complete? 457

SQL’s three-valued logic 458

SQL’s connectives 460

SQL’s monadics 462

Compositions of the monadics 464

Disjunctions and conjunctions of the monadics 464
SQL’s dyadics 467

A remark on Codd’s three-valued logic 470
Acknowledgments 470

References and bibliography 470

Appendix A: SQL’s 3VL, warts and all 471

Chapter 28 A Critique of Nulls, Three-Valued Logic, and Ambiguity in SQL:
Critiquing Date's Critique 481

The original example 481

The issue of interpretation 482

Do nulls violate the relational model? 483
References and bibliography 484

Chapter 29 Nothing to Worry About 485

PART V

Chapter 30

Chapter 31

MISCELLANEOUS TOPICS 487

Some Normalization Issues:
An Attempt at Clarification 489

The running example 489

The first issue 491

The second issue 491

The third issue 493

But what about redundancy? 495
More on preserving dependencies 496
... And a little more ~ 498

... And still more 500

How to do normalization (?) 500
Acknowledgments 503
References and bibliography 503

Professionals or Practitioners?
Some Reflections on the State of the Database Industry

SQL users 506

Knowing the foundations 507

The real problem 508

The academic / commercial divide 510
Concluding remarks 512

Appendix A: The state of database technology 512

Index 515

505

Contents

xiii

Preface

This book consists of a collection of exploratory essays on database management—more specifically, on issues
arising from and related to The Third Manifesto, which is a proposal by the authors for a foundation for data and
database management systems (DBMSs). Like Codd’s original papers on the relational model, The Third
Manifesto—"the Manifesto” for short—can be seen as a blueprint for the design of a DBMS. It consists in
essence of a rigorous set of principles, stated in the form of a series of prescriptions and proscriptions, that we
require adherence to on the part of a hypothetical database programming language that we call D. We’ve
described those prescriptions and proscriptions in detail in our book Databases, Types, and the Relational Model:
The Third Manifesto, 3rd edition (Addison-Wesley, 2006)—referred to throughout the present book as “the
Manifesto book” for short. Note: More information relating to the Manifesto can be found on the website
www.thethirdmanifesto.com. In particular, information can be found on that website regarding a number of
experimental—and, in at least one case, commercial—implementations of the Manifesto ideas (see later in this
preface).

The present book is arranged into five parts, as follows:

L Foundations

II. Language Design

III. Type Inheritance

IV. Missing Information
V. Miscellaneous Topics

Each part has its own introduction, and further details of individual chapters are left to those introductions.
Most of the chapters were originally meant to stand alone; as a result, some of them contain references and
examples—sometimes even appendixes—whose numbering is unique only within the chapter in question. To a
large extent, we’ve preserved the independence of individual chapters; thus, all references within a given chapter
to, say, Example 3 or Appendix A are to be taken as references to the indicated example or appendix within the
chapter in question. Also, some of the chapters overlap each other a little; we apologize for this fact, but we felt it
was better, as already indicated, to preserve the independence of individual chapters as far as possible.

Note: Most of the chapters started out in life as single-author papers, which explains the use in certain
cases of the first person singular. However, the first person singular can always be interpreted to mean both of us,
barring explicit statements to the contrary. For the record, Chris was the original author for Chapters 3-4, 7-8, 10,
12-15, 17-18, 22, and 27-31; Hugh was the original author for Chapters 2, 5-6, 9, and 23-26; and Chapters 1, 11,
16, and 19-21 were joint productions.

Examples throughout the book are expressed in a language called Tutorial D, which is the language used
for examples in the Manifesto book. The specific version of that language used herein—the most recent version,
in fact, which differs in certain important respects from earlier versions—is defined in Chapter 11 of the present
book. (The differences with respect to those earlier versions are also explained in that chapter.)

Prerequisites

Our target audience is database professionals. Thus, we assume you’re somewhat familiar with both the relational
model and the SQL language (though certain relational and/or SQL concepts are reviewed briefly here and
there—basically wherever we felt such explanations might be helpful). Prior familiarity with The Third Manifesto
would also be advantageous.

XV

xvi Preface

Projects Related to The Third Manifesto

For interest we give here a brief summary of projects related to The Third Manifesto (abbreviated TTM) that have
come to our attention. As previously noted, further information regarding these projects is available at
www.thethirdmanifesto.com, including in each case an essay by the project author(s) on the motivation for the
project in question and the relevance of 77M to it.

" Rel (dbappbuilder.sourceforge.net/Rel.html)
By Dave Voorhis. A faithful implementation of Tutorial D.
- Duro (duro.sourceforge.net)

By René Hartmann. A relational database library based on 77M, written in C; comes with an interpreter
that supports Tutorial D statements.

- D4 (www.alphora.com)
The first known attempt at a commercial implementation of 77M. Syntax similar to Tutorial D.
- Muldis Rosetta (www.muldis.com)
By Darren Duncan. Work in progress on a complete implementation of 77M for Perl users.
- Opus
By David Cauz. In the syntactic style of C, claiming conformance to 77M. Work in progress.
. CsiDB

A C++ library developed internally by an international corporation; used in a general bookkeeping and
accounting application.

. MighTyD (sourceforge.net/projects/mightyd)

A final year project by undergraduate students at the University of Warwick (2005-2006). A prototype
implementation of Tutorial D with some of the extensions proposed for temporal database support by
Date, Darwen, and Lorentzos (see Temporal Data and the Relational Model, Morgan Kaufmann, 2003).

. Web Relational Blocks (services.alphaworks.ibm.com/webrb)
By researchers at IBM. A visual language for constructing enterprise applications, influenced by TTM.
= Dee (www.quicksort.co.uk)
From the developers of ThinkSQL. An implementation of a D as an extension to Python.
- TcIRAL (tclral.sourceforge.net)
An implementation of the relational algebra concepts in 77M as an extension of the Tcl language.
" Open Database Project, University of Northumbria (computing.unn.ac.uk/openDBproject/)

A proposed proof of concept of 77M using RAQUEL, a language devised prior to the first publication of
TT™.

- Ingres D (community.ingres.com/wiki/Project_D)

Preface xvii

A project to add support for Tutorial D to Ingres Database Server.
- SIRA_PRISE (shark.armchair.mb.ca/~erwin)

By Erwin Smout. An effort to build a usable “true relational” DBMS based on 77M, including support for
temporal extensions.

A Note on the Diagrams

This book contains numerous tabular pictures of relations. Double underlining in such pictures is to be interpreted
as follows:

- Case 1 (the relation depicted is a sample value for some relvar R): In this case, double underlining
indicates that a primary key PK has been declared for R and the pertinent attribute is part of PK.

Case 2 (the relation depicted is a sample value for some relational expression rx, where rx is something
other than a simple relvar reference): In this case, 7x can be thought of as defining some temporary relvar
R, and double underlining indicates that a primary key PK could in principle be declared for R and the
pertinent attribute is part of PK.

Acknowledgments

Each chapter includes specific thanks to reviewers and other parties who helped in one way or another with the
chapter in question. In addition, we would once again like to thank our wives Lindy Date and Lindsay Darwen
for their support throughout the production of this book and all of its predecessors. We would particularly like to
thank Lindy for allowing us to reproduce a piece of her artwork (“Mount St. Helena™) on the front cover.

Publishing History
A few of the chapters in this book are based on earlier published writings, as indicated below.

. “The Third Manifesto” (Chapter 1), “Tutorial D” (Chapter 11), and “The Inheritance Model” (Chapter 19):
Based on Chapters 4, 5, and 13, respectively, of Databases, Types, and the Relational Model: The Third
Manifesto (3rd edition, Addison-Wesley, 2006); revised versions published by permission of Pearson
Education, Inc.

- “Setting the Record Straight, Parts 1-6” (Chapters 4-9): Based on a series of articles appearing in DB/M
Magazine (Array Publications, Netherlands, 2007-2008); revised versions published by permission of
Array Publications b.v. (Netherlands).

- “Orthogonal Language Design: How Not to Do It” (Chapter 18): Based on an article of the same name
that appeared in Business Rules Journal on the website www.BRCommunity.com (2007); this version
published by permission of Business Rule Solutions, Inc.

- “A Critique of Nulls, Three-Valued Logic, and Ambiguity in SQL. Critiquing Date’s Critique” (Chapter
28): Based on an earlier paper of the same name in ACM SIGMOD Record 37, No. 3 (September 2008);
this version published by permission of ACM.

- “Nothing to Worry About” (Chapter 29): Based on an article of the same name that appeared on the
website www.dbdebunk.com (December 2004) and elsewhere; this version published by permission of
Fabian Pascal.

C. J. Date / Hugh Darwen Healdsburg, California / Shrewley, England
2010

xviii Preface

About the Authors

C. J. Date is an independent author, lecturer, researcher, and consultant, specializing in relational database
technology. He is best known for his book An Introduction to Database Systems (8th edition, Addison-Wesley,
2004), which has sold over 825,000 copies at the time of writing and is used by several hundred colleges and
universities worldwide. He is also the author of many other books on database management, including most
recently Logic and Databases: The Roots of Relational Theory (Trafford, 2007); The Relational Database
Dictionary, Extended Edition (Apress, 2008); and SQL and Relational Theory: How to Write Accurate SOL Code
(O'Reilly, 2009). He was inducted into the Computing Industry Hall of Fame in 2004.

Hugh Darwen was employed in IBM’s software development divisions from 1967 to 2004. In the early part of
his career, he was involved in DBMS development; from 1978 to 1982, he was one of the chief architects of an
IBM product called Business System 12, a product that faithfully embraced the principles of the relational model.
He was an active participant in the development of the international standard for SQL (and related standards) from
1988 to 2004. Based in the U.K., he currently teaches relational database theory at Warwick University and is a
tutor and course development consultant for the Open University. His book An Introduction to Relational
Database Theory, based on his lectures at Warwick, was published in 2009 as a free download at
http://bookboon.com/uk/student/it.

Part I

FOUNDATIONS

This part of the book consists of ten chapters. Chapter 1 is a self-contained and updated definition of The Third
Manifesto as such (“the Manifesto” for short). Chapter 2 is an investigation into a question that underpins the
Manifesto, as well as just about everything else in the book: viz., what exactly is a predicate? Chapters 3-9 are
detailed responses to certain criticisms of the Manifesto that have appeared in the literature in the past couple of
years. Chapter 10 consists of an extended argument in support of the position that, contrary to popular belief,
there’s no such thing as a view that’s intrinsically nonupdatable.

Chapter 1

The Third Manifesto

... the powerful plain third manifesto
—with apologies to Stephen Spender

These principles are eternal, and will remain eternal
—unidentified politician, quoted in a recent news item

This chapter provides a precise and succinct definition of the various components that go to make up The Third
Manifesto (“the Manifesto” for short). The bulk of the chapter consists of a revised version of Chapter 4 from the
book Databases, Types, and the Relational Model: The Third Manifesto, 3rd edition, by C. J. Date and Hugh
Darwen, Addison-Wesley, 2006 (“the Manifesto book” for short). The principal revisions are as follows:

This introductory section has been added. Its purpose is to make the chapter more self-contained by
providing definitions and explanations of terms used in the rest of the chapter.

Numerous changes have been made at the detail level.

The final section (“Recent Manifesto Changes”) has been completely rewritten. In the Manifesto book, it
served to summarize differences between the Manifesto as defined therein and the version defined in that
book’s predecessor (viz., Foundation for Future Database Systems: The Third Manifesto, 2nd edition, by
C.J. Date and Hugh Darwen, Addison-Wesley, 2000); now it summarizes differences between the
Manifesto as defined in the present chapter and the version defined in the Manifesto book.

Here now are the promised definitions and explanations of terms (extracted, mostly, from earlier chapters

of the Manifesto book but reworded somewhat here):

D: The Manifesto makes repeated reference to a hypothetical language it calls D. However, the name D is
merely a useful generic label; any language that conforms to the principles laid down in the Manifesto is a
valid D (and any language that fails so to conform is not a valid D).

Tutorial D: The Manifesto book includes a fairly formal (though certainly not rigorous) definition of a
particular D it calls Tutorial D. Tutorial D is a computationally complete programming language with
fully integrated database functionality. However, it’s deliberately not meant to be industrial strength;
rather, it’s a “toy” language, whose principal purpose is to serve as a teaching vehicle. Thus, many
features that would be required in an industrial strength language are intentionally omitted; in particular, it
includes no exception handling, no I/O facilities, and no authorization features of any kind.

“RM” and “O0”: The Manifesto defines a number of prescriptions and proscriptions that D is required to
adhere to. Prescriptions that arise from the relational model are called Relational Model Prescriptions
(RM Prescriptions). Prescriptions that do not arise from the relational model are called Other Orthogonal
Prescriptions (OO Prescriptions). Proscriptions are similarly divided into RM and OO categories. The
Manifesto also includes a series of Very Strong Suggestions, likewise divided into RM and OO categories.

Expression: The term expression refers to the representation in concrete syntactic form of a read-only
operator invocation. Observe in particular that variable references are regarded as expressions in exactly
this sense; so too are constant references (see RM Prescription 19). Note: Two important examples of the

3

Part 1/ Foundations

latter, not explicitly referenced in the Manifesto as such but supported by Tutorial D, are TABLE DUM
and TABLE DEE. TABLE DEE is the unique relation with no attributes and just one tuple—the empty
tuple, of course—and TABLE _DUM is the unique relation with no attributes and no tuples at all.

Literal: A literal is an expression denoting a selector operator invocation (see RM Prescriptions 4, 9, and
10) in which every argument expression is a literal in turn. In other words, a literal is, loosely, what’s
sometimes called a self-defining symbol; i.e., it’s a symbol that denotes a value that’s fixed and determined
by the symbol in question, and hence can be determined at compile time (and the type of that value is
therefore also fixed and determined by the symbol in question, and can also be determined at compile
time). Observe that there’s a logical difference between a literal as such and the value it denotes.

Argument and argument expression: An argument is what’s substituted for a parameter when an operator
is invoked; it’s denoted by an argument expression, which is part of the representation in concrete syntactic
form of the operator invocation in question. An argument is either a value or a variable. To be specific, if
the parameter in question is subject to update (see RM Prescription 3), the argument must be a variable
(and the corresponding argument expression must be a variable reference specifically, denoting the
variable in question); otherwise it must be a value (though the corresponding argument expression might
still be just a variable reference, denoting in this case the current value of the variable in question).

Scalar: Loosely, a type is scalar if and only if it has no user visible components, and nonscalar if and only
if it’s not scalar; and values, variables, attributes, operators, parameters, and expressions of some type T
are scalar or nonscalar according as type 7T itself is scalar or nonscalar. But these definitions are only
informal, and the Manifesto doesn’t rely on the scalar vs. nonscalar distinction in any formal sense. For
the purposes of the Manifesto, in fact, the term scalar type can be taken to mean a type that’s neither a
tuple type nor a relation type, and the term nonscalar type can be taken to mean a type that is either a tuple
type or a relation type. The terms scalar value, nonscalar value, scalar operator, nonscalar operator, etc.,
can be interpreted analogously.

Ordered type: An ordered type is a type for which a total ordering is defined. Thus, if T is such a type and
vl and v2 are values of type 7, then (with respect to that ordering) exactly one of the following
comparisons returns TRUE and the other two return FALSE:

vl < v2 vl = v2 vl > v2

One last point: The Manifesto book also includes a detailed proposal for a model of type inheritance.

However, everything to do with that inheritance model is ignored in the Manifesto per se, except for very brief
mentions in RM Prescription 1, OO Prescription 2, and OO Very Strong Suggestion 1. The concepts of the
inheritance model extend, but do not otherwise invalidate, the concepts of the Manifesto per se.

L.

A scalar data type (scalar type for short) is a named set of scalar values (scalars for short). Given an
arbitrary pair of distinct scalar types named 7'/ and 72, respectively, with corresponding sets of scalar
values S/ and S2, respectively, the names 77 and 72 shall be distinct and the sets S/ and S2 shall be
disjoint; in other words, two scalar types shall be equal—i.e., the same type—if and only if they have the
same name (and therefore the same set of values). D shall provide facilities for users to define their own
scalar types (user defined scalar types); other scalar types shall be provided by the system (built in or
system defined scalar types). With the sole exception of the system defined empty type omega (which is
defined only if type inheritance is supported—see OO Prescription 2), the definition of any given scalar
type T shall be accompanied by a specification of an example value of that type. D shall also provide
facilities for users to destroy user defined scalar types. The system defined scalar types shall include type
boolean (containing just two values, here denoted TRUE and FALSE), and D shall support all four

Chapter 1 / The Third Manifesto 5

monadic and 16 dyadic logical operators, directly or indirectly, for this type.

All scalar values shall be typed—i.e., such values shall always carry with them, at least conceptually,
some identification of the type to which they belong.

A scalar operator is an operator that, when invoked, returns a scalar value (the result of that invocation).
D shall provide facilities for users to define and destroy their own scalar operators (user defined scalar
operators). Other scalar operators shall be provided by the system (built in or system defined scalar
operators). Let Op be a scalar operator. Then:

a. Op shall be read-only, in the sense that invoking it shall cause no variables to be updated other than
ones local to the code that implements Op.

b. Every invocation of Op shall denote a value (“produce a result”) of the same type, the result type—
also called the declared type—of Op (as well as of that invocation of Op in particular). The
definition of Op shall include a specification of that declared type.

c. The definition of Op shall include a specification of the type of each parameter to Op, the declared
type of that parameter. If parameter P is of declared type 7, then, in every invocation of Op, the
expression that denotes the argument corresponding to P in that invocation shall also be of type T,
and the value denoted by that expression shall be effectively assigned to P. Note: The
prescriptions of this paragraph c. shall also apply if Op is an update operator instead of a read-only
operator (see below).

It is convenient to deal with update operators here as well, despite the fact that such operators are
not scalar (nor are they nonscalar—in fact, they are not typed at all). An update operator is an operator
that, when invoked, is allowed to update at least one variable that is not local to the code that implements
that operator. Let } be such a variable. If the operator accesses V' via some parameter P, then that
parameter P is subject to update. D shall provide facilities for users to define and destroy their own
update operators (user defined update operators). Other update operators shall be provided by the system
(built in or system defined update operators). Let Op be an update operator. Then:

d. No invocation of Op shall denote a value (“produce a result”).

e. The definition of Op shall include a specification of which parameters to Op are subject to update.
If parameter P is subject to update, then, in every invocation of Op, the expression that denotes the
argument corresponding to P in that invocation shall be a variable reference specifically, and, on
completion of the execution of Op caused by that invocation, the final value assigned to P during
that execution shall be effectively assigned to that variable.

Let T'be a scalar type, and let v be an appearance in some context of some value of type 7. By definition, v
has exactly one physical representation and one or more possible representations (at least one, because
there is obviously always one that is the same as the physical representation). Physical representations for
values of type T shall be specified by means of some kind of storage structure definition language and
shall not be visible in D. As for possible representations:

a. If T is user defined, then at least one possible representation for values of type T shall be declared
and thus made visible in D. For each possible representation PR for values of type 7 that is visible
in D, exactly one selector operator S, of declared type 7, shall be provided. That operator S shall
have all of the following properties:

1. There shall be a one to one correspondence between the parameters of S and the components
of PR (see RM Prescription 5). Each parameter of S shall have the same declared type as the

6

Part 1/ Foundations

corresponding component of PR.

2. Every value of type T shall be produced by some invocation of S in which every argument
expression is a literal.
3. Every successful invocation of S shall produce some value of type T.
b. If T'is system defined, then zero or more possible representations for values of type T shall be

declared and thus made visible in D. A possible representation PR for values of type T that is
visible in D shall behave in all respects as if 7 were user defined and PR were a declared possible
representation for values of type 7. If no possible representation for values of type T is visible in D,
then at least one selector operator S, of declared type 7, shall be provided. Each such selector
operator shall have all of the following properties:

1. Every argument expression in every invocation of S shall be a literal.
2. Every value of type T shall be produced by some invocation of S.
3. Every successful invocation of S shall produce some value of type T.

Let some declared possible representation PR for values of scalar type 7 be defined in terms of
components CI, C2, ..., Cn (n > 0), each of which has a name and a declared type. Let v be a value of type
7T, and let PR(v) denote the possible representation corresponding to PR for that value v. Then PR(v) shall
be exposed—i.e., a set of read-only and update operators shall be provided such that:

a. For all such values v and for all i (i = 1, 2, ..., n), it shall be possible to “retrieve” (i.e., read the
value of) the Ci component of PR(v). The read-only operator that provides this functionality shall
have declared type the same as that of Ci.

b. For all variables V of declared type T and for all i (i = 1, 2, ..., n), it shall be possible to update V in
such a way that if the values of " before and after the update are v and v' respectively, then the
possible representations corresponding to PR for v and v’ (i.e., PR(v) and PR(v"), respectively) differ
in their Ci components.

Such a set of operators shall be provided for each possible representation declared for values of type T.

D shall support the TUPLE type generator. That is, given some heading H (see RM Prescription 9), D
shall support use of the generated type TUPLE H as a basis for defining (or, in the case of values,
selecting):

a. Values of that type (see RM Prescription 9)
b. Variables of that type (see RM Prescription 12)

c. Attributes of that type (see RM Prescriptions 9 and 10)

d. Components of that type within declared possible representations (see RM Prescription 5)
e. Read-only operators of that type (see RM Prescription 20)

f. Parameters of that type to user defined operators (see RM Prescriptions 3 and 20)

The generated type TUPLE H shall be referred to as a tuple type, and the name of that type shall be,
precisely, TUPLE H. The terminology of degree, attributes, and heading introduced in RM Prescription
9 shall apply, mutatis mutandis, to that type, as well as to values and variables of that type (see RM
Prescription 12). Tuple types TUPLE HI and TUPLE H2 shall be equal if and only if H/ = H2. The

Chapter 1 / The Third Manifesto 7

applicable operators shall include operators analogous to the RENAME, project, EXTEND, and JOIN
operators of the relational algebra (see RM Prescription 18), together with tuple assignment (see RM
Prescription 21) and tuple comparisons (see RM Prescription 22); they shall also include (a) a tuple
selector operator (see RM Prescription 9), (b) an operator for extracting a specified attribute value from a
specified tuple (the tuple in question might be required to be of degree one—see RM Prescription 9), and
(c) operators for performing tuple “nesting” and “unnesting.”

Note: When we say “the name of [a certain tuple type] shall be, precisely, TUPLE H,” we do not
mean to prescribe specific syntax. The Manifesto does not prescribe syntax. Rather, what we mean is that
the type in question shall have a name that does both of the following, no more and no less: First, it shall
specify that the type is indeed a tuple type; second, it shall specify the pertinent heading. Syntax of the
form “TUPLE H” satisfies these requirements, and we therefore use it as a convenient shorthand; however,
all appearances of that syntax throughout this Manifesto are to be interpreted in the light of these remarks.

D shall support the RELATION type generator. That is, given some heading A (see RM Prescription 9),
D shall support use of the generated type RELATION H as the basis for defining (or, in the case of
values, selecting):

a. Values of that type (see RM Prescription 10)
b. Variables of that type (see RM Prescription 13)
c. Attributes of that type (see RM Prescriptions 9 and 10)

d. Components of that type within declared possible representations (see RM Prescription 5)
e. Read-only operators of that type (see RM Prescription 20)
f. Parameters of that type to user defined operators (see RM Prescriptions 3 and 20)

The generated type RELATION H shall be referred to as a relation type, and the name of that type shall
be, precisely, RELATION H. The terminology of degree, attributes, and heading introduced in RM
Prescription 9 shall apply, mutatis mutandis, to that type, as well as to values and variables of that type

(see RM Prescription 13). Relation types RELATION HI and RELATION H2 shall be equal if and only if
HI = H?2. The applicable operators shall include the usual operators of the relational algebra (see RM
Prescription 18), together with relational assignment (see RM Prescription 21) and relational comparisons
(see RM Prescription 22); they shall also include (a) a relation selector operator (see RM Prescription 10),
(b) an operator for extracting the sole tuple from a specified relation of cardinality one (see RM
Prescription 10), and (c) operators for performing relational “nesting” and “unnesting.”

Note: When we say “the name of [a certain relation type] shall be, precisely, RELATION H,” we
do not mean to prescribe specific syntax. The Manifesto does not prescribe syntax. Rather, what we mean
is that the type in question shall have a name that does both of the following, no more and no less: First, it
shall specify that the type is indeed a relation type; second, it shall specify the pertinent heading. Syntax of
the form “RELATION H” satisfies these requirements, and we therefore use it as a convenient shorthand;
however, all appearances of that syntax throughout this Manifesto are to be interpreted in the light of these
remarks.

8

10.

Part 1/ Foundations

D shall support the equality comparison operator “=" for every type 7. Let v/ and v2 be values, and
consider the equality comparison v/ =v2. The values v/ and v2 shall be of the same type 7. The
comparison shall return TRUE if and only if v/ and v2 are the very same value. Note: It follows from
this prescription that if (a) there exists an operator Op (other than “=" itself) with a parameter P of declared
type T such that (b) two successful invocations of Op that are identical in all respects except that the
argument corresponding to P is v/ in one invocation and v2 in the other are distinguishable in their effect,
then (c) v/ = v2 must evaluate to FALSE.

A heading H is a set of ordered pairs or attributes of the form <4, 7>, where:
a. A is the name of an attribute of H. No two distinct pairs in A shall have the same attribute name.
b. T is the name of the declared type of attribute 4 of H.

The number of pairs in H—equivalently, the number of attributes of H—is the degree of H.

Now let ¢ be a set of ordered triples <4, 7,v>, obtained from H by extending each ordered pair
<4,T> to include an arbitrary value v of type 7, called the attribute value for attribute 4 of . Thentisa
tuple value (tuple for short) that conforms to heading H; equivalently, ¢ is of the corresponding tuple type
(see RM Prescription 6). The degree of that heading H shall be the degree of 7, and the attributes and
corresponding types of that heading H shall be the attributes and corresponding declared attribute types
of t.

Given a heading H, exactly one selector operator S, of declared type TUPLE H, shall be provided
for selecting an arbitrary tuple conforming to H. That operator S shall have all of the following properties:

1. There shall be a one to one correspondence between the parameters of S and the attributes of H.
Each parameter of S shall have the same declared type as the corresponding attribute of H.

2. Every tuple of type TUPLE H shall be produced by some invocation of S in which every argument
expression is a literal.

3. Every successful invocation of S shall produce some tuple of type TUPLE H.
A relation value 7 (relation for short) consists of a heading and a body, where:

a. The heading of r shall be a heading H as defined in RM Prescription 9; » conforms to that heading;
equivalently, r is of the corresponding relation type (see RM Prescription 7). The degree of that
heading H shall be the degree of 7, and the attributes and corresponding types of that heading A
shall be the attributes and corresponding declared attribute types of r.

b. The body of r shall be a set b of tuples, all having that same heading H. The cardinality of that
body shall be the cardinality of ». Note: Relation r is an empty relation if and only if the set b is
empty.

Given a heading H, exactly one selector operator S, of declared type RELATION H, shall be
provided for selecting an arbitrary relation conforming to . That operator S shall have all of the
following properties:

1. The sole argument to any given invocation of S shall be a set b of tuples, each of which shall be
denoted by a tuple expression of declared type TUPLE H.

2. Every relation of type RELATION H shall be produced by some invocation of S for which the tuple
expressions that together denote the argument to that invocation are all literals.

3. Every successful invocation of S shall produce some relation of type RELATION H: to be specific,

11.

12.

13.

14.

15.

16.

17.

Chapter 1 / The Third Manifesto 9

the relation of type RELATION H with body b.

D shall provide facilities for users to define scalar variables. Each scalar variable shall be named and
shall have a specified (scalar) declared type. Let scalar variable ¥ be of declared type 7, for so long as
variable V exists, it shall have a value that is of type 7. Defining V shall have the effect of initializing V' to
some value—either a value specified explicitly as part of the operation that defines ¥, or some
implementation defined value otherwise. Note: Omitting an explicit initialization value does not preclude
the implementation from checking that no reference is made to scalar variable V until an explicit
assignment to ¥ has occurred. Analogous remarks apply to tuple variables (see RM Prescription 12), real
relvars (see RM Prescription 14), and private relvars (again, see RM Prescription 14).

D shall provide facilities for users to define tuple variables. Each tuple variable shall be named and shall
have a specified declared type of the form TUPLE H for some heading H. Let variable V' be of declared
type TUPLE H; then the degree of that heading H shall be the degree of 7, and the attributes and
corresponding types of that heading A shall be the attributes and corresponding declared attribute types
of V. For so long as variable J exists, it shall have a value that is of type TUPLE H. Defining V shall have
the effect of initializing V" to some value—either a value specified explicitly as part of the operation that
defines ¥, or some implementation defined value otherwise.

D shall provide facilities for users to define relation variables (relvars for short)—both database relvars
(i.e., relvars that are part of some database) and application relvars (i.e., relvars that are local to some
application). D shall also provide facilities for users to destroy database relvars. Each relvar shall be
named and shall have a specified declared type of the form RELATION H for some heading H. Let
variable V' be of declared type RELATION H; then the degree of that heading H shall be the degree of V,
and the attributes and corresponding types of that heading H shall be the attributes and corresponding
declared attribute types of /. For so long as variable V exists, it shall have a value that is of type
RELATION H.

Database relvars shall be either real or virtual. A virtual relvar V' shall be a database relvar whose value
at any given time is the result of evaluating a certain relational expression at that time; the relational
expression in question shall be specified when V' is defined and shall mention at least one database relvar
other than V. A real relvar (also known as a base relvar) shall be a database relvar that is not virtual.
Defining a real relvar ¥ shall have the effect of initializing ¥ to some value—either a value specified
explicitly as part of the operation that defines ¥, or the empty relation of type RELATION H otherwise
(where RELATION H is the type of relvar V).

Application relvars shall be either public or private. A public relvar shall be an application relvar
that constitutes the perception on the part of the application in question of some portion of some database.
A private relvar shall be an application relvar that is completely private to the application in question and
is not part of any database. Defining a private relvar V' shall have the effect of initializing V" to some
value—either a value specified explicitly as part of the operation that defines ¥, or the empty relation of
type RELATION H otherwise (where RELATION H is the type of relvar V).

Every relvar shall have at least one candidate key. At least one such key shall be defined, explicitly or
implicitly, at the time the relvar in question is defined, and it shall not be possible to destroy all of the
candidate keys of a given relvar other than by destroying the relvar itself.

A database shall be a named container for relvars; the content of a given database at any given time shall
be a set of database relvars. The necessary operators for defining and destroying databases shall not be
part of D (in other words, defining and destroying databases shall be done “outside the D environment”).

Each transaction shall interact with exactly one database. However, distinct transactions shall be allowed

10

18.

19.

20.

21.

Part 1/ Foundations

to interact with distinct databases, and distinct databases shall not necessarily be disjoint. Also, D shall
provide facilities for a transaction to define new relvars, or destroy existing ones, within its associated
database (see RM Prescription 13). Every execution of every statement (other than a “begin transaction”
statement—see OO Prescription 4) shall be performed within the context of some transaction. Every
statement execution shall be semantically atomic (i.e., it shall be as if either the statement executes in its
entirety or it fails to execute at all), except possibly if either of the following is the case:

a. The statement in question is not syntactically atomic (i.e., it contains another statement nested
inside itself).

b. The statement in question represents the invocation of a user defined update operator.

D shall support the usual operators of the relational algebra (or some logical equivalent thereof). All
such operators shall be expressible without excessive circumlocution. D shall support type inference for
relation types, whereby the type of the result of evaluating an arbitrary relational expression shall be well
defined and known to both the system and the user. Note: It follows from this prescription that D shall
also support type inference for tuple types, whereby the type of the result of evaluating an arbitrary tuple
expression shall be well defined and known to both the system and the user.

Variable references and constant references shall be valid expressions. The expression ¥V, where V'is a
variable reference, shall be regarded as an invocation of a read-only operator that returns the current value
of variable V. The expression C, where C is a constant reference, shall be regarded as an invocation of a
read-only operator that returns the value of constant C.

D shall provide facilities for users to define and destroy their own tuple operators (user defined tuple
operators) and relational operators (user defined relational operators), and paragraphs a.-c. from RM
Prescription 3 shall apply, mutatis mutandis. Recursion shall be permitted in operator definitions.

D shall support the assignment operator “:=” for every type 7. The assignment shall be referred to as a
scalar, tuple, or relation (or relational) assignment according as 7 is a scalar, tuple, or relation type. Let
and v be a variable and a value, respectively, of the same type. After assignment of v to ¥ (the “target
variable™), the equality comparison ¥ = v shall evaluate to TRUE (see RM Prescription 8).

D shall also support a multiple form of assignment, in which several individual assignments shall
be performed as a single semantically atomic operation. Let M4 be the multiple assignment

Al , A2 , ... , An ;
(where A1, A2, ..., An are individual assignments, each assigning to exactly one target variable, and the

semicolon marks the overall end of the operation). Then the semantics of MA shall be defined by the
following pseudocode (Steps a.-d.):

a. For i := 1 to n, expand any syntactic shorthands involved in 4i. After all such expansions, let M4
take the form

Vi = X1 , V2 := X2, ... , Vz := Xz ;

for some z > n, where Vi is the name of some variable not defined in terms of any others and Xi is
an expression of declared type the same as that of Vi.

b. Let p and g (1 <p < g <z) be such that Vp and Vg are identical and there isno r (r <p orp <r<gq)
such that Vp and V7 are identical. Replace Vg := Xq in MA by an assignment of the form

Vg := WITH (Vg := Xp) : Xqg

22.

23.

24.

Chapter 1 / The Third Manifesto 11
and remove Vp := Xp from MA. Repeat this process until no such pair p and g remains. Let M4
now consist of the sequence
vl := Y1 , U2 :=Y2, ... , Un := Ym ;
where each Ui is some Vj (1 <i<j<m<z).

c. For i :=1to m, evaluate Yi. Let the result be yi.
d. For i := 1 to m, assign yi to Ui.

Note: Step b. of the foregoing pseudocode makes use of the WITH construct of Tutorial D. For further
explanation, see Chapter 11 of Database Explorations (or Chapter 5 of the Manifesto book).

D shall support certain comparison operators, as follows:

a. The operators for comparing scalars shall include “=", “#”, and (for ordered types) “<”, “>”, etc.
b. The operators for comparing tuples shall include “=" and “#” and shall not include “<”, “>”, etc.
c. The operators for comparing relations shall include “=", “#”, “<” (“is a subset of””), and “2” (“is a

superset of””) and shall not include “<”, “>”, etc.
d. The operator “&” for testing membership of a tuple in a relation shall be supported.

In every case mentioned except “<” the comparands shall be of the same type; in the case of “&” they
shall have the same heading. Note: Support for “=" for every type is in fact required by RM Prescription
8.

D shall provide facilities for defining and destroying integrity constraints (constraints for short). Let C
be a constraint. Then C can be thought of as a boolean expression (though it might not be explicitly
formulated as such); it shall be satisfied if and only if that boolean expression evaluates to TRUE, and
violated if and only if it is not satisfied. No user shall ever see a state of affairs in which C is violated.
There shall be two kinds of constraints:

a. A type constraint shall specify the set of values that constitute a given type.

b. A database constraint shall specify that, at all times, values of a given set of database relvars taken
in combination shall be such that a given boolean expression (which shall mention no variables
other than the database relvars in question) evaluates to TRUE. Insofar as feasible, D shall support
constraint inference for database constraints, whereby the constraints that apply to the result of
evaluating an arbitrary relational expression shall be well defined and known to both the system and
the user.

Note: Let database relvars R/ and R2 be distinct and let database constraint DBC mention them both; then
assignment of some relation 7/ to R] will in general require assignment of some relation 72 to R2 in order
that DBC not be violated. The individual assignments R/ :=r/ and R2 := r2 shall be executed as part of
the same multiple assignment operation (see RM Prescription 21). Moreover, if (a) the user requests the
assignment R/ := rl without requesting, as part of the same multiple assignment, some assignment to R2,
but (b) the system is able to determine »2 (from DBC or otherwise) for itself, then (c) the assignment R2 :=
r2 shall be performed automatically (though not necessarily without the user’s knowledge) unless (d) such
automatic assignments have been declaratively prohibited.

Let DB be a database; let DBCI, DBC?2, ..., DBCn be all of the database constraints defined for DB (see
RM Prescription 23); and let DBC be any boolean expression that is logically equivalent to

12 Part 1/ Foundations

(DBC1) AND (DBC2) AND ... AND (DBCn) AND TRUE
Then DBC shall be the total database constraint for DB.

25. Every database shall include a set of database relvars that constitute the catalog for that database. D shall
provide facilities for assigning to relvars in the catalog. Note: Since assignments in general are allowed to
be multiple assignments in particular (see RM Prescription 21), it follows that D shall permit any number
of operations of a definitional nature—defining and destroying types, operators, variables, constraints, and
so on—all to be performed as a single semantically atomic operation.

26. D shall be constructed according to well established principles of good language design.

RM PROSCRIPTIONS

1. D shall include no concept of a “relation” whose attributes are distinguishable by ordinal position. Instead,
for every relation r expressible in D, the attributes of r shall be distinguishable by name.

2. D shall include no concept of a “relation” whose tuples are distinguishable by ordinal position. Instead, for
every relation » expressible in D, the tuples of 7 shall be distinguishable by value.

3. D shall include no concept of a “relation” containing two distinct tuples ¢/ and ¢2 such that the comparison
“t1 = t2” evaluates to TRUE. It follows that (as already stated in RM Proscription 2), for every relation »
expressible in D, the tuples of r shall be distinguishable by value.

4. D shall include no concept of a “relation” in which some “tuple” includes some “attribute” that does not
have a value.

5. D shall not forget that relations with no attributes are respectable and interesting, nor that candidate keys
with no components are likewise respectable and interesting.

6. D shall include no constructs that relate to, or are logically affected by, the “physical” or “storage” or
“internal” levels of the system.

7. D shall support no tuple level operations on relvars or relations.

8. D shall not include any specific support for “composite” or “compound” attributes, since such functionality
can more cleanly be achieved, if desired, through the type support already prescribed.

9. D shall include no “domain check override” operators, since such operators are both ad hoc and
unnecessary.

10. D shall not be called SQL.

OO PRESCRIPTIONS
1. D shall permit compile time type checking.
2. If D supports type inheritance, then such support shall conform to the inheritance model defined in Part

IV of the Manifesto book (as revised in Chapter 19 of Database Explorations).

3. D shall be computationally complete. D may support, but shall not require, invocation from “host
programs” written in languages other than D. D may also support, but shall not require, the use of other
languages for implementation of user defined operators.

4. D shall provide explicit transaction support, according to which:

Chapter 1 / The Third Manifesto 13

a. Transaction initiation shall be performed only by means of an explicit “begin transaction”
statement.
b. Transaction termination shall be performed only by means of a “commit” or “rollback” statement;

commit must always be explicit, but rollback can be implicit (if and only if the transaction fails
through no fault of its own).

If transaction 7°X terminates with commit (“normal termination”), changes made by 7X to the applicable
database shall be committed. If transaction 7X terminates with rollback (“abnormal termination”), changes
made by 72X to the applicable database shall be rolled back.

Optionally, D shall also provide implicit transaction support, according to which any request to
execute some statement S (other than a “begin transaction,” “commit,” or “rollback” statement) while no
transaction is in progress shall be treated as if that statement S is immediately preceded by a “begin
transaction” statement and immediately followed by either a “commit” statement (if statement S executes
successfully) or a “rollback” statement (otherwise).

S. D shall support nested transactions—i.e., it shall permit a parent transaction 7X to initiate a child
transaction 7.X" before TX itself has terminated, in which case:

a. TX and TX' shall interact with the same database (as is in fact required by RM Prescription 17).

b. Whether TX shall be required to suspend execution while 7X’ executes shall be implementation
defined. However, TX shall not be allowed to terminate before 7X' terminates; in other words, 7X"
shall be wholly contained within 7.X.

c. Rollback of TX shall include the rolling back of 7X’ even if 7X" has terminated with commit. In
other words, “commit” is always interpreted within the parent context (if such exists) and is subject
to override by the parent transaction (again, if such exists).

6. Let AggOp be an aggregate operator (other than one that simply returns the cardinality of its operand
relation), and let the relation over which the aggregation is to be done in some given invocation of 4ggOp
be . Without loss of generality, let the items to be aggregated in that invocation of 4ggOp be just the
appearances of values within some attribute 4 of 7. If all of the following are true:

a. AggOp is essentially just shorthand for some iterated dyadic operator Op (e.g., the dyadic operator
is “+” in the case of SUM)

b. An identity value i exists for Op (e.g., the identity value is zero in the case of “+”)

c. The semantics of 4ggOp are not such as to require the result of an invocation to be a value
appearing in 4

then the invocation is equivalent to i Op xI Op x2 ... Op xn, where n (n > 0) is the cardinality of » and x/,
x2, ..., xn are the n appearances of values for 4 in r, arbitrarily ordered.

OO0 PROSCRIPTIONS
L. Relvars are not domains.
2. No database relvar shall include an attribute of type pointer.

RM VERY STRONG SUGGESTIONS

1. D should provide a mechanism according to which values of some specified candidate key (or specified

14

Part 1/ Foundations

components thereof) for some specified relvar are supplied by the system. It should also provide a
mechanism according to which an arbitrary relation can be extended to include an attribute whose values
(a) are unique within that relation (or within certain partitions of that relation), and (b) are once again
supplied by the system.

Let RX be a relational expression. By definition, RX can be thought of as designating a relvar, R say—
either a user defined relvar (if RX is just a relvar name) or a system defined relvar (otherwise). It is
desirable, though perhaps not always feasible, for the system to be able to infer the candidate keys of R,
such that:

a. If RX constitutes the defining expression for some virtual relvar R’, then those inferred candidate
keys can be checked for consistency with the candidate keys explicitly defined for R’ (if any) and—
assuming no conflict—become candidate keys for R".

b. Those inferred candidate keys can be included in the information about R that is made available (in
response to a “metaquery”) to a user of D.

D should provide such functionality, but without any guarantee (a) that such inferred candidate keys are
not proper supersets of actual candidate keys (“proper superkeys”) or (b) that such an inferred candidate
key is discovered for every actual candidate key.

D should support transition constraints—i.c., constraints on the transitions that a given database can
make from one value to another.

D should provide some shorthand for expressing quota queries. It should not be necessary to convert the
relation concerned into (e.g.) an array in order to formulate such a query.

D should provide some shorthand for expressing the generalized transitive closure operation, including
the ability to specify generalized concatenate and aggregate operations.

D should provide some means for users to define their own generic operators, including in particular
generic relational operators.

SQL should be implementable in D—not because such implementation is desirable in itself, but so that a
painless migration route might be available for current SQL users. To this same end, existing SQL
databases should be convertible to a form that D programs can operate on without error.

OO VERY STRONG SUGGESTIONS

1.
2.

Type inheritance should be supported (in which case, see OO Prescription 2).

Let operator Op have a parameter of declared type 7. Then the definition of Op should be logically
distinct from the definition of 7, not “bundled in” with this latter definition. Note: The operators required
by RM Prescriptions 4, 5, 8, and 21 might be exceptions in this regard.

D should support the concept of single level storage.

RECENT MANIFESTO CHANGES

As indicated in the introduction to this chapter, there are several differences between the Manifesto as defined
herein and the version defined in Chapter 4 of the Manifesto book. For the benefit of readers who might be
familiar with that earlier version, we summarize the main differences here. Notes concerning subsequent changes
in the present version have been added. Of course, wherever there’s a discrepancy, the present version should be

Chapter 1 / The Third Manifesto 15

taken as superseding.

RM Prescription 1 has been extended to require that all scalar types, system or user defined, have an
associated example value (except for the special case of the empty scalar type omega, which is part of our
inheritance model—see Chapters 19 and 20 of the present book). Note that it’s a logical consequence of
this new1 requirement that scalar types are always nonempty (again, except for the special case of type
omega).

RM Prescription 1 was further revised in February, 2013. Previously, the first sentence of this Prescription
had been “A scalar data type (scalar type for short) is a named, finite set of scalar values (scalars for
short).” We have removed the word “finite” because it proved to be controversial. We included that word
originally because in practice the set of values that can be supported is constrained by the available
memory space, which is finite.

Several other prescriptions have been revised to drop the explicit requirement that some type be nonempty,
since that requirement is now satisfied implicitly.

Several RM Prescriptions, including RM Prescription 3 in particular, have been reworded slightly to take
account of the logical difference between arguments and argument expressions.

RM Prescription 8 has been simplified, with much of the previous text being recast as a note. In a further
revision (February, 2013), the Prescription was extended to require operands of “="to be of the same type
(as had always been intended).

RM Prescription 10 has been corrected (in fact, the version published in the Manifesto book—which was
an attempt to clarify the version in the second edition of that book—was seriously in error). It has also
been extended slightly to include an explicit definition of the term empty relation.

Bowing to inevitability, RM Prescription 14 has been expanded to allow real relvars to be referred to
alternatively as base relvars.

RM Prescription 17 has been extended to make it clear that (a) statements are generally executed within the
context of some transaction and (b) such statement executions are always semantically atomic, unless
either (a) the statement in question isn’t syntactically atomic (e.g., it’s a CASE statement or an [F
statement), or (b) it’s the invocation of some user defined update operator (i.e., it’s a CALL statement, or
something equivalent to a CALL statement, that causes such an operator to be invoked). Loosely
speaking, in other words, if we assume statements terminate in semicolons, then the unit of “semantic
atomicity” is what comes between consecutive semicolons is (with the sole exception already noted,
regarding CALL statements).

RM Prescription 18 has been extended to include a note pointing out that the requirement that relation type
inference be supported applies to tuple types as well, mutatis mutandis. Also, a sentence listing certain
relational algebra operators that D was required to “support, directly or indirectly” has been deleted, since
it added nothing.

RM Prescription 19 has been completely replaced. Previously it read as follows:

Relvar names and relation selector invocations shall both be valid relational expressions. Recursion shall

' Thanks to Alfredo Novoa for suggesting the idea of example values. Note: We might be persuaded to make specification of such values
optional if it can be shown there’s a serious requirement for user defined empty types.

16

Part 1/ Foundations

be permitted in relational expressions.

The part about relvar names has been generalized to cover names of variables (and constants) of all types.
The part about relation selector invocations is and always was implicit in other prescriptions (RM
Prescription 10 in particular). Finally, the part about recursion was, frankly, always a trifle confused;
however, the original intent has been preserved in the revised version of RM Prescription 20.

The term ordinal type (mentioned in RM Prescription 22) has been replaced by the more appropriate term
ordered type. An ordered type is, as the introduction to this chapter indicates, a type for which a total
ordering is defined—implying that if 7 is such a type, then the expression “v/ <v2” is defined for all pairs
of values v/ and v2 of type T, returning TRUE if and only if v/ precedes v2 with respect to the applicable
ordering. An ordinal type is an ordered type for which certain additional operators are required: first, last,
next, prior, and possibly others. In Tutorial D, for example, type INTEGER is an ordinal type; type
RATIONAL, by contrast, is an ordered type but not an ordinal one. (The rationale here is that if p/q is a
rational number, then—in mathematics at least, if not in computer arithmetic—there is no rational number
that can be said to be the “next” rational number, immediately following p/q.)

RM Prescription 23 has been clarified. It has also been extended slightly to include an explicit definition
of what it means for a constraint to be violated. A note has been added to recognize the possibility that
assignment to relvar R/ might necessitate implicit assignment to other relvars as a means of enforcing
constraints by the mechanism commoly known as compensatory actions.

A note has been added to RM Prescription 25 to point out an important implication that might not be
immediately obvious.

OO Prescription 4 has been extended to allow D to support “implicit transactions.” Note: In practice, we
would expect use of this feature to be limited to the use of D in an interactive environment.

RM Very Strong Suggestion 2 (“foreign key shorthand”) has been deleted, and RM Very Strong
Suggestions 3-8 have been renumbered accordingly. Arguments supporting this change can be found in
Chapter 13 of the present book; in a nutshell, however, we feel that (a) foreign keys as usually understood
are unnecessarily limited in their applicability, and (b) the usual shorthand formulation is often longer than
its longhand equivalent, anyway.

0O Very Strong Suggestion 2 (“types and operators unbundled”) has been made more precise.

In addition to all of the foregoing, many of the prescriptions, proscriptions, and very strong suggestions

have been reworded (in some cases extensively). However, those rewordings in themselves are not intended to
induce any changes in what’s being described.

Chapter 2

What’s a Predicate?

No! No! Sentence first—verdict afterwards.
—Lewis Carroll: Alice’s Adventures in Wonderland

This sentence no verb
—Douglas Hofstadter

This chapter was prompted by, and is a kind of postscript to, reference [1], which includes the following:

Hugh [Darwen] raised an interesting question: What does it mean for two predicates to be equal? Or equivalent? For
example, the predicates “a < b” and “x <y” are clearly not identical, but they do “mean the same thing”; what’s more,
their extensions are equal, both consisting as they do of all possible true instantiations—1 <2,2 <3, 1 <3, and so
forth—of the corresponding predicate. Can we say the intensions are equal as well? These are issues that deserve
careful discussion—probably in a follow-on paper.

This chapter is offered as that “careful discussion.” Note.: In case you’re not familiar with the term, I
should explain that the intension—note the spelling—of a given predicate is, loosely, what that predicate means;
it’s what’s sometimes called the “intended interpretation” of the predicate in question. Hence, to ask whether the
intensions of predicates p and ¢ are equal is indeed to ask whether p and ¢ themselves are equal, or perhaps
equivalent.

The first thing I need to say is that (as I’m sure you’ve realized already) the question that forms the title of
this chapter—what’s a predicate?—isn’t quite the same as the question that reference [1] originally asked. In fact,
however, I take the questions to be equivalent (!), in the sense that the answer to either will surely follow
immediately from the answer to the other.

Now, I dare say you might be surprised to hear that such questions even need to be asked; surely any
decent book on logic will answer them? In fact, however, it turns out to be quite difficult to find a book that even
bothers to defines the term (predicate, that is), let alone two that give the same definition—despite the fact that the
concept, however it’s defined, lies at the very heart of the subject. In fact, we’re touching here on an area in
which there seems to be very little consensus, and possibly a certain amount of confusion, in the literature in
general. Before I start getting into the substance of the chapter, therefore, I’d like to take a few moments to
examine this lack of consensus. Note: 1 said there might be “a certain amount of confusion” on these matters, so
perhaps I should state explicitly that what confusion there is has to do (I assume) with terms, not concepts. It goes
without saying that I’m not accusing the logic community of confusion over the underlying concepts.

TERMS USED IN THE LITERATURE

Observe first of all that the opening quote from reference [1] does assume that “a < b” is a predicate. But many
logicians (not all) would disagree right away; they would say rather that “<” by itself is the predicate, and “a” and
“b” are parameters to that predicate. Well ... that’s not really true, either; I mean, they probably wouldn’t say
quite what I’ve just said they’d say. Instead:

. Most logicians would say, not that “<” is a predicate, but rather that it’s a predicate letter or predicate
symbol. As noted earlier, very few writers ever say exactly what a predicate, as such, is; and as for the (to
me, slightly strange) terms predicate letter and predicate symbol, I’ve found only one writer—see the
section “Overlooking the Distinction,” later—who uses what’s surely the most obvious term, predicate
name (always understanding that such names can be arbitrarily complex, of course). Then whatever’s

17

18

Part I/ Foundations

referred to by such a name would be the predicate as such. For example, we might say that the thing that’s
identified by the name “<” is, precisely, the predicate whose intension is “is less than.”

[TPRLl

Most logicians wouldn’t say “a” and “b” are parameters (or parameter names, perhaps?), either. Rather,
they would say we’re dealing with a predicate that’s two-place, or dyadic, or of degree two, or of arity
two—and all of these terms mean, as far as the logicians are concerned, that (a) the predicate has exactly
two parameters and (b) those parameters are distinguished by ordinal position (so there’s a first parameter
and a second). Since parameters are identified by ordinal position in this way, they don’t have to have
names. (Sometimes they’re given names anyway, but, to repeat, they don’t have to be.)

Logicians usually assume they’re dealing with what’s called unsorted logic. In the database world, by
contrast, we deal with its opposite, sorted logic, which means the values we’re interested in—in particular,
the values represented by parameters like a and b in the “<” example—are divided into sorts, where “sorts”
in turn is the logician’s term for what we would call #ypes (or data types). In “a <b,” for example, we
might require @ and b to be of “sort,” or type, integer. In unsorted logic, the assumption is effectively that
everything is of the same type (often referred to as “the universe, or domain, of discourse”); and if
everything is of the same type, then there’s obviously no need to specify the types of parameters in
particular. For the logician, therefore, parameters have no name and no explicit type, and so there’s no
need to include parameter specifications in the definition of a predicate; all the logician has to do is specify
the name of the predicate and its degree.

Well, actually, most logicians don’t talk about parameters, as such, anyway. Rather, they talk about
arguments, or variables, or individual variables, or free variables, or predicate variables, or occasionally
placeholders. 1°d like to elaborate briefly on each of these terms:

1. Argument: Normal usage in the database and programming languages communities, which is the
usage I want to stay with in this chapter as much as possible, is for (a) parameter to mean a formal
operand in terms of which some operator is defined and (b) argument to mean an actual operand
that replaces that formal operand when the operator in question is invoked. I really don’t know why
so many logicians use argument to mean a parameter; in fact, the usage seems a little odd, given
that argument has another (totally unrelated, but very important) meaning in logic—viz., as a
sequence of propositions, the last of which is supposed to follow logically from its predecessors.
Note: T’ll have more to say about propositions later. For the time being, you can take a proposition
to be anything that’s unequivocally either true or false—for example, “William Shakespeare wrote
Pride and Prejudice” (a false proposition, as it happens).

2. Variable: Again we have a different meaning for this term in the database and programming
language communities, so I prefer to avoid the logician’s usage here too. (For the record, I take the
term variable to mean, in essence, anything that’s updatable. In other words, to be a variable is to
be assignable to, and to be assignable to is to be a variable.)

3. Individual variable: Logicians use the term individual to mean what we would call simply a value."
Hence, an individual variable, to the logician, is just a variable (a variable whose value is an
“individual,” if you like).

4. Free variable: Individual variables in logic are either free or bound. A bound variable is a variable
that’s bound by a quantifier such as EXISTS or FORALL (and is thus definitely not a parameter, in

! Perhaps more specifically a value that isn’t a predicate (see the remarks in paragraph 5 regarding the term predicate variable).

Chapter 2/ What’s a Predicate? 19

our sense); a free variable is a variable that isn’t bound. So if the “variable” terminology is to be
used at all, using the “free” and “bound” qualifiers as and when appropriate is probably a good idea,
for clarity. On the other hand, I feel bound to add (pun intended) that the “free vs. bound variables”
terminology isn’t very good, because the terms really apply not to variables as such, but rather to
variable references or occurrences. For example, in the expression

FORALL x (x > 0) AND x > 3

there are three references to x, of which the last is free and the first two are bound. Equivalently,
we might say there are two distinct variables here, both called x, one of which is free and one
bound.’

5. Predicate variable: In the programming languages world, a “type T variable” is a variable whose
values are values of type 7. For example, an integer variable is a variable of type INTEGER, and
its values are integer values, or just integers for short. Therefore, programmers at least would
surely expect a predicate variable to be a variable of type PREDICATE, whose values are
predicates per se. Note: As a matter of fact, some of the logic texts I consulted do use the term
predicate variable in exactly this sense. Those same texts also use the term predicate constant to
mean a predicate per se, a usage with which I have no quarrel. However, other writers apparently
use the term predicate constant to mean what [would greatly prefer to call a predicate name (again,
see the section “Overlooking the Distinction,” later, regarding this latter term).

6. Placeholder: 1have no argument (pun intended) with this term, except for the fact that we already
have a perfectly good term, parameter, for the concept.

As you can see, then, there’s certainly, as claimed, a considerable lack of consensus in the logic literature
over the use of terms. But perhaps more important is the fact that we in the database community have certain
requirements that the logicians don’t have, of which the most significant, here, is the need to be able to specify
names and types for the parameters in terms of which a given predicate is defined. Given this state of affairs, |
think it’s reasonable for us to adopt our own terms and definitions where necessary (just so long as we don’t do
violence to the underlying logical concepts, of course). More specifically, in this chapter I intend to use terms and
definitions that accord as much as possible with those used in reference [2]. Note: For interest, the appendix to
this chapter contains some additional discussion of the various terms and definitions to be found in the logic
literature.

PREDICATES AND SENTENCES

What does it mean for two predicates to be equal? Well, obviously enough, they’re equal if and only if they’re
actually one and the same predicate. So if “a < b and “x <)” are predicates—and let’s assume for the moment
that they are—and if they’re equal, then they must be one and the same. And if they’re one and the same, then
wherever one of them appears it must be possible to replace it by the other without any significant effect. But
now consider the following expression, which under my assumption is another predicate:

a<bAND x < y

Observe now that this latter predicate is tetradic, whereas

2 But the following quote from reference [6] shows that logicians wouldn’t always say there are two distinct variables, either, in examples like
this one: “A variable is free in a formula if and only if at least one occurrence of it is free, and a variable is bound in a formula if and only if
at least one occurrence of it is bound. A variable may be both free and bound in a formula.”

20 Part I/ Foundations

a < b AND a < b

and

X < y AND x < y

are both dyadic.’ (I'm appealing here (a) to the fact that every appearance of a given parameter name within a
given predicate is understood to refer to the same parameter, and also (b) to the fact that if p is a predicate, then p
AND p is also a predicate, and it reduces to just p.) It follows that either “a < 5” and “x <’ are different
predicates, or else they’re not predicates at all but something different.

So are they predicates? I say no—I say they’re sentences that denote predicates. Note carefully: denote,
not are. Rather than say that certain sentences (namely, declarative ones) are predicates and others aren’t, I prefer
to say that certain sentences denote predicates and others don’t. Contrast this with my willingness to say that
certain rectangles are squares and others aren’t. I regard sentences as syntactic constructs, predicates as semantic
ones.

I should say immediately that here, again, we’re running into an area where there’s little terminological
agreement in the literature. Some writers do use the term sentence but take it to mean what I think of as a
predicate. Others take it to be synonymous with proposition. Some distinguish between open and closed
sentences, using closed to refer to a proposition and open to refer to a predicate that’s not a proposition. Some use
statement or formula in place of sentence, with any of the foregoing meanings. Most important of all, most
writers don’t even seem to mention what I regard as the crucial logical difference here: viz., the logical difference
between what we say (the sentence) and what we mean (the predicate)—in other words, the logical difference
between syntax and semantics. The textbook I find closest to my own position in this connection is reference [3],
which says this:

A proposition is what is expressed by a sentence ... Logic ... is primarily about propositions, and only secondarily
about sentences.

Even here, I would prefer to replace A proposition and propositions by A predicate and predicates, respectively.

To be fair, I should now say that perhaps those books on logic don’t need to mention that “crucial logical
difference” explicitly, and perhaps they don’t need to lay as much stress on it as I think I do. After all, the books
are filled with examples like the following (chosen more or less at random from reference [6]):

Let C be “Today is clear,” R be “It is raining today,” S be “It is snowing today,” and Y be “Yesterday was cloudy.”
Translate into acceptable English the following: [Here follows a series of formal expressions involving C, R, S, and Y.]

In other words, the books are all about using certain formal expressions (i.e., syntactic constructs—my
sentences) to represent certain less formal utterances (i.e., semantic constructs—my predicates), and then
manipulating those formal expressions according to certain formal laws for various purposes (e.g., to check an
argument for validity). That’s why logic—at least, logic as we understand it for our purposes in the database
world—is often called, more specifically, formal logic (sometimes symbolic or mathematical logic). The
following excerpt from the Oxford English Dictionary is enlightening in this regard:

logic ... The branch of philosophy that treats of the forms of thinking in general, and more especially of inference and
of scientific method ... Also, since the work of Gottlob Frege (1848-1925), a formal system using symbolic techniques
and mathematical methods to establish truth-values in the physical sciences, in language, and in philosophical
argument. The proper scope of this department of study has been and is much controverted, and books on “logic”
differ widely in the range of subjects which they include. The definition formerly most commonly accepted is “the art

? As far as ’m concerned, to say some predicate is n-adic for some 7 > 0 just means the predicate in question has # parameters; it doesn’t mean
those parameters are distinguished by ordinal position.

Chapter 2/ What’s a Predicate? 21

of reasoning”; for various modern definitions see [some of the more recent of a set of quotations that I omit here]. At
all times the vulgar notion of “logic” has been largely that it is a system of rules for convincing or confounding an
opponent by argument. [Incidentally, I can just see in my mind’s eye the satisfaction on the writer’s face as he or she
concocted this last sentence.]

Be all that as it may, let me now explain my own justification for the position I’'m taking. Consider the
English sentence “a is less than »” and the French sentence “a est moins que b.” If a predicate is a sentence, then
these two aren’t the same predicate, nor is either of them the same predicate as “a < b.” But that English sentence
is exactly the way an English speaking person pronounces “a < b”; likewise, the French one is exactly the way a
French speaking person pronounces it. It follows that what we’re dealing with is different sentences that happen
to mean the same thing. I wish to use the term predicate for that “same thing.”*

Now, you might be thinking I’m leading up to a position where “a < b” and “x < y” are different sentences
but nevertheless denote the same predicate. I’'m not. If they did, then the predicates denoted by “a < b AND
x<y” and “a <b AND a < b” would also be the same, which they clearly aren’t. (The argument that shows they
aren’t is essentially the same as the one I used to show that “a <5b” and “x <y” aren’t predicates in the first place:
The sentence “a <b AND x <" denotes a tetradic predicate, the sentence “a < b AND a < b” denotes a dyadic
one.) In fact, I don’t even need to use logical connectives to make this point. For if parameter names are to be
ignored, so that “a < b” and “x <" denote the same predicate after all, then presumably the dyadic “a < b” and
the monadic “a < a” also denote the same predicate! Clearly, however, predicates with different numbers of
parameters can’t possibly be equal.

OVERLOOKING THE DISTINCTION

I’ve gone to great lengths to stress the logical difference between a sentence and a predicate, but now I have to
admit that it’s often convenient to ignore it, at least in less formal contexts.” That is, once we’re sure we properly
understand that difference, we can and typically do agree—for reasons of simplicity and convenience—to
overlook it and to revert to saying a sentence just is a predicate after all. For example, we would probably say
“Consider the predicate a < b” rather than the slightly fussy “Consider the predicate denoted by the sentence a <
b.” Likewise, we would probably say “a is less than »” and “a est moins que b” are the same predicate—but now
we know we really mean they denote the same predicate. In fact, now we understand exactly what equivalence
relation we’re appealing to when we say two sentences “are the same predicate”—just as we know what we mean
when we say we’re reading “the same book™ at the same time. (I’ll explain later what I mean by the term
equivalence relation here.)

As a matter of fact, however (and as I’ve already said), logicians typically don’t just agree to overlook the
distinction as a matter of convenience; typically, rather, they don’t even mention it. Here for example is the
definition of predicate given in reference [4] (one of the few texts I consulted that did actually contain a
definition!)—and let me say that in spite of its obvious weaknesses, this definition does accord quite well with
what I want the term to mean:

[A] predicate is defined to be a string of English words and individual variables, such that if the individual variables
are replaced by appropriate designators, then the whole becomes a declarative sentence with these designators as
constituents.

4To repeat, different sentences can denote the same predicate; for completeness, I should add that the converse is true too—i.e., the same
sentence can denote different predicates. Consider, for example, the sentence “I love you.” Obviously, the meaning of this sentence depends
on who “I” and “you” are! In a more formal treatment, therefore (more formal, that is, than the one I'm attempting here), we would have to be
careful over the definition of the term sentence, too.

* And we do ignore it, almost universally, elsewhere in this book.

22 Part I/ Foundations

So much for “a est moins que b,” then! To be fair, however, the author of reference [4] does make it pretty
clear in his opening chapter that for convenience he assumes English to be the human language to which he relates
his formal discourse. More to the point, observe that his definition says a predicate is “a string of ... words ...”
(from the context, clearly a string of words that form a sentence); as far as he’s concerned, therefore, a predicate is
indeed a sentence.® Note: The term designator refers to an expression that identifies some specific object (some
“individual,” in logic parlance). For example, in the sentence “The Queen of England is married to the Duke of
Edinburgh,” “The Queen of England” and “the Duke of Edinburgh” are designators. So are “1” and “2” in the
sentence “1 <2,” and so is “Relvar S” in the sentence “Relvar S must not be empty.” (Thus, a designator too is
basically just a name—a name for an “individual value,” in fact.)

Now, the foregoing definition does imply that “a < 5” and “x <y” are distinct. Unfortunately, it also
implies that “a < b” and “a is less than b” are distinct as well ... Perhaps we should look for another definition. I
tried reference [5]. That book doesn’t actually give a definition, but on page 179—of the 188 that constitute the
main body of the book—I did find the following (lightly edited here):

If we select a sentence and drop from it a proper name, we obtain a predicate. For example, if we drop the proper
name “oxygen” from “oxygen is an element,” we obtain the predicate “... is an element.”

Again, then, we have an assertion to the effect that a predicate is a sentence, albeit one that’s allowed to
contain “holes,” as it were. But notice the sleight of hand in the example: We’ve haven’t just dropped the proper
name “oxygen,” we’ve put a “hole” (an ellipsis) in its place. Now, reference [5] does go on to explain that
dropping two or more proper names in like manner yields a dyadic (or, more generally, polyadic) predicate.
Presumably, therefore, neither “a < b” nor just “<” alone is a predicate according to that reference. Rather, the
following is:

<

But if parameters are to be represented by “holes” in this manner, how can we ever represent the fact that
the same parameter is supposed to appear in two distinct “holes”™—i.e., at two distinct positions? For example,
consider what’s involved in representing the predicate “x? = x + 1” (which is monadic but would presumably have
to involve two “holes”).

Here’s one more quote (from the Oxford English Dictionary again):

1973 H. Hermes Introd. Math. Logic i. 40 In the statement The crown jewels are kept in the Tower of London, The
crown jewels and the Tower of London can be understood as names for individuals and are kept in as a name for a
predicate ...

I would prefer values or arguments in place of individuals here, but otherwise I rather like this quote. The
nested sentence in italics is (more precisely, denotes) a proposition; that proposition is an instantiation of a
predicate named are kept in, and the phrases The crown jewels and the Tower of London are designators, or in
other words names for the actual arguments to that proposition. In particular, as I’ve already mentioned, I like the
idea that things like are kept in (and “<” and “is less than” and so on) are predicate names—though I’d prefer to
distinguish between what we might call abstract names and concrete ones, so that, e.g., are kept in and is kept in
and se tiennent a (and so on) are all concrete forms of the same abstract name.

¢ He also says elsewhere that he'll use declarative sentence to mean a proposition, thereby defining a proposition too to be a sentence as such,
instead of something denoted by a sentence.

Chapter 2/ What’s a Predicate? 23

EQUAL PREDICATES

I’ve said I’'m going to overlook the distinction between a predicate P and a sentence S that denotes it, and simply
say, in effect, that predicate P is sentence S (or the other way around). But I still haven’t pinned down exactly
what kind of sentence a predicate “is.” As we’ve seen, there’s no consensus on this matter in the literature: It
might be just a name (like are kept in—which isn’t much of a sentence, of course, but I’ll ignore that point); or it
might be such a name accompanied by “holes”; or it might be such a name accompanied by explicit parameter
specifications. So I’m going to set a stake in the ground and state categorically that as far as I’'m concerned, it’s
the last of these three (as in fact I suggested earlier, in connection with that definition from reference [4]).

If we accept this position, then it follows that two predicates will be equal only if they have the same
predicate name and involve the same parameter specifications. But I want that predicate name to be a semantic
construct rather than a syntactic one, so that (to repeat my earlier example) the concrete names “<”, “is less than,”
and “est moins que” are all understood as denoting the same abstract name.

Just having the same parameter specifications (the same parameters, for short) and the same abstract name
is still inadequate, however—for if those were the only requirements, then “a < 5” and “b < a” would be, or would
denote, the same predicate. Clearly, when there are two or more parameters, we need to know which one is
which—i.e., we need to know which role is being played by which parameter (where, of course, the roles played
by distinct parameters are themselves distinct). Syntactically, we can specify those roles by writing the parameter
names in the appropriate places in a sentence that denotes the predicate. (In particular, we can write the same
name in more than one place if we need to.) Once again, however, I don’t want to depend on syntax; so let me
define two predicates to be equal if and only if they have the same name and same parameters and each parameter
plays the same role in each predicate.

Given this definition, the following sentences do all denote the same predicate:

a<b
a is less than b
a est moins que b

By contrast, the following sentences all denote different predicates:

a<b

x <y
b < a

a < a

What’s more, I think the sentences “a < b” and “b > a” denote different predicates, too. However, you
might unkindly point out that “<” and “>" could be considered distinct concrete forms of the same abstract name
and a and b could be considered to be playing the same roles in both “a < 5” and “b > g,” in which case I would
have to suppose you were right. In any case, “a <b” and “b > a” certainly have something very interesting in
common, even if “<” and “>" don’t denote the same abstract name. And that observation brings me to the second
question posed in the text I cited from reference [1] at the very beginning of this chapter.

EQUIVALENT PREDICATES

What does it mean for two predicates to be equivalent, as opposed to equal? Well, actually it can mean whatever

we want it to mean, so long as we understand exactly what equivalence relation we’re appealing to. For example,
we might—though I don’t want to—define an equivalence relation on predicates that makes predicates p/ and p2

equivalent if and only if they have the same abstract predicate name. In that sense the predicates denoted by

24 Part I/ Foundations

“a < b” and “x <y” would certainly be equivalent. In any case (and regardless of whether they’re equivalent or
not), those two predicates certainly have the same extension, or set of true instantiations.” For example, the
sentence “1 <2 denotes a proposition that’s a true instantiation of both—because we’ve replaced the parameters
by certain specific arguments, thereby losing the parameter names that made the predicates distinct.

By the way—TI haven’t stated this fact explicitly yet in the present chapter, but I’ve done so in numerous
previous writings—a proposition can be regarded as a special case of a predicate. To be precise, it’s a predicate
for which the set of parameters happens to be empty.® As a direct consequence of this fact, we can say that, e.g.,
“l1 <2”and “1 is less than 2” both denote the same proposition. In other words, a proposition, like a predicate, is
necessarily a semantic construct rather than a syntactic one. As with predicates in general, however, we often say
for simplicity that a proposition is a sentence, rather than something that’s denoted by a sentence (where, of
course, the sentence in question must be one that’s either unequivocally true or unequivocally false).

Anyway, to get back to the example from the end of the previous section: Is there some pleasing sense in
which we can say that predicates “a < b” and “b > a” are equivalent? Well, if we decide that “<” and “>” are
distinct names, then those predicates certainly don’t have the same extension. For example, the proposition
“l <2” appears in the extension of “a < b” (only) and the proposition “2 > 1” appears in the extension of “b > a”
(only). And while these two propositions are both true and, loosely, “have the same meaning,” the fact remains
that they’re distinct; thus, even substituting the same arguments for corresponding parameters fails to yield the
same proposition. But, of course, it’s easy to define a notion of equivalence between the two predicates. To be
specific, we can say the predicates are equivalent in the following precise sense: There’s a one to one mapping
between them according to which the proposition “4 < B” appears in the extension of one of the predicates if and
only if the proposition “B > 4 appears in the extension of the other. Using the symbol “=" to denote “is
equivalent to,” we could write this equivalence as follows:

a<b = b>a

More generally, we could define an equivalence relation on dyadic predicates in general according to
which—to adopt an obvious notation—predicates p1(a,b) and p2(b,a) are equivalent if and only if p/(4,B)
appears in the extension of p/(a,b) just when p2(B,A4) appears in the extension of p2(b,a); and then “a < b” and “b
> a” would be equivalent as a special case. And if we wanted “a < b” and “x < y” to be equivalent (though, again,
I’ve already said I don’t), then we could define another equivalence relation: Predicates pi(a,d) and p2(x,y) are
equivalent if and only if p/(4,B) appears in the extension of p/(a,b) just when p2(4,B) appears in the extension of
p2(x,y)—i.e., when they have the same extension, loosely speaking. But now we’re getting into rather deep water
... In fact, this whole issue appears to be something that logicians themselves have partly given up on! Here’s a
quote from reference [3] (edited fairly heavily, however, partly due to a desire to make it accord with our own
terminology):

How do we know when predicates are identical and when they’re different? ... For example, suppose A4(x) is “x is less
than 3 and even” and B(x) is “x is less than 50,000 and an even factor of 110,158.” It so happens that the only true
instantiations of these predicates both have x =2. Does this fact mean that 4(x) and B(x) are identical? This question
raises the very difficult problem of specifying exactly when predicates are identical. Certainly a necessary condition is
that they be true of the same set of objects [i.e., they have the same extension (?)] ... But the question of what would

" The term extension is also sometimes used to refer to the body of a relation, since the tuples of such a body correspond in a certain precisely
specified way to the true instantiations of a certain predicate. In the formalism of reference [2], however, the relations corresponding to “a <
b” and “x <)” would have different extensions in this sense, because the tuples concerned would presumably have attribute names A and B in
the one case and X and Y in the other.

¥ Note that we have here a good reason for adopting the position that the predicate notion does include the parameters: If we were to take a
predicate to be just a name like are kept in, then we couldn't say a proposition was a special case after all.

Chapter 2/ What’s a Predicate? 25

constitute a sufficient condition is one to which there is at present no universally accepted answer. The one which
commands the greatest following takes the necessary condition as a sufficient one also. That is, two predicates are
identical if and only if they’re true of the same set of objects. This last statement is a version of the axiom of’
extensionality, and it’s embodied in most systems of higher order logic ... The acceptance of this axiom allows us to
treat the notions of predicate and set as equivalent from a logical point of view.

Observe that this extract suggests that if two predicates have the same extension, then they’re not just
equivalent but identical (in other words, equal)—even though the concrete predicate names in the example, “is
less than 3 and even” and “is less than 50,000 and an even factor of 110,158,” are certainly distinct.

And on that note—not wanting to get any further out of my depth than I probably already am—1I’1l stop,
except to offer by way of a little light relief the following famous, and pertinent, extract from Through the
Looking-Glass and What Alice Found There, by Lewis Carroll:

“The name of the song is called ‘Haddocks’ Eyes.””

“Oh, that’s the name of the song, is it?” Alice said, trying to feel interested.

“No, you don’t understand,” the Knight said, looking a little vexed. “That’s what the name is called. The
name really is ‘The Aged Aged Man.™

“Then I ought to have said ‘That’s what the song is called’?” Alice corrected herself.

“No, you oughtn’t; that’s quite another thing! The song is called ‘Ways and Means’: but that’s only what it’s
called, you know!”

“Well, what is the song, then?” said Alice, who was by this time completely bewildered.

“I was coming to that,” the Knight said. “The song really is ‘4-sitting On A Gate’: and the tune’s my own
invention.”

REFERENCES AND BIBLIOGRAPHY

1. C.J. Date: “Some Operators Are More Equal than Others,” in Logic and Databases: The Roots of Relational Theory.
Victoria, B.C.: Trafford Publishing (2007). See www.trafford.com/07-0690.

2. C. J. Date and Hugh Darwen: Databases, Types, and the Relational Model: The Third Manifesto (3rd edition). Boston,
Mass.: Addison-Wesley (2006).

Howard DeLong: 4 Profile of Mathematical Logic. Mineola, N.Y.: Dover Publications (2004).
Wilfrid Hodges: Logic. London, U.K.: Penguin Books (1977).
E. J. Lemmon: Beginning Logic. London, U.K.: Thomas Nelson and Sons Ltd. (1965).

A

Robert R. Stoll: Sets, Logic, and Axiomatic Theories. San Francisco, Calif.: W. H. Freeman and Company (1961).

APPENDIX A: A SURVEY OF THE LITERATURE

As promised, in this appendix I offer, purely for interest, more examples to illustrate the lack of consensus on
terminology in the logic literature. I'll start with the following from the Oxford English Dictionary:

1950 tr. [David] Hilbert and [Wilhelm] Ackermann’s Princ. Math. Logic iii. 57 To the formula x + y = z there
corresponds a triadic predicate S(x,y,z). The truth of S(x,y,z) means that x, y, and z are connected by the relation x + y =
z. [Note] Hitherto it has been customary in logic to call only functions with one argument place predicates, while
functions with more than one place were called relations. Here we use the word “predicate” in a quite general sense.

This text, in its original German version, is in fact the source of the term predicate in its modern sense—
whatever that sense might be, I suppose I should add! But the major point is that, apparently for the first time in
the literature, it does include the notion that predicates can be n-adic for some n > 2. It’s interesting to see,
therefore, that it appears to agree with our own preferred definition in that a predicate does include its parameters
(note the phrase “a triadic predicate S(x,),z)”’). And the reference to functions suggests agreement with our

26 Part I/ Foundations

sentence vs. predicate distinction, too, inasmuch as exactly the same kind of distinction applies to functions as
well (of course, a function is basically just a special case of a predicate). Note the use of another term (argument
place) for parameter, though.

By way of contrast, here’s an excerpt, from Johan Kerstens, Eddy Ruys, and Joost Zwarts (eds.): Lexicon
of Linguistics (Utrecht, Netherlands: http://www2.let.uu.nl/UiL-OTS/Lexicon, 1996-2001), that illustrates what we
might call the pre Hilbert definition of predicate (and much else besides):

Predicate

SEMANTICS: traditionally, an expression which takes a subject to form a sentence. The predicate ascribes a
property to the subject.

EXAMPLE: Socrates is the subject in the sentence Socrates is mortal and is mortal is the predicate. In predicate
logic, a predicate designates a property or a relation. P in P(a) and R in R(b,c) are called predicates. P in P(a) assigns
a property to a and R in R(b,c) designates a relation between b and c¢. The expressions a, b and ¢ are called the
arguments of the predicates P and R.

Predicate constant

SEMANTICS: a basic expression in predicate logic denoting properties of or relations between individuals. One-
place predicate constants combine with one individual term: P(a), two-place predicates with two individual terms:
R(b,c), etcetera [sic]. One-place predicates are interpreted as sets, n-place predicates with n > 1 as sets of ordered
pairs. In “higher-order” predicate logic and in type logic, it is also possible for a predicate to take another predicate as
an argument. Predicates which take other predicates as their argument are called second-order predicates.

These definitions tacitly make the terms predicate and predicate constant synonymous, a position | agree
with (see the body of the chapter); indeed, the second uses them interchangeably. I disagree with the definitions
in other respects, however; in particular, I disagree with the idea that a predicate is, in effect, just a name. (The
very next definition after the ones just given reads as follows: “Predicate letter: see Predicate constant.”) It’s
also somewhat surprising to learn that, e.g., triadic predicates are “interpreted as sets of ordered pairs,” rather than
as sets of ordered triples.

Now another quote from the OED:

1969 D. J. Foulis Fund. Concepts Math. i. 14 Suppose that P(x) ... becomes a proposition whenever x takes on any
particular value in U. Then P(x) is called a predicate or a propositional function, and the object variable x is called its
argument.

Observe that this quote (a) supports the position that a proposition is a special case of a predicate (or more
precisely, perhaps, that a predicate is a generalized proposition), and (b) mentions the rather attractive term
propositional function as a synonym for predicate. 1say “rather attractive” because, after all, a predicate can
certainly be thought of as a proposition valued, or propositional, function: It returns a proposition when
arguments are substituted for its parameters (just as, e.g., an integer valued function returns an integer when
arguments are substituted for its parameters).” But I still prefer parameter to argument (and note that the quote
gives yet another term for parameter, viz., object variable).

One more quote from the OED:

1965 Hughes & Londey Elem. Formal Logic xxxix. 270 We shall ... speak of the expressions, such as “greater than”
and “between”, which stand for two-place, three-place, etc., relations, as two-place, three-place, etc., predicates
respectively.

® And in fact, since a proposition in turn has a truth value, we often define a predicate simply, though a trifle informally, to be a truth valued
function: Substituting arguments for its parameters yields a truth value, albeit indirectly. I’ve given such a definition in numerous other
writings.

Chapter 2/ What’s a Predicate? 27

As you can see, this extract departs from Hilbert (or my own understanding of what Hilbert was saying, at
any rate) in that it defines a predicate to be what I would prefer to regard as just the predicate name. As a matter
of fact, the majority of the texts I consulted agree with Hughes and Londey here (or sometimes, possibly, they
take a predicate to be whatever such a name denotes). Texts that adopt this position include:

- Rudolf Carnap: Introduction to Symbolic Logic and its Applications. New York, N.Y.: Dover Publications
(1958).

- J. N. Crossley et al: What Is Mathematical Logic? Mineola, N.Y.: Dover Publications (1990).

- G. T. Kneebone: Mathematical Logic and the Foundations of Mathematics. Mineola, N.Y.: Dover
Publications (2001).

. Moshé Machover: Set Theory, Logic, and their Limitations. Cambridge, U.K.: Cambridge University Press
(1996).

" Zohar Manna and Richard Waldinger: The Logical Basis for Computer Programming. Volume 1:
Deductive Reasoning. Reading, Mass.: Addison-Wesley (1985). Volume 2: Deductive Systems. Reading,
Mass.: Addison-Wesley (1990).

- James D. McCawley: Everything that Linguists Have Always Wanted to Know about Logic (but were
ashamed to ask). Chicago, I11.: University of Chicago Press (1981).

. Howard Pospesel: Introduction to Logic: Predicate Logic. Englewood Cliffs, N.J.: Prentice-Hall (1976).
- Steve Reeves and Michael Clarke: Logic for Computer Science. Reading, Mass.: Addison-Wesley (1990).

- Raymond Reiter: “Towards a Logical Reconstruction of Relational Database Theory,” in Michael L.
Brodie, John Mylopoulos, and Joachim W. Schmidt (eds.), On Conceptual Modelling: Perspectives from
Artificial Intelligence, Databases, and Programming Languages. New York, N.Y.: Springer-Verlag
(1984).

- Tom Richards: Clausal Form Logic: An Introduction to the Logic of Computer Reasoning. Reading,
Mass.: Addison-Wesley (1989).

= Raymond M. Smullyan: First-Order Logic. Mineola, N.Y.: Dover Publications (1995).
" Patrick Suppes: Introduction to Logic. Princeton, N.J.: Van Nostrand (1957).

- Paul Teller: A Modern Formal Logic Primer. Volume I: Sentence Logic; Volume II: Predicate Logic and
Metatheory. Englewood Cliffs, N.J.: Prentice-Hall (1989).

Some texts seem to adopt the same position, more or less, but don’t use the term predicate, unqualified, at
all; instead, they use terms such as predicate letter or predicate symbol, or sometimes predicate expression
(another new term!). Examples of such texts include:

. John L. Bell, David DeVidi, and Graham Solomon: Logical Options: An Introduction to Classical and
Alternative Logics. Orchard Park, N.Y.: Broadview Press (2001).

" Samuel Guttenplan: The Languages of Logic. Oxford, U.K.: Blackwell (1986).

A few of the texts I consulted did come a little closer to my own preferred definitions, however. Examples
here include the following:

28 Part I/ Foundations

= Howard DeLong: A Profile of Mathematical Logic. Mineola, N.Y.: Dover Publications (2004).
- Peter M. D. Gray: Logic, Algebra and Databases. Chichester, England: Ellis Horwood Ltd. (1984).
. Wilfrid Hodges: Logic. London, U.K.: Penguin Books (1977).

. David McGoveran: “Nothing from Nothing” (in four parts), in C. J. Date, Hugh Darwen, and David
McGoveran, Relational Database Writings 1994-1997. Reading, Mass.: Addison-Wesley (1998).

- Sybil P. Parker (ed.): The McGraw-Hill Dictionary of Mathematics. New York, N.Y.: McGraw-Hill
(1994).

= Robert R. Stoll: Sets, Logic, and Axiomatic Theories. San Francisco, Calif.: W. H. Freeman and Company
(1961).

However, these latter texts still assume, almost universally, that parameters are identified by ordinal
position and are more or less typeless; thus, they still avoid at least some of the issues I’ve been discussing in the
body of the chapter, regarding (e.g.) whether predicates that differ only in the naming of their parameters are
identical or not. And the last book in particular (Stoll), although I’ve said it adheres more closely to my own
position, is, to be frank, not entirely clear on the matter:

An n-place predicate is a statement function of n variables ... e.g., P(x,y) [stands] for some ... two-place predicate ...
We shall call the given predicates predicate letters ... From [the predicate letters] we generate ... formulas ... [Later:]
The denotation predicate symbol indicates a predicate letter which is intended to stand for a fixed predicate.

I should add that elsewhere Stoll makes it clear that what he calls the predicate letter above does include
the parameters. For example, on page 156 he refers to “the predicate letter P(x1,x2,...,.xn).”

I note too that at least one of the books listed above (Richards) uses predicate to mean a predicate name
and predicate schema to mean such a name plus the parameters. And at least one (Guttenplan) uses predicate
frame where Richards uses predicate schema.

Let me say a little more regarding the term propositional function. The book by McCawley is another that
uses that term. Here’s an extract:

Such notions as “being a man” are generally dealt with in logic in the form of PROPOSITIONAL FUNCTIONS such
as “x isaman.” A simple propositional function consists of one or more VARIABLES (here, the x) and a
PREDICATE (here, man).'® Let us assume that the is and the a of “x is a man” are simply meaningless syllables that
are forced on us by quirks of English grammar and accordingly shift to a notation in which only the predicate and the
variables appear: “man x”. A propositional function is something that yields a proposition when specific entities are
substituted for the variables. For example, if you substitute Socrates for x in “man x”, you get “man Socrates”, which
expresses the proposition that Socrates is a man.

DeLong uses propositional function too, but unlike McCawley he equates it with the term predicate:

The central notion is that of a propositional function or predicate ... An n-place predicate is a function of » individual
variables ... When each variable in a predicate has assigned to it an individual, the result is a proposition ... For
example, x is a prime, x <y, (x <y) OR (y <x) are examples of predicates ... We shall use ‘4", ‘B", ‘C", etc., to
represent n-place predicate constants, which in a given context stand for fixed (though perhaps unknown) predicates ...
If all individual variables in a predicate are replaced by individual constants, the result is a substitution instance.

As an aside, I note that we apparently now have another term for proposition (or for an instantiation,
perhaps): viz., substitution instance. (It’s tempting to ask, therefore, whether a predicate might be called a

' 1t appears from that “one or more” that McCawley doesn’t regard a proposition as a special case of a propositional function.

Chapter 2/ What’s a Predicate? 29

substitution instance function.)
The term propositional function also appears in the book by Pospesel:

[Things like] “is greedy” are predicates ... We call the letters that abbreviate English predicates predicate letters (or
just predicates) ... A propositional function is a formula which results when zero or more (contiguous) quantifiers are
deleted from the front of a formula which is a wiff.

Frankly, I can’t tell from this quote whether a propositional function and a predicate are to be regarded as
the same thing or not (or indeed whether one is to be regarded as a special case of the other).
I’ll close with a lightly edited extract from the book by Carnap:

To form sentences we need designations for the properties and relations predicated of the individuals—we call these
predicates ... For predicates we use the letters ‘P’, ‘Q’, ‘R’, °S”, ‘T". For example, ‘P’ might designate the property
Spherical ... Now suppose we take ‘a’ to designate the sun ... We write the sentence ‘P(a)’ for “the sun is spherical” ...
‘P(a)’ is a sentence and a is an argument-expression ... ‘P’ is a one-place (or monadic) predicate ... Generally, a
predicate is said to be n-adic (or n-place, or of degree ») in case it has n argument-positions ... We say that ‘P(a)’ is a
sentence-completion or full-sentence of the predicate ‘P’.

Well, it’s very tempting to close with the well known folk saying If you re not confused by all this, you
can’t have been paying attention. But that would be very naughty of me, so I won’t.

Chapter 3

The Naming of Types

The Naming of Types is a difficult matter,
1t isn 't just one of your everyday games;
You may think at first I'm as mad as a hatter
When I tell you, a type has N DIFFERENT NAMES.
—with apologies to T. S. Eliot

The Third Manifesto [2]1—"“the Manifesto” for short—has been criticized on the grounds that it doesn’t explicitly
require a given type to have exactly one name but frequently talks as if it did. Clarification is needed. Such is my
purpose in this brief chapter.

In essence, what I propose is that (a) a given type shall have exactly one name, together with zero or more
synonyms (these latter shall be usable interchangeably with the name in most situations, though possibly not in
all), and (b) no name or synonym shall apply to two or more distinct types. The remainder of the chapter
elaborates on these ideas. Nofe: Inheritance and subtyping considerations have little effect on these proposals
and are therefore ignored throughout (except for a few remarks in passing).

SCALAR TYPES

In this section I limit my attention to scalar types, which for present purposes can be taken to mean any type that’s
neither a tuple type nor a relation type. By way of example, consider the type “character string,” which isn’t in
fact prescribed by the Manifesto but is supported, as a system defined type, by Tutorial D [3]. Tutorial D allows
this type to be referred to, more or less interchangeably, as either CHARACTER or CHAR.' As far as Tutorial D
is concerned, however, these two keywords are both (like the type itself) system defined; the Manifesto currently
prescribes, and Tutorial D currently supports, no means by which users can introduce names of their own for a
system defined type.

As for user defined types, the Manifesto currently prescribes, and Tutorial D currently supports, no means
by which users can assign more than one name to a user defined type.

Now, I don’t dispute the usefulness of being able, e.g., to refer to type “character string” as either type
CHARACTER or type CHAR or both, depending on circumstances; however, any such feature must be very
carefully designed and specified. The SQL standard [4] provides an example of the kind of difficulties such a
feature can lead to otherwise. For example, that standard states that FLOAT and REAL both denote the data type
“approximate numeric, with [some implicit or explicit] precision.” The comma here strongly suggests that the
precision and the type are regarded by SQL as two different things (i.e., the type per se is just “approximate
numeric”); if so, then the names FLOAT and REAL apparently both refer to the same type. Alternatively—i.e., if
the precision is considered to be part of the type, so that, e.g., FLOAT(6) and FLOAT(16) are regarded as
different types—the default precision for FLOAT can nevertheless still be the same as the implied precision for
REAL, implying again that the names FLOAT and REAL might both refer to the same type. So are there two (or
perhaps more than two) types here, or is there just one? And either way, what appears in the system catalog when
a reference to the type is required?

! Interchangeably might be a small overclaim here. In particular, the system catalog will presumably have to refer to types by their names as
such, not by synonyms, and so users accessing the catalog—or pertinent portions thereof, at any rate—will probably have to know those
names.

31

32 Part 1/ Foundations

For scalar types, therefore, I propose the following:

- Proposal: A given scalar type shall have exactly one name, which shall be assigned to it when the type in
question is defined and shall remain in effect for as long as the type is available for use. It shall also have
zero or more synonyms, distinct from each other and from the corresponding type name; for example,
CHARACTER and CHAR might be, respectively, the name and a synonym for the scalar type “character
string.” Whether synonyms must be defined when the type in question is defined or can be defined at
some later time is deliberately left unspecified, as is the matter of whether synonyms can be dropped
without dropping the type in question. No type name shall apply to more than one type (scalar or
otherwise). Likewise, no synonym shall apply to more than one type (scalar or otherwise), and no type
name shall be the same as any synonym.

Implications for the Manifesto: The Manifesto might need to be revised—see later—to make it clear that
every scalar type has exactly one name, and further that the name in question is unique. Regarding synonyms for
such types, however, my feeling is that the Manifesto should neither prescribe nor proscribe, nor even “very
strongly suggest,” synonym support. Since it currently does none of these things anyway, I believe the concept of
synonyms has no implication for the Manifesto at all.

Implications for Tutorial D: Tutorial D does already support synonyms for system defined scalar types,
inasmuch as it does at least allow both CHARACTER and CHAR to be used to refer to the type “character
string.” (Just to be definite, I propose, a trifle arbitrarily, that CHARACTER should be the type name and CHAR
a synonym. I also propose that we introduce INT, RAT, and BOOL as system defined synonyms for INTEGER,
RATIONAL, and BOOLEAN, respectively.) However, I propose that we not add a facility at this time for users
to define their own synonyms for system defined types, pending further study of the issue. As for user defined
types, I propose that we not add a facility at this time for users to define synonyms for such types either, again
pending further study.

RELATION TYPES

[now turn my attention to nonscalar types, which (as previously indicated) for present purposes can be taken to
mean any type that’s either a tuple type or a relation type. For simplicity, I concentrate on relation types
specifically; everything I have to say regarding such types applies to tuple types also, mutatis mutandis. Note:
An analogous remark applies to relation values vs. tuple values (see the section “Relation Values,” later).

According to the Manifesto, something—R7, say—is a relation type if and only if it’s obtained by
invoking the RELATION type generator with some specified heading {H}.> Note, therefore, that as far as the
Manifesto is concerned all relation types are, specifically, generated types. Moreover, the Manifesto prescribes a
unique name for such a type, of the form RELATION {H}, where {H} is the heading in question.” Here’s an
example of such a type name:

RELATION { S# S# , SNAME NAME , STATUS INTEGER , CITY CHARACTER }

? For the “if” part of this definition, see the Manifesto, RM Prescription 7; for the “only if” part, see the Manifesto, RM Prescriptions 10 and
13.

? The following lightly edited text from the Manifesto, RM Prescription 7, is relevant here: “When we say the name of a certain relation type
shall be RELATION {H}, we do not mean to prescribe specific syntax. The Manifesto does not prescribe syntax. Rather, what we mean is
that the type in question shall have a name that does both of the following, no more and no less: First, it shall specify that the type is indeed a
relation type; second, it shall specify the pertinent heading. Syntax of the form RELATION {H} satisfies these requirements, and we therefore
use it as a convenient shorthand; however, all appearances of that syntax throughout this Manifesto are to be interpreted in the light of these
remarks.”

Chapter 3 / The Naming of Types 33

This name can be regarded as—and is in fact the written text form of—an invocation of the RELATION
type generator with an argument consisting of the heading {S# S#, SNAME NAME, STATUS INTEGER, CITY
CHARACTER}. One context in which this name might appear is the definition of the base relvar S (“suppliers”),
which would typically look like this in Tutorial D (except that for simplicity I’ve chosen to omit the keyword
BASE—or its synonym, REAL—that Tutorial D would actually require):

VAR S RELATION

{ S# S# , SNAME NAME , STATUS INTEGER , CITY CHARACTER }
KEY { S# } ;

In general, of course, a relation type name can be represented in text form in several different ways, owing
to the fact that sets have to be represented in text form by means of commalists (i.e., sequences, possibly even
with repeated elements). For example, the following are all equally valid text representations of the relation type

name shown above:
RELATION { STATUS INTEGER , SNAME NAME , S# S# , CITY CHARACTER }
RELATION { SNAME NAME , STATUS INTEGER , CITY CHARACTER , S# S# }

RELATION { S# S# , CITY CHARACTER , SNAME NAME
STATUS INTEGER , CITY CHARACTER

14

, STATUS INTEGER }

RELATION { S# S# , SNAME NAME , STATUS INTEGER , CITY CHARACTER ,
S# S# , SNAME NAME , STATUS INTEGER , CITY CHARACTER }

And so on. To repeat, however, these examples don’t represent different names for the same type; rather, they
merely represent different spellings of the same name.* The type as such has (to say it one more time) just the one
name, unique to the type in question. Note: The Manifesto doesn’t state explicitly that relation types are the only
types with names of the form RELATION {H}—but it doesn’t need to, either, given that every name of that form
is a relation type name by definition.

Aside: Incidentally, one consequence of the fact that relation types in the Manifesto are always generated
types (and, more specifically, have names of the form RELATION {H} for some heading {H}) is that
there’s no such thing as an empty relation type. That’s because any such type always has at least one
value—viz., the empty relation of that type. (Tuple types, by contrast, can be empty. To be specific, a
given tuple type is empty if and only if at least one of its attributes is itself of some empty type.) End of
aside.

Now, the main reason the Manifesto prescribes the foregoing approach to relation type naming is that it
allows us to specify, simply and straightforwardly, what the type of the result of an arbitrary relational expression
is; in other words, it helps with the important issue of relation type inference. (Of course, it goes without saying
that a workable type system does require the system to know the type of the result of every relational expression;
that is, the type inference problem does need to be addressed.) By way of example, consider the following

Tutorial D expression, which denotes the projection of the current value of the suppliers relvar S over S# and
CITY:

S { s# , CITY }

The type of the result of this expression—and hence, by definition, the type of the expression per se—has

* Note that the same can’t be said of (e.g.) CHARACTER and CHAR—these aren’t different spellings of the same name, they’re a name and a
synonym for that name.

34 Part 1/ Foundations

the following name:

RELATION { S# S# , CITY CHARACTER }

Observe in particular that the result type here does have a name of the prescribed form: namely,
RELATION {H}, where {H} is the pertinent heading. The example thus illustrates the Manifesto’s rule for
determining the type of the result of an arbitrary projection operation: If r is a relation and {X} is a subset of the
attributes of 7, then the projection of » over {X}—r{X}, in Tutorial D—has type RELATION{X}. Since the
Manifesto defines such rules for all of the relational operators for which it prescribes support, it follows that the
type of the result of every conforming relational expression is well defined and understood by both the user and
the system.

The advantages of the foregoing scheme are best appreciated by considering what would happen if it
weren’t in effect—in particular, if relation types (like scalar types) could have names that were arbitrary text
strings. Suppose, for example, that users could introduce such names, perhaps as indicated in this example
(patterned after Tutorial D’s existing TYPE statement, which is used to define scalar types):

TYPE S RELTYPE RELATION { S# S# , SNAME NAME ,
STATUS INTEGER , CITY CHARACTER } ... ;

Now we could presumably define the suppliers relvar S like this:

VAR S S RELTYPE KEY { S# } ;

One disadvantage of this scheme is obvious immediately: The relvar definer effectively has to know what
the name S RELTYPE “stands for,” as it were, in order to know what attributes can legally be mentioned in the
KEY specification. In other words, the relvar definer, at least, does effectively have to know the “true” name of
the relation type anyway. What’s more, the same goes for anyone who wishes to make use of the relvar in
question for any purpose (for example, to formulate queries against it); for otherwise how would such a user know
that, e.g., the expression S{S#,CITY} is legal?

Moreover, what can we say about that expression S{S#,CITY}? What’s the type of its result?
(Equivalently, what’s the type of the expression itself?) It seems to me there are two possibilities:

" We could define the result type to be RELATION {S# S#, CITY CHARACTER}, exactly as the Manifesto
currently prescribes.

- We could require the user to introduce an explicit name for that type, perhaps like this:

TYPE S# CITY RELTYPE RELATION { S# S# , CITY CHARACTER } ... ;

If we were to adopt the first possibility, the entire user defined relation type name scheme would merely
“live alongside” the Manifesto scheme, as it were, and would in fact be wholly redundant (not to mention the
complications it would doubtless cause for the system catalog). If we were to adopt the second possibility, users
would have to define names of their own, ahead of time, for every possible relation type (i.e., for every possible
relational expression): a scheme that seems to me completely unworkable. In other words, it’s my position that
the idea of allowing relation types to have arbitrary names leads to redundant naming at best and is unworkable at
worst. For relation types, therefore, I propose the following:

- Proposal (tentative): A given relation type shall have exactly one name, as currently prescribed. It shall
have no synonyms, except as discussed in the section “Relation Values,” later. No type name shall apply
to more than one type (scalar or otherwise).

Implications for the Manifesto and Tutorial D: None.
Note: One idea I haven’t discussed so far is the possibility of permitting synonyms for the RELATION

Chapter 3 / The Naming of Types 35

type generator itself (as opposed to synonyms for relation types as such). For example, we might define REL to
be a synonym for RELATION; then REL {H} would be a synonym for RELATION {H}, for all possible
headings {H}. Such a scheme appears to have no serious consequences for relation type inference, so I see no
reason to outlaw it; in fact, Chapter 11 of the present book, q.v., proposes the introduction of exactly such a
scheme into Tutorial D.

Net of the discussions so far: A type does have N different names, but N is always equal to one.

SCALAR VALUES

The Manifesto states (in RM Prescription 2) that “scalar values shall ... carry with them, at least conceptually,
some identification of the type to which they belong.” In other words, the underlying model looks something like
this:

1. There exists an underlying set of objects which I’ll refer to for present purposes as individuals.’

2. Defining a scalar type involves specifying some subset of the set of individuals and assigning a unique
name to that subset. Such definitions are provided either by some user (via the TYPE statement, in
Tutorial D) or by the system. Note that the provisions of this paragraph allow the same individual to be
specified as belonging to more than one scalar type—but see paragraph 8 below.

3. A scalar type can thus be formalized as an ordered pair <7, {/}>, where T is the type name and {/} is a set
of individuals. The scalar type in question is referred to in less formal contexts as “type 7.” Observe that
this nomenclature is unambiguous, because (in accordance with paragraph 2 and the proposals discussed in
the section “Scalar Types,” earlier) type names are unique—no two distinct types, scalar or otherwise, have
the same name.

4. A value of scalar type T can be formalized as an ordered pair <7,7>, where i is an individual from the
applicable set {/}. Such values are called scalar values (scalars for short).

5. Scalar value <T;i> is said to have, or be of, type 7.

6. Scalar types <T'1,{l1}> and <T2,{I2}> are equal—i.e., they’re the same type—if and only if the names 7'/
and 72 are the same (in which case the corresponding sets of individuals {//} and {/2} are the same too,
necessarily). Note: This paragraph and the next two will need some slight refinement if type inheritance is
supported.

7. Scalar values <T'/,i/> and <T2,i2> are equal—i.e., they’re the same value—if and only if the names 7/
and 72 are the same and the individuals i/ and i2 are the same. It follows that if scalar types <T'1,{l1}>
and <72, {I2}> are distinct, then they’re disjoint (i.e., no scalar value is of both type 7'/ and type 72).

8. Let 71 and 72 be distinct scalar types, and let <7'/,i/> and <T2,i2> be values of those types. Then it might
be the case that the individuals i/ and i2 are one and the same, i say—but if so, this fact has no significance
whatsoever as far as the model is concerned. In particular, there’s no sense in which the scalar values
<T1,i> and <T2,i> are “the same” as far as the model is concerned.

9. In fact, if 71 and 72 are distinct scalar types, it could even be the case that the corresponding sets of
individuals {//} and {/2} are identical. In particular, this state of affairs could arise if the sets {//} and
{12} are specified by distinct but equivalent predicates;® as a simple example, suppose {//} is defined as

* Taking a leaf here out of the logicians’ book (see Chapter 2).

¢ See Chapter 2 regarding what it might mean for distinct predicates to be equivalent.

36 Part 1/ Foundations

“integers divisible by 10” and {/2} is defined as “even integers divisible by 5.” Note: These two types
are, to repeat, distinct; but (of course) there’s nothing in the Manifesto to prevent a CAST operator from
being defined for mapping values of one type to values of the other.

10. A particular case of the situation described in paragraph 9 occurs when the sets {//} and {/2} are both
empty. The formalism so far described would therefore allow any number of empty scalar types (where an
empty scalar type is a scalar type <7, {I}> for which the set of individuals {/} is empty), and those types
would be all be logically distinct. However, it turns out to be desirable:

a. To prohibit empty scalar types entirely if type inheritance is not supported

b. To support exactly one empty scalar type (usable only in certain limited contexts) if type
inheritance is supported

RELATION VALUES

A relation value r is an ordered pair <{H},{b}> where (a) {H} is a heading, (b) {b} is a set of tuples, and (c) each
tuple in {b} has heading {H}. It follows that relation values effectively carry their type around with them, just
like scalar values. (At least, they carry their heading around, and the heading in turn implies the type.) However,
there’s one point that needs some clarification: What exactly is a heading? According to the Manifesto (RM
Prescription 9), it’s a set of ordered pairs of the form <4, 7>, where 4 is an attribute name and 7 is a type name—a
type name, observe, not a synonym. So the following

RELATION { S# S# , SNAME NAME , STATUS INTEGER , CITY CHAR }

—is strictly invalid as a relation type name, if CHAR is (as suggested earlier) just a synonym and not the actual
name for the scalar type “character string.” Now, we could presumably allow the foregoing example in concrete
syntax as shorthand for the actual relation type name; but if we did, it would follow that relation types must be
allowed to have synonyms after all. So I suggest the following modified form of my earlier proposal regarding
relation type names:

. Proposal (revised): A given relation type shall have exactly one name, as currently prescribed. It shall
have no synonyms, other than those arising from synonyms if any for the types in terms of which it is,
directly or indirectly, defined. No type name shall apply to more than one type (scalar or otherwise).
Likewise, no synonym shall apply to more than one type (scalar or otherwise), and no type name shall be
the same as any synonym.

Implications for the Manifesto and Tutorial D: None, apart from those already discussed earlier in the
section “Scalar Types.”

REVISING THE MANIFESTO (?)

RM Prescription 1 is the only one in the Manifesto that prescribes anything having to do with the names of scalar
types. Here’s the current text of that prescription, repeated from Chapter 1:

A scalar data type (scalar type for short) is a named, finite set of scalar values (scalars for short). Given an arbitrary
pair of distinct scalar types named 7'/ and 72, respectively, with corresponding sets of scalar values S7 and S2,
respectively, the names 7/ and 72 shall be distinct and the sets S7 and S2 shall be disjoint; in other words, two scalar
types shall be equal—i.e., the same type—if and only if they have the same name (and therefore the same set of

7 The slight lack of orthogonality implied by the parenthetical remark here is a trifle unfortunate but seems to be unavoidable.

Chapter 3 / The Naming of Types 37

values). D shall provide facilities for users to define their own scalar types (user defined scalar types); other scalar
types shall be provided by the system (built in or system defined scalar types). With the sole exception of the system
defined empty type omega (which is defined only if type inheritance is supported—see OO Prescription 2—and is not
permitted as the declared type of anything), the definition of any given scalar type 7 shall be accompanied by a
specification of an example value of that type. D shall also provide facilities for users to destroy user defined scalar
types. The system defined scalar types shall include type boolean (containing just two values, here denoted TRUE
and FALSE), and D shall support all four monadic and 16 dyadic logical operators, directly or indirectly, for this type.

Let’s examine this text sentence by sentence.

A scalar data type (scalar type for short) is a named, finite set of scalar values (scalars for short).

This sentence is correct as it stands. I don’t believe the terminology of “named sets” requires any further
explanation, or apology. It might help to state explicitly that a scalar type name can’t take the form
TUPLE {H} or the form RELATION {H}, though as indicated earlier in this chapter this fact is at least
implicit in the Manifesto (in RM Prescriptions 6 and 7, respectively).

Given an arbitrary pair of distinct scalar types named 7'/ and 72, respectively, with corresponding sets of
scalar values S7 and S2, respectively, the names 7/ and 72 shall be distinct and the sets S7 and S2 shall be
disjoint; in other words, two scalar types shall be equal—i.e., the same type—if and only if they have the
same name (and therefore the same set of values).

This sentence is also correct as it stands, so long as it’s clearly understood that there’s a logical difference
between a scalar value and what earlier in this chapter I referred to as an “individual.” Note: Use of the
phrase “in other words” in this sentence has been criticized on the grounds of inexactitude (possibly other
grounds as well), but I see nothing wrong with it.

D shall provide facilities for users to define their own scalar types (user defined scalar types); other scalar
types shall be provided by the system (built in or system defined scalar types).

This sentence is obviously still correct.

With the sole exception of the system defined empty type omega (which is defined only if type inheritance
is supported—see OO Prescription 2—and is not permitted as the declared type of anything), the definition
of any given scalar type T shall be accompanied by a specification of an example value of that type.

This sentence is obviously still correct.
D shall also provide facilities for users to destroy user defined scalar types.
This sentence is obviously still correct.

The system defined scalar types shall include type boolean (containing just two values, here denoted
TRUE and FALSE), and D shall support all four monadic and 16 dyadic logical operators, directly or
indirectly, for this type.

This sentence is obviously still correct.

The net of all this as I see it is that neither the Manifesto as a whole, nor RM Prescription 1 in particular,

need any revision at all in order to conform to the proposals of the present chapter.

38 Part 1/ Foundations

REFERENCES AND BIBLIOGRAPHY

1. C. J. Date and Hugh Darwen: Databases, Types, and the Relational Model: The Third Manifesto (3rd edition). Boston,
Mass.: Addison-Wesley (2006).

2. C. J. Date and Hugh Darwen: The Third Manifesto (Chapter 4 of reference [1]; see also the revised version, Chapter 1
of the present book).

3. C. J. Date and Hugh Darwen: Tutorial D (Chapter 5 of reference [1]; see also the revised version, Chapter 11 of the
present book).

4. International Organization for Standardization (ISO): Database Language SQL, Document ISO/IEC 9075:2008

(2008).

Chapter 4

Setting the Record Straight
(Part 1 of 6):

The Two Great Blunders

The Third Manifesto—"the Manifesto” for short—is a formal proposal by the present writers for a solid
foundation for database management systems and the language interface to such systems. We’ve described it in
(among other things) a series of books, the most recent of which is reference [1]. Here’s a lightly edited extract
from the opening chapter of that reference:

The Manifesto rests squarely in the classical relational tradition ... The ideas are in no way intended to supersede those
of the relational model, nor do they do so; rather, they use the ideas of the relational model as a base on which to build.
The relational model is still highly relevant to database theory and practice and will remain so for as far out as anyone
can see. Thus, we see our Manifesto as being very much in the spirit of Codd’s original work and continuing along the
path he originally laid down. We are interested in evolution, not revolution.

The Manifesto has had its critics, of course—many writers have commented on it over the years, some
favorably, others less so. As a general rule we welcome such commentaries; peer review is part of the mechanism
by which progress is made in scientific endeavors, and serious and informed discussion of the issues can only be
beneficial. Indeed, those commentaries have sometimes caused us to make changes to our proposal (though only
at the level of detail, we hasten to add—we’ve never changed our overall direction).

The latest such commentary is a paper by Maurice Gittens [2]." It deals with six somewhat separate issues,
each of which (it claims) constitutes a significant defect in the Manifesto in its present form. Unfortunately,
however, it does not, in our opinion, offer “serious and informed discussion” of those issues. Rather, it appears to
be based on a series of misconceptions and misunderstandings of our ideas; at least, it certainly misrepresents
those ideas in a variety of ways. Given this state of affairs, we feel obliged to respond to Gittens’s criticisms, and
such is the purpose of this series of chapters (i.e., the present chapter and the next five).

Gittens’s issues are as follows (verbatim):

No more Great Blunders

Treating operations as relations without rigor

No adherence to the principle of semantic compositionality
No semantic integrity in the presence of relational assignment
Undermining issues with relation valued attributes

No sound substantiation for the rejection of unknown values

SAIRANE IR

Our response is divided into six parts accordingly. Note: In order to allow our response to stand on its
own as much as possible, we’ve included certain portions of Gittens’s text here and there in the various chapters.
The portions in question are basically as provided to us by Gittens in various English language versions of his
paper, but we’ve edited them slightly for reasons of flow and continuity. Of course, it goes without saying that

" Our responses are based on various English language versions of this paper. A Dutch version appeared in DB/M Magazine (Array
Publications, Netherlands, April 2007). For an online version, see reference [2].

39

40 Part I/ Foundations

we’ve done our best to retain the original sense in every case.
Our response on the first of the six issues follows immediately.

THE TWO GREAT BLUNDERS
Here’s the relevant text from Gittens’s paper:

Relative to the second edition of The Third Manifesto, the third edition has changed, on many points. This edition
gives a better impression of Date and Darwen’s position on databases, types and the relational model than the previous
version. There is no longer much ado about the so called great blunders, so prominently present in the second edition
of The Third Manifesto.

Before responding to the substance of this criticism, we’d like to clarify something—a small (?) matter of
terminology. The fact is, there’s a logical difference between (a) The Third Manifesto as such, on the one hand,
and (b) reference [1], which is a book that describes that Manifesto, on the other. The latter is a much bigger deal
than the former!—in fact, the Manifesto as such is just one chapter (out of 16, not to mention ten appendixes) in
the book. But Gittens’s phrases “the second edition” and “the third edition” (of The Third Manifesto in each case)
in the extract just quoted clearly refer to editions of the book rather than to editions of the Manifesto as such.
Well, critics do often use the term The Third Manifesto as if it referred to the book as a whole (and Gittens does so
repeatedly throughout his paper)—but we prefer to be a little more precise. However, we won’t mention this
matter again in this series of chapters (except briefly in the next one), letting this one comment do duty for all.

To respond now to Gittens’s criticism: Gittens seems to be under a misconception here. It’s true that we
no longer refer to the errors in question as “Great Blunders”; however, it shouldn’t be concluded that we have in
any way changed our position regarding the errors as such. We simply wanted to make the book a little more
suitable for an academic audience. The two OO Proscriptions arising from the Great Blunders still remain, as
does most of the original discussion. Here are the proscriptions in question:

" OO Proscription 1: Relvars Are Not Domains
Relvars are not domains.
- OO Proscription 2: No Object Ids
No database relvar shall include an attribute of type pointer.

These proscriptions are supported by the same lengthy discussion as appeared in previous editions of the
book (though part of that discussion has been moved to a different chapter, Chapter 9). OO Proscription 1 is
motivated by the common confusion between types (which Codd called domains) and relvars (which Codd called
time-varying relations)—a confusion exhibited by, for example, SQL’s “typed tables.” (Such a table is meant as
the SQL counterpart to what the object world calls the “extent” of a type, which is essentially just the set of all
values of the type in question.) OO Proscription 2 is merely a reiteration of one of Codd’s own motivations for
his relational model; we felt it needed to be restated in view of, for example, SQL’s support for “REF types” (for
object identifiers). Note: “Typed tables” and REF types were both added to SQL in the 1999 edition of the
standard.

LOGICAL INCONSISTENCIES (?)

Following on from the previous criticism, Gittens continues:

Still, there remain issues with the logical consistency of the dissertation presented in the third edition of The Third
Manifesto. In my opinion, the standard set by the maxim A/l logical differences are big differences and its corollary
All logical mistakes are big mistakes that Date and Darwen present as a guiding principle in their work has not yet
been met by The Third Manifesto.

Chapter 4 / The Two Great Blunders 41

Well, of course we can’t be sure our work is 100 percent consistent, but—as noted earlier in the present
chapter—whenever we’re shown it isn’t, we do our best to correct it; in particular, an errata list for reference [1] is
maintained and available at www.thethirdmanifesto.com. As for the specific inconsistencies that Gittens accuses
us of, however, we believe he’s mistaken, and in this series of chapters we’ll try to show why. We’ll also provide
some in depth discussion of each of the issues he raises, including in particular the justifications he asks for in
connection with the last two (relation valued attributes and “unknown values”). We’ll also explain why some of
his observations about our book are factually incorrect.

REFERENCES AND BIBLIOGRAPHY

1. C. J. Date and Hugh Darwen: Databases, Types, and the Relational Model: The Third Manifesto (3rd edition). Boston,
Mass.: Addison-Wesley (2006).

2. Maurice Gittens: “The Third Manifesto Revisited,” www.giftens.nl/The TTMRevisited.pdf (March 25th, 2007).

Chapter 5

Setting the Record Straight
(Part 2 of 6):

Treating Operators as Relations

Gittens asserts in his paper [4] that The Third Manifesto “[treats] operators as relations without rigor.” The
pertinent section of that paper is quite brief, and we cite it here in its entirety:

In Appendix A of The Third Manifesto, Date and Darwen repeatedly make the unqualified statement that operators can
be treated as relations. This idea, which they claim as their own, is used as grounds for dispensing with a few
operators from Codd’s algebra as can be read in the following quote taken from Appendix A.

We now claim that, given the fact that operators can be treated as relations, and given also the availability of the A operators
AND, REMOVE, and RENAME (the latter two still to be discussed), it is indeed the case that we can dispense with restrict,
EXTEND, and SUMMARIZE. We will justify this claim in the next section but one.

First, it seems fair to assume that many people familiar with, for example, truth tables as they are known in the
context of boolean algebra, have for many years appreciated the fact that commutative operators can be treated as
relations. So, Date and Darwen seem to have discovered hot water here. Second and more significantly, while making
claims about operators in general, Date and Darwen attempted to motivate their dispensing of specific operators from
Codd’s algebra based on an example involving the commutative operator PLUS. Rigor would require them to show
that pertinent operators from Codd’s algebra are also commutative. Alternatively, rigor would require an elaboration
on noncommutative operators such as SUBTRACT as well. Attempting to view noncommutative operators as
relations one soon encounters the problem that it is necessary not only to identify the operands of noncommutative
operators but it is also necessary to designate their respective roles. Information about the roles of operands is lacking
in the relational representation of noncommutative operators and Date and Darwen would need to illustrate how this
information could be catered for without violating their proscriptions and prescriptions.

Note: Gittens’s phrase “Appendix A of The Third Manifesto” refers to Appendix A of reference [1], which
isn’t The Third Manifesto as such but is, rather, a book that describes it (The Third Manifesto as such [2] is just
one chapter, Chapter 4, in that book). As noted in the previous chapter, however, the phrase The Third Manifesto
is often used, incorrectly, to mean reference [1] in its entirety.

Anyway, our overall reaction to the foregoing extract from Gittens’s paper is threefold:

1. First of all, Gittens seems not to have understood what we were trying to do when we claimed in
“Appendix A of The Third Manifesto”—i.e., the present chapter’s reference [3]—that we could dispense
with certain operators. We certainly weren’t saying the operators in question should be removed from the
user language, as even a cursory examination of our own language Tutorial D should make clear. Rather,
we were saying those operators weren’t primitive, and so could be removed from the foundations for such
a language without any loss of functionality. In other words, we were trying to provide a solid basis for
defining those operators. That’s all.

2. Gittens asserts that our treatment of such matters “lacks rigor” and/or is otherwise incomplete (with respect
to commutativity in particular). Part at least of what he says here is simply incorrect, as we will show.

3. What’s more, we believe our treatment is rigorous as far as it goes—but we can certainly make it more so,

43

44 Part 1/ Foundations

and we’ll do that later in the present chapter. (We didn’t do so in reference [3] because we didn’t think it
necessary. After all, Gittens himself says that we’ve only “discovered hot water here,” implying that the
material in question is already familiar to everyone anyway.)

In what follows we first explain in more detail just what we were trying to do when we claimed that certain
operators (restrict, EXTEND, and SUMMARIZE, to be specific) could be dispensed with. We then provide a
blow by blow response to certain specific points in Gittens’s text. Third and most important, we elaborate on the
whole question of operators as relations.

Note: This part of our response to Gittens has been revised considerably since it was first published.
However, the revisions are meant as clarifications only; the substance of the original remains unchanged.

WHAT WE WERE TRYING TO DO

Before we explain what we were trying to do in reference [3], we would like to comment on a possible confusion
in Gittens’s text. What we showed in reference [3] was that certain nonrelational operators (e.g., PLUS) could be
treated as relations, and hence that certain relational operators (e.g., EXTEND) could be defined in terms of
others (e.g., JOIN). However, Gittens asserts that (a) we “attempted to motivate [our] dispensing of specific
operators from Codd’s algebra based on an example involving the commutative operator PLUS,” but that (b) rigor
“would require [us] to show that pertinent operators from Codd’s algebra are also commutative.” Observe that
part (a) of this quote refers to the fact that the nonrelational operator PLUS is commutative, while part (b) refers
to the possibility that certain relational operators might not be. Now, perhaps the writer isn’t confused here, but
the reader could certainly be forgiven for thinking otherwise.

Be that as it may, we stand by our claim—indeed, it’s a widely recognized fact—that conventional
operators such as PLUS and MINUS can be treated as relations, and hence by our claim that certain operators of
the relational algebra can be defined in terms of others. On the strength of these claims, we define (in reference
[3]) a new and fairly abstract relational algebra that we call A. A is agreeably small, in that it involves a very
small number of primitive operators—arguably as few as two—and yet is still relationally complete. Our idea
was that A could be used as a basis for defining the semantics of a relational language; we use it for that purpose
ourselves in reference [3] for Tutorial D in particular, and we offer it for consideration by other database
language designers for use in connection with their own languages. Please note, however, that it was never our
intention that A be used for direct computation purposes. Please note too that The Third Manifesto as such
doesn’t depend on it at all. Tutorial D does, as already noted, but Tutorial D isn’t part of the Manifesto—it’s
merely a language we use to illustrate the ideas of the Manifesto (the Manifesto per se isn’t a language, of course,
but rather a set of proposals for a language).

RESPONSES TO SPECIFIC CRITICISMS
All otherwise unattributed quotes in this section are taken from Gittens’s paper [4].

" “This idea, which they claim as their own, ...”: On page 366 of reference [3] we wrote: “In this section we
elaborate on our idea of treating operators as relations.” We did not mean to give the impression that we
were the first to think of this idea; the concept is well established and has been so for many years, and any
good book on logic explains it. In fact, the team who worked on IS/1—one of the very first, if not the first,
of the relational prototypes developed in the early 1970s—even attempted to embrace the idea in their
language ISBL; however, they found it led to excessively complicated expressions and so invented the
EXTEND and SUMMARIZE operators instead (not using those particular names, however). See reference
[5] for further discussion.

= “This idea ... is used as grounds for dispensing with a few operators from Codd’s algebra”: Not all of the

Chapter 5 / Treating Operators as Relations 45

operators we propose “dispensing with” are in Codd’s algebra. To be specific, Codd’s algebra does
include restriction (of course), but nothing in any of Codd’s publications suggests that it might also include
anything analogous to EXTEND or SUMMARIZE.

- “[Many] people familiar with ... truth tables [have] appreciated the fact that commutative operators can be
treated as relations”: The reason why operators can be represented as relations has nothing to do with
commutativity. If the “many people” Gittens mentions think otherwise, they’re mistaken. In fact,
however, it’s very hard to believe they do, given that one of the most familiar truth tables of all—namely,
the one for implication—quite clearly defines an operator that’s not commutative.

. “Rigor would require [Date and Darwen] to show that pertinent operators from Codd’s algebra are also
commutative”: Whatever Gittens might mean by “pertinent operators” here (see the previous section),
there’s no need for us to show that any operators are commutative, because our treatment has nothing to
with commutativity.

= “Alternatively, rigor would require an elaboration on noncommutative operators such as SUBTRACT as
well”: The treatment described on pages 366-369 of reference [3] makes absolutely no distinction between
commutative and noncommutative operators. Furthermore, we explicitly go to the trouble of pointing out,
in the middle of page 367, that the relation named PLUS that we use to represent the predicate a + b =c
might just as well be called MINUS, since it represents the predicates ¢ — a = b and ¢ — b = a equally well.
Note: Actually, reference [3] uses x, y, and z in place of @, b, and ¢, respectively; we’ve changed the
symbols here in order to avoid certain confusions that might otherwise arise later in the present chapter.
We also use A, B, and C in place of X, Y, and Z, respectively (see the paragraph immediately following),
for the same reason.

- “Attempting to view noncommutative operators as relations one soon encounters the problem that it is
necessary not only to identify the operands of noncommutative operators but it is also necessary to
designate their respective roles”: By “roles” here, Gittens presumably means whatever is needed to
distinguish, for example, the subtrahend from the minuend in subtraction. In conventional mathematics
such roles are designated by the positioning of the operands. In database theory they’re designated by
attribute names; the attribute names of a database relation correspond to the parameter names in whatever
predicate that relation represents. In the case of PLUS and MINUS, for example, the parameter names are
a, b, and ¢ and the attribute names are A, B, and C.! For PLUS, where the predicateisa+b=¢, C
designates the result of an invocation and A and B designate the operands. We could perhaps say that A
designates the “first” operand and B the “second,” but we could equally well go the other way, precisely
because addition is commutative. When we wish the relation to represent ¢ — a = b, B takes on the role of
the result, C that of the minuend, and A that of the subtrahend. When instead it represents c — b =a, A
becomes the result, C stays as the minuend, and B becomes the subtrahend.

- “Date and Darwen would need to illustrate how [information about the roles of operands] could be catered
for without violating their proscriptions and prescriptions™: The prescriptions and proscriptions Gittens
refers to here are those of The Third Manifesto [2]. The relevant prescriptions are those that collectively
define what a relation is (RM Prescriptions 6, 7, 9, and 10). The only proscription that might be relevant
to the present issue is RM Proscription 1, which reads as follows:

D shall include no concept of a “relation” whose attributes are distinguishable by ordinal position. Instead, for

' As this example suggests, we use lowercase italics for parameter names in predicates, uppercase Roman for the corresponding attribute
names.

46 Part 1/ Foundations

every relation 7 expressible in D, the attributes of 7 shall be distinguishable by name.

The relations we conceive of as representing operators satisfy those prescriptions and that proscription.
More to the point, we believe we have shown in reference [3] exactly how they do so. Nevertheless, we
now proceed to give a more detailed explanation.

MATHEMATICAL RELATIONS vs. DATABASE RELATIONS

The remainder of this chapter consists of a more rigorous treatment of the idea that operators can be represented
by relations, and hence that invocations of such operators can be represented by relational expressions. The
present section lays some groundwork for that treatment by clarifying what we mean by the term relation and
elaborating somewhat on the relationship between relations and predicates.

First of all, then, here’s a definition of the term relation as that term is used in mathematics:

- Definition (mathematical relation): Given a collection of n sets X, ¥, ..., Z, not necessarily distinct, 7 is a
(mathematical) relation on those sets if and only if it’s a set of ordered n-tuples <x,y,...,z>, each of which
has its first element x from X, its second element y from Y, ..., and its nth element z from Z.

In practice, however, the term relation is usually taken in mathematics to mean a binary relation
specifically. Here’s an edited version of the foregoing definition that reflects this fact:

- Definition (mathematical binary relation): Given sets X and Y, not necessarily distinct, 7 is a
(mathematical, binary) relation on those sets if and only if it’s a set of ordered pairs <x,y>, each of which
has its first element x from X and its second element y from Y.

What we call a binary relation in database theory (in The Third Manifesto in particular) is merely an
alternative way of representing this latter concept; the main difference is that a binary relation in database theory
is a set of unordered pairs of elements, the elements in question being identified not by ordinal position but by
attribute name. Indeed, it’s surely obvious that a mapping can be defined—a rather trivial one at that—that shows
that, for any given binary mathematical relation, there exists at least one corresponding binary database relation
that represents the same predicate (and vice versa). We’ll go into details of such mappings later; for now, we’ll
just assume they can indeed be defined. Note: For clarity, let’s agree until further notice to refer to mathematical
relations as m-relations and database relations as T7M-relations (TTM for The Third Manifesto, of course).

Let 7 be a binary relation. Regardless of whether 7 is an m-relation or a 7TM-relation, then, it necessarily
represents some predicate, by providing a set whose elements represent the true instantiations, or true invocations,
of that predicate. (Note, however, that the elements referred to here are pairs, where each such pair <x,y> has its
first element x from some underlying set X and its second element y from some underlying set Y.) For example,
consider the predicate y = x?, where X is the set {-9,-8,...,0,1,...,9} and Y is the set {0,1,2,...,99}. Clearly, the
corresponding m-relation contains the ordered pairs <-9,81>, <-8,64>, ..., <9,81>, and the corresponding
TTM-relation contains the unordered tuples {X -9, Y 81}, {X-8,Y 64}, ..., {X9,Y 81}. Note: We’ll explain
what we mean by the term unordered tuples, and this notation for them, in the next section.

Now, the predicate y = x? is in fact a mathematical function. Here’s a definition (refer to Fig. 1 opposite
for a pictorial illustration of the concepts involved):

- Definition (function): Given two sets X and Y, not necessarily distinct, f'is a function from X to Y if and
only if it’s a rule—also known as a map or mapping—pairing each element of X (the domain) with exactly
one element of Y (the codomain); equivalently, f'is just that pairing itself (i.e., the set of ordered pairs
<x,)> that constitute that pairing). The unique element y of the codomain corresponding to the element x

Chapter 5 / Treating Operators as Relations 47

of the domain is the image of x under £, and the set of all such images is the range Z of /. Note that the
range is a subset (often a proper subset) of the codomain,” and the function can be regarded as a many to
one correspondence from the domain to the range. Moreover, if the range is equal to the codomain, the
function is said to be onto the codomain; otherwise it’s said to be into the codomain.

codomain Y

domain X range Z2

Py »
> o

[]
v

Function f maps elements of X to image elements in Z; every element of
X maps to exactly one element of Z; every element of Z is the image of at
least one element in X; if Z =Y, fis onto, else into, Y.

Fig. 1: Function terminology

Now, it’s immediate from the foregoing definition that a function is a special case of a binary m-relation.
To spell the point out (and with reference to the definition we gave earlier for this latter concept), it’s a binary
m-relation that contains exactly one pair for each element x of the set X. And the predicate that’s represented by
an m-relation that happens to be a function is a predicate of the generic form y = f(x), where f denotes the function
in question and x and y are parameters; the parameter x denotes the argument to an invocation of fand the
parameter y denotes the result of that invocation.” Thus, the mathematical view of a function is as a binary
m-relation, representing a dyadic predicate.

Observe now, however, that what we’ve just referred to as “the” argument (to some invocation of some
function) is, in general, composite; for example, an invocation of the function PLUS takes an argument that
consists of a pair of numbers. In other words, we can certainly regard PLUS as a function as defined above, just
so long as we understand that the domain of that function is a set of pairs of numbers and not just (e.g.) a set of
numbers as such. And here’s as good a place as any to state explicitly that the operators we want to discuss in this
chapter—the operators, that is, that we claim can be treated as relations—are indeed all functions in the same
sense that PLUS is a function. (In the terminology of The Third Manifesto, they’re read-only operators, and read-
only operator is just another term for function.)

In practice, of course, we don’t usually say PLUS “takes a composite argument”; rather, we say it takes
two arguments, or is dyadic—but now the term dyadic refers not to the number of parameters in the corresponding
predicate, but to the number of parameters in that predicate not counting the one denoting the result. The
predicate per se is triadic: @ + b = c. To obtain a binary m-relation representing this predicate, therefore, the

2 The y = x* example illustrates this point: The codomain is the integers from 0 to 99 (i.c., the set {0,1,2,...,99}), but the range is just the
perfect squares (i.e., the set {0,1,4,....81}).

* Note that fitself is not a parameter; it is, rather, a name for the predicate (or functiony—e.g., “square of,” perhaps, in the case of y = x°.

48 Part 1/ Foundations

mathematician has to “wrap” the a and b together to form the ordered pair <a,b>.* (And yes, it does need to be an
ordered pair, even for a commutative operator like PLUS, for otherwise we wouldn’t be able to investigate the
commutativity of such an operator in the first place!) More generally, in fact, the x in y = f{x) can stand for an
ordered n-tuple of arbitrary degree n (so for that matter can the y, though this latter fact is mostly irrelevant to our
purpose in this chapter).

Of course, a TTM-relation can directly represent an n-adic operator for arbitrary nonnegative integer n—
i.e., the operator in question doesn’t have to be dyadic specifically. In the database context, in other words, we
have no compelling need to do any “wrapping” at all; we can do so if we like, but usually there’ll be good reasons
not to. See the further remarks on this point at the end of the next section.

MAPPING BINARY m-RELATIONS TO TTM-RELATIONS

A function is a binary m-relation, and thus a set of ordered pairs; by contrast, a T7M-relation is a set of unordered
n-tuples (more precisely, the body of such a relation is a set of such n-tuples), where # is the degree of the TTM-
relation. If we can show how to map an arbitrary ordered pair to an unordered n-tuple, therefore, we will have
shown how to map an arbitrary function to an n-ary T7M-relation. Such is the aim of the present section.

We begin with the fact that the elements of an ordered pair might themselves be ordered pairs, or more
generally ordered n-tuples for arbitrary degree n. For example, in the case of the function PLUS, the fact that
2 + 3 is equal to 5 is represented by the ordered pair <<2,3>,5>, in which the first element is itself an ordered pair
in turn. Now, the ordered triple <2,3,5> can clearly be interpreted to convey exactly the same information as that
ordered pair <<2,3>,5>, just so long as we “remember” how we obtained the triple from the pair, so to speak. To
be specific:

u The first element of the triple, 2, is the first element of the first element of the ordered pair <<2,3>,5>; i.e.,
it’s what denotes the first argument to the PLUS invocation in question.

= The second element of the triple, 3, is the second element of the first element of the ordered pair
<<2,3>,5>; i.e., it’s what denotes the second argument to the PLUS invocation in question.

u The third element of the triple, 5, is the second element of the ordered pair <<2,3>,5>; i.e., it’s what
denotes the result of the PLUS invocation in question.

By analogy with the term wrapping previously discussed, the process of replacing the element <2,3>, within the
ordered pair <<2,3>,5>, by its constituent elements 2 and 3 in that order (thereby obtaining the ordered triple
<2,3,5>) is known as unwrapping.

More generally, if either element of some ordered pair is itself an ordered n-tuple (n > 0), we can unwrap it
if we wish (i.e., replace it by its constituent n elements, retaining their order) to yield an ordered (n+1)-tuple. And
if some element of that ordered (n+1)-tuple is yet another ordered tuple, we can go on and unwrap that tuple, if we
want to ... and so on. Applying this process, repeated as often as necessary, to all of the pairs constituting the
function in question, we will wind up with an m-relation of degree n for some n > 0; and, of course, that
m-relation of degree n will still be a legitimate representation of the function we started with.

The next step is to assign a name to each position in that m-relation, making sure no such name is assigned
to more than one such position. In our PLUS example, we assign the names A, B, and C to positions 1, 2, and 3,
respectively. Using these names, the ordered triple corresponding to 2 + 3 = 5 becomes <A 2, B 3, C 5>, where
“A 2” can be read as “the first element has name A and value 2,” “B 3” can be read as “the second element has

* The term wrap is taken from reference [1]—though there it’s applied to sets, not sequences, of elements. Similar remarks apply to the term
unwrap (see later).

Chapter 5 / Treating Operators as Relations 49

name B and value 3,” and so on. But of course we now no longer need to refer to elements by their position—the
names are sufficient. So we can write, instead, {A 2, B 3, C 5} (or, equivalently, {B 3, C 5, A 2}, say), where the
braces signify that the elements they enclose denote those of a sez. The original ordered triple has become an
unordered 3-tuple—i.e., a set of cardinality three. And the set of all such unordered 3-tuples constitutes (the body
of) a TTM-relation: more precisely, a TTM-relation that conveys exactly the same information as the original
m-relation. And so we have demonstrated a mapping from the original function PLUS to an n-ary TTM-relation,
as required: a mapping for which n = 3, as it happens.

We remark in passing that, starting with the very same function or binary m-relation, we can obtain a TTM-
relation representing @ — b = ¢ by assigning the name A to position 3, the name B to position 2 (or 1), and the
name C to position 1 (or 2), respectively. (And “—” is noncommutative, of course; pace Gittens, therefore, we can
obviously represent noncommutative operators, as well as commutative ones, as 77M-relations.) We remark also
that the TTM-relation for a + b = ¢ is also the TTM-relation for bothc —b=a and ¢ —a = b (as well as for b + a =
).

Note: In practice, we will be guided in the foregoing process—the process, that is, of mapping some
function to an n-ary TTM-relation—by the specific predicate we wish to represent. Our ultimate goal will be to
come up with a TTM-relation whose attributes are in one to one correspondence with the parameters of that
predicate. For example, with reference to the function PLUS and the ordered pair <<2,3>,5>, we could
conceivably have decided not to unwrap the element <2,3> after all—in which case the corresponding unordered
2-tuple might have looked like this: {AB <2,3>, C 5}. And then we could have gone a step further to obtain, say,
{AB {A 2, B 3}, C 5} (i.e., an unordered 2-tuple one of whose elements is an unordered 2-tuple in turn).
However, we chose to unwrap the element <2,3> for the very good psychological reason that we normally write
the predicate for PLUS as a + b = ¢, and hence we prefer to have a T7M-relation with three attributes A, B, and C.

MAPPING TTM-RELATIONS TO BINARY m-RELATIONS

We have shown that for every binary m-relation there’s at least one 77M-relation that represents the same
predicate; in fact, a given binary m-relation usually has several corresponding TTM-relations.” But what about the
inverse question? That is, could there exist TTM-relations that have no corresponding binary m-relation?

Well, the process described in the previous section can clearly be applied in the inverse direction (as it
were), implying that any 77M-relation of degree two or more can certainly be mapped to some binary m-relation.
But what about 77M-relations of degree one or zero? Could it be that such 77M-relations have no corresponding
binary m-relation?

Consider the case of a TTM-relation of degree one. Let » be such a relation; let its sole attribute be named
A; and suppose (just to be definite) that {A 42} is a tuple in . Now consider the ordered tuple <42,<>>, where
the symbol “<>" denotes the ordered (!) O-tuple, or in other words the “ordered” tuple that contains no elements at
all. Clearly, unwrapping that O-tuple yields no elements at all; so if we replace the tuple <42,<>> by the tuple
obtained by unwrapping its second element, we obtain the “ordered” 1-tuple <42>. From such considerations, it
follows immediately that the T7TM-relation r can be mapped to a binary m-relation containing (a) an ordered pair
<a,<>> for every tuple {A a} in r and (b) no other ordered pairs. What’s more, that binary m-relation is in fact a
function, albeit a somewhat degenerate one. To be specific, it’s a function that returns the empty ordered tuple <>
(or equivalently the empty unordered tuple {}), no matter what its argument happens to be; in other words, it’s a
function whose range Y is a singleton set whose sole element is the empty set.

Suppose now that our 77M-relation r of degree one is also of cardinality one; i.e., suppose it contains just
one tuple, say the tuple {A 42}. By the argument of the previous paragraph, then, » maps to a binary m-relation

* The differences between distinct TTM-relations that correspond to the same binary m-relation can lie in the attribute names, the amount of
unwrapping, or both.

50 Part 1/ Foundations

containing just the ordered pair <42,<>>. By an essentially similar argument, however, it can alternatively be
considered as mapping to a binary m-relation containing just the ordered pair <<>,42>—and this latter m-relation
is (by definition) precisely the m-relation that is the niladic function that returns the value 42 whenever it’s
invoked.® So not only can the special case of a TTM-relation of degree one and cardinality one be mapped to
some binary m-relation, but it can be mapped to a binary m-relation that represents, very specifically, a niladic
function (its domain X and range Y are both singleton sets; the sole element of X is the empty set, and the sole
element of Y is the value the function returns whenever it’s invoked—42, in the example).

Going one step further, consider now the ordered pair <<>,<>>, which pairs the ordered 0-tuple with itself.
The set whose sole element is this ordered pair is a function once again: namely, the function that has, as both its
domain X and its range Y, the singleton set whose sole element is the empty set. If we unwrap both elements of
the only ordered pair in this function, <<>,<>>, we obtain the empty ordered tuple <>, which, as we already
know, is logically equivalent to the empty unordered tuple {} (and note that this latter tuple, since it has no
attributes, obviously has no attribute names either).

Now, the TTM-relation that contains just the empty unordered tuple is TABLE DEE (the sole 77M-
relation of degree zero and cardinality one). So a 7T7M-relation of degree zero certainly has a corresponding
binary m-relation if the 77M-relation in question is TABLE DEE, meaning it contains just one tuple. But what if
it’s TABLE_DUM, which is the TTM-relation of degree zero that contains no tuples at all? (TABLE DEE and
TABLE _DUM are, of course, the only 7T7M-relations of degree zero.) Well, any empty 7TM-relation, including
TABLE DUM in particular, clearly corresponds to an empty binary m-relation. Such an m-relation represents a
function whose domain X and range Y are both the empty set (in other words, a function for which the pertinent
set of ordered pairs is itself empty).

OPERATOR INVOCATION

In this, the final section of the chapter, we take the term relation to mean a TTM-relation specifically. We also
take the name PLUS to refer to the relation (with attributes A, B, and C) that represents the operator usually
denoted “+”. To invoke that operator (as in 2 + 3, for example), we must provide a value for A and a value for B,
and the result of the invocation will be the unique corresponding value for C. We need to show that such an
invocation can be represented by some relational expression.

Now, we’ve claimed that treating operators as relations allows us to dispense with the operator restrict in
particular. For that reason, we mustn’t use that operator in our attempt to represent an invocation of “+”. In other
words, we can’t begin our attempt to compute 2 + 3 like this:

PLUS WHERE A = 2 AND B = 3

But nor do we need to; instead, we can join the relation PLUS and the relation that contains just the 2-tuple
{A 2, B 3}. In Tutorial D, that join can be expressed thus:

PLUS JOIN RELATION { TUPLE { A 2 , B 3 } }
This expression evaluates to the following relation of cardinality one:

RELATION { TUPLE { A2 , B3, C5 1} }

The desired result is in sight now, but we have to “extract” it from the tuple in which it occurs as the C
value, and in order to do that we must first “extract” that tuple from the relation that contains just that tuple. The
Tutorial D operator TUPLE FROM lets us do the tuple extraction:

¢ A niladic function is a function that takes no arguments and hence returns the same result on every invocation.

Chapter 5 / Treating Operators as Relations 51

TUPLE FROM (RELATION { TUPLE { A 2 , B3, C5 1} })

This expression yields (surprise, surprise):

TUPLE { A2 , B3, C5}

And then the Tutorial D operator <attribute name> FROM lets us do the attribute value extraction:
C FROM (TUPLE { A2 , B3, C5 1)

This step completes the desired computation (it yields the result value 5). Putting it all together, then (and
using WITH to show the steps clearly), then, we have:

WITH (Tl := PLUS JOIN RELATION { TUPLE { A 2 , B 3} } ,
T2 := TUPLE FROM T1)
C FROM T2

@ 9

As for the noncommutative operator “—, as in (e.g.) 2 — 3, we can just use PLUS again, substituting 2 for

C and 3 for either A or B. E.g.:

WITH (Tl := PLUS JOIN RELATION { TUPLE { C 2 , B 3 } } ,
T2 := TUPLE FROM T1)
A FROM T2

Now, the Tutorial D operators TUPLE FROM and <attribute name> FROM aren’t relational operators as
such, because they return a result that isn’t a relation.’” For that reason, the relational algebra A doesn’t include
them, nor anything like them. But it doesn’t need to, precisely because it does always produce results that are
relations. For example, it never produces a scalar result like the integer 5; but it can certainly produce a result
that’s a relation that contains such a scalar value (or, more precisely, a result that’s a relation of degree and
cardinality both one that contains a tuple that contains such a scalar value). And it can certainly make use of
operators (or relations) such as PLUS in computing those results. For example, suppose we’re given a relation—
let’s call it EMP—with attributes EMP#, SALARY, and BONUS, and we wish to obtain the total pay (salary plus
bonus) for each employee. In Tutorial D:

(EXTEND EMP : { PAY := SALARY + BONUS }) { EMP# , PAY }

If the operator “+” is unavailable to us but the relation PLUS is available, we can write:

(EMP JOIN
(PLUS RENAME
{ A AS SALARY , B AS BONUS , C AS PAY })) { EMP# , PAY }

We can also save ourselves from having to write out that final projection explicitly by using COMPOSE
instead of JOIN, thus:

EMP COMPOSE (PLUS RENAME { A AS SALARY , B AS BONUS , C AS PAY })

These last two Tutorial D expressions both have a direct analog in A. For example, here’s an A version of
the second one:

7 Actually, the expression A FROM ¢ does return a relation in the special case in which attribute 4 of tuple ¢ is relation valued, but this point is
irrelevant to the overall message of the chapter.

52 Part 1/ Foundations

EMP <«COMPOSE» (((PLUS <«RENAME» (A , SALARY))
<«RENAME» (B , BONUS))
<«RENAME» (C , PAY))

REFERENCES AND BIBLIOGRAPHY

1. C. J. Date and Hugh Darwen: Databases, Types, and the Relational Model: The Third Manifesto (3rd edition). Boston,
Mass.: Addison-Wesley (2006).

2. C. J. Date and Hugh Darwen: “The Third Manifesto” (Chapter 4 of reference [1]); see also the revised version, Chapter
1 of the present book).

3. C.J. Date and Hugh Darwen: “A New Relational Algebra” (Appendix A of reference [1]).

4, Maurice Gittens: “The Third Manifesto Revisited,” www.gittens.nl/The TTMRevisited.pdf (March 25th, 2007).

5. Patrick Hall, Peter Hitchcock, and Stephen Todd: “An Algebra of Relations for Machine Computation,” Conf. Record

of the 2nd ACM Symposium on Principles of Programming Languages, Palo Alto, Calif. (January 1975).

Chapter 6

Setting the Record Straight
(Part 3 of 6):

“Semantic Compositionality”

Gittens asserts in his paper [3] that The Third Manifesto displays “no adherence to the principle of semantic
compositionality.” The pertinent section of that paper is quite brief, and we cite it here in its entirety:

It is a general principle of language design that the substitution of variables for their corresponding values should not
change the meaning of expressions containing them. In the third edition of The Third Manifesto Date and Darwen are
in violation of this principle. Consider that the type of a relvar is determined by the header of the relvar. The
candidate keys associated with a relvar are not part of their type according to The Third Manifesto. This choice by
Date and Darwen, represents a serious logical error because it causes variables and values of the same type to not be
interchangeable. This is evident when one considers that a relation value C of type 7 may not be assignable to a
relational variable V of type T. More specifically, the assignment of C to ¥ is not allowed when there are candidate
key constraints defined on ¥ to which C is not in adherence. Put another way, even though 7 and C share the same
type, the assignment /= C may or may not be allowed depending on whether or not C is in adherence with all
candidate key constraints defined for V.

Similarly, nested relation values and non nested relation values, cannot play the role of parent in foreign key
relations using facilities provided by The Third Manifesto. This is obviously true because according to The Third
Manifesto, relation values have no associated candidate keys and foreign keys are defined in terms of candidate keys of
the parent relation variable. Thus, [in] The Third Manifesto, relvars cannot be in general replaced by their values and
are consequentially not referentially transparent. Finally, it can also be noted that Date and Darwen are in violation of
the principle of conceptual integrity and of their own RM Prescription number 21. This is obvious because the
assignment of a value v to a variable ¥ denoted / := v, where both ¥ and v share the same type 7, does not in general
imply that the equality expression V= v yields true. Again the reason for this inconsistency is because the type of
relation variables does not include their associated candidate keys.

To be frank, we find this text quite hard to follow (though we strongly dispute the allegations in the parts
we do understand). Because of this state of affairs, the best we can do in response is to offer a kind of blow by
blow deconstruction of Gittens’s text—which we now proceed to do, starting with the section title. We’ve
numbered the points for purposes of subsequent reference.

DETAILED RESPONSES
L No adherence to the principle of semantic compositionality.

Wikipedia [4] defines The Principle of Compositionality—not semantic compositionality as such, but it’s
clear from other sources that this principle is indeed the one to which Gittens refers—as “the principle that the
meaning of a complex expression is determined by the meanings of its constituent expressions and the rules used
to combine them.” And it goes on to say:

This principle is sometimes called Frege’s Principle, because Frege is widely credited for the first modern
formulation of it. However, the idea appears already among Indian philosophers of grammar such as Yaska, and also
in Plato’s work such as in Theaetetus ... [It] also exists in a similar form in the compositionality of programming
languages.

53

54 Part 1/ Foundations

Well, a database language that failed to conform to this principle would certainly fail to conform to The

Third Manifesto, thanks to RM Prescription 26 at least (which requires a conforming language to be constructed
according to well established principles of good language design). Nothing in The Third Manifesto is in conflict
with the principle. That said, however, we have to say too that the connection between (a) Gittens’s claim in the
title of the pertinent section of his paper (i.e., that we fail to adhere to the principle), on the one hand, and (b) his
claims in the body of that section, on the other, is far from clear to us. We therefore simply have to assume that
an acceptable refutation of the claims in the body of that section is equally acceptable as a refutation of the claim
in the title as well.

2. It is a general principle of language design that the substitution of variables for their corresponding
values should not change the meaning of expressions containing them.

First of all, we assume that by “expressions containing them” here, Gittens means expressions containing
variables, not expressions containing values—but perhaps the point is irrelevant, because expressions as such
don’t contain either! Rather, an expression can contain (among other things):

= Variable references, which denote variables and hence—in the context under discussion, at least—denote,
indirectly, the values of the variables in question

. Literals, which directly denote values as such
By way of example, consider this expression:
X - Y

This expression contains two variable references, x and y, and it denotes the subtraction of the current
value of y from the current value of x—where the term current refers to the time at which the expression is
evaluated. From the text of the expression alone we can’t say any more about it than that, because the values
assigned to x and y vary over time, more or less by definition (i.e., to say something is a variable is to say, more or
less by definition, that it has different values assigned to it at different times).

Now suppose the values assigned to x and y at some particular time are 5 and 2, respectively. Substituting
the literals 5 and 2 for the variable references x and y, respectively, yields the expression 5-2, which denotes the
subtraction of 2 from 5 (and hence denotes the value 3, under the accepted meaning of the term “subtraction™). At
that time, then, the meaning of x—y is the same as that of 5-2. And all of this is in full accordance with our normal
understanding of the semantics of expressions in programming languages, of course.

However, in the text quoted above, Gittens isn’t talking about what happens when we substitute values for
variables; rather, he’s talking about what happens if we go the other way, as it were, and substitute variables for
values. Well, if we start with the expression 5-2 and then substitute x for 5 and y for 2, we’re certainly changing
the meaning! As we’ve already said, the expression x—y denotes the subtraction of the current value of y from the
current value of x—which is the same as the subtraction of 2 from 5 only in the very special case in which 5 and 2
happen to be the current values of x and y, respectively.

So we freely admit we don’t really understand what Gittens is getting at in this particular criticism.
However, it seems to have little bearing on his subsequent text, so perhaps the point isn’t very important.

3. In the third edition of The Third Manifesto Date and Darwen are in violation of this principle.

To repeat, we don’t understand what principle it is that we’re accused of violating here. However, we can
assert most definitely that under The Third Manifesto, the expression x—y does denote the subtraction of the
current value of y from the current value of x and 5-2 does denote the subtraction of 2 from 5. A similar
observation applies to all expressions containing references to variables, including relation variables (relvars) in
particular. For example, if R/ and R2 are relvars of the same type—say type RELATION {X INTEGER}—then

Chapter 6 / “Semantic Compositionality” 55

the expression R/ UNION R2 denotes the union of the relations that are the current values of R/ and R2. If those
current values are RELATION {TUPLE {X 1}} and RELATION {TUPLE {X 2}}, respectively—more precisely,
if those current values are denoted by the literals RELATION {TUPLE {X 1}} and RELATION {TUPLE

{X 2}}, respectively—the expression R/ UNION R2 effectively becomes:

RELATION { TUPLE { X 1 } } UNION RELATION { TUPLE { X 2 } }
And this expression denotes the union of those current values of those variables R/ and R2.
4. Consider that the type of a relvar is determined by the header of the relvar.

Correct, except that the term is heading, not header. Also, for clarity (as well as other reasons, beyond the
scope of the present chapter), we normally use the term declared type instead of just fype, unqualified, for the type
of a variable. Specifically, if the heading of the relvar is {H}, where H is a commalist of attribute-name/type-
name pairs, then the declared type of that variable is RELATION {H}, meaning that only values of type
RELATION {H} can be assigned to that variable. We call the variable a relation variable, or relvar, precisely
because its declared type is a relation type, meaning its permitted values are relation values of that type.

5. The candidate keys associated with a relvar are not part of their type according to The Third Manifesto.

By definition, a key K for relvar R is some subset of the heading of R (note that we usually abbreviate the
term candidate key to just key); more precisely, it’s a subset that satisfies the properties of uniqueness and
irreducibility. In a certain sense, then, we might say K is “part of”’ the declared type of R, because it’s part of the
heading and the heading is part of the declared type. Almost certainly, however, Gittens is referring here not to
keys per se, but rather to the constraints implied by the definitions of such keys: that is to say, to the
corresponding key constraints. Now, the set of relations constituting the declared type of R will be a superset,
probably a proper superset,' of the set of relations of that type that satisfy that relvar’s key constraints. In other
words, there’ll almost certainly be relations of the declared type of R that fail to satisfy the key constraints for R
(and/or any other constraints that apply to R, come to that)}—and any attempt to assign such a relation to R will
fail at run time on a violation of the pertinent constraint. (By contrast, any attempt to assign a relation to R that
isn’t of the declared type of R will fail at compile time.)

6. This choice by Date and Darwen, represents a serious logical error because it causes variables and
values of the same type to not be interchangeable.

We don’t understand what Gittens means by interchanging a value and a variable. Under point 2—which
we also didn’t understand!—he talked about substituting a variable for its value: in other words, replacing one by
the other (actually, we suspect he might have meant replacing a variable by its value and not the other way
around, but it’s not what he said). But when two things are interchanged, each takes the other’s place; i.e., each
replaces the other (?).

7. This is evident when one considers that a relation value C of type T may not be assignable to a
relational variable V of type T.

“This” here presumably refers to Gittens’s previous point, although assignment isn’t interchange. Nor is it
substitution, though it might perhaps be said to “substitute” some “new” value of the variable in question for the
“old” value (better: replace the “old” value by some “new” value). Note, however, that—to use Gittens’s
example—the assignment of relation C to relvar V' is certainly legal from a syntactic point of view, precisely
because C and V are of the same type 7. As previously explained, however, it will fail at run time if it would

"It will fail to be a proper superset only in the special case where the entire heading is the only key.

56 Part 1/ Foundations

cause any constraint to be violated otherwise.

Now, we do understand why some people might (wrongly) think of key constraints as being part of the
pertinent type definition. However, integrity constraints in general can’t possibly be so perceived. One obvious
reason is that some constraints refer to more than one relvar (for example, foreign key constraints usually do), and
the notion of some #ype being defined in terms of some variable clearly makes no sense. In fact, it’s well known
(not to say obvious) that—precisely because constraints do refer to variables—certain relational assignments will
succeed at some times and fail at others, depending on the values of the variables in question at the time in
question.

Perhaps we should say a little more about types and database constraints. The purpose of a type is to
determine the operators that are available for operating on values and variables of that type. The purpose of a
database constraint is to preserve the logical integrity, in the face of updates, of the collection of interrelated
variables that constitute a database. There’s a logical difference between the two!—and any attempt to muddle
them should be resisted, firmly.

8. More specifically, the assignment of C to V is not allowed when there are candidate key constraints
defined on V to which C is not in adherence.

We repeat: Such an assignment is syntactically legal but fails at run time. Also, as we’ve already said,
other constraints might also cause it to fail at run time. It isn’t a logical error (see point 6) to enforce a constraint.
It is a logical error not to.

9. Put another way, even though V and C share the same type, the assignment V = C may or may not be
allowed depending on whether or not C is in adherence with all candidate key constraints defined for V.

Correct, except that (a) the syntax is V' := C (the expression V= C denotes an equality comparison, not an
assignment) and (b) as we’ve said before, the assignment can fail on violation of any constraint, not just key
constraints specifically.

10. Similarly, nested relation values and non nested relation values, cannot play the role of parent in
foreign key relations using facilities provided by The Third Manifesto.

The Third Manifesto does not “provide facilities.” Rather, it provides a set of prescriptions that (we
propose) a relational database language should conform to. Moreover, we don’t understand the repeated use of
the emphasized term values here. A foreign key involves two relation variables, usually distinct. The two are
normally called the referencing relvar (to which the foreign key belongs) and the referenced relvar (to which the
referenced key belongs). Note: As Gittens suggests, the referenced relvar is sometimes called the parent, but we
don’t use that term (and in fact regard it as deprecated, for more reasons than we have room to go into here).

Now, The Third Manifesto certainly requires a conforming language to support the expression of every
constraint that can be stated in terms of a Tutorial D expression of the form IS EMPTY (rx), where rx is a
relational expression of arbitrary complexity. In particular, suppose the definition for relvar R2 includes the
following (hypothetical) Tutorial D specification:*

FOREIGN KEY { A } REFERENCES RI

(Of course, RI here is another relvar, and {4} is a set of attributes that are common to R/ and R2.) This
specification is defined to be shorthand for the following expression:

IS EMPTY (R2 { A } NOT MATCHING RI { A })

2 Hypothetical, because Tutorial D doesn't currently support such specifications; nor does The Third Manifesto require such support.
Proposals to add such support to Tutorial D are under active consideration, however [1].

Chapter 6 / “Semantic Compositionality” 57

As the foregoing equivalence shows, The Third Manifesto does indeed require the constraint to be
expressible. (What’s more, it does so even in the case where the declared type of one or more of the attributes in
the set of attributes {4} is some relation type. We make this point in case it’s relevant to Gittens’s criticisms
regarding “nested” and “non nested” relations, which we don’t understand at all.)

To sum up, point 10 seems to be saying that certain constraints would not be expressible in a conforming
language. If so, then point 10 is quite simply, and badly, wrong.

11. This is obviously true because according to The Third Manifesto, relation values have no associated
candidate keys and foreign keys are defined in terms of candidate keys of the parent relation variable.

We don’t understand what Gittens is driving at. Nor, because of our failure to understand point 10, do we
know exactly what it is that he claims to be “obviously true.”

As an aside, we remark that a relation that satisfies a key constraint might be said, loosely, to “have” the
key that implies that constraint—but the term “key” is much better reserved for relvars. In any case, the term
superkey would be more appropriate.” For example, consider the fact that a relation containing no more than one
tuple satisfies every key constraint that could possibly be defined for a relvar of its type; in particular, it “has” the
empty set as a key, implying that all other keys it might be said to “have” are really proper superkeys. Note too
that relvars to which it might be assigned would typically have nonempty keys.

12. Thus, [in] The Third Manifesto, relvars cannot be in general replaced by their values and are
consequentially not referentially transparent.

We had to look up referentially transparent. From Wikipedia [4]: “An expression is said to be
referentially transparent if it can be replaced with its value without changing the program (in other words, yielding
a program that has the same effects and output on the same input).” This definition is a bit loose—a value isn’t a
piece of program text!—but we get the gist. In fact, “referential transparency” doesn’t seem to be anything more
than a rather grand term for the notion that a variable reference in an expression denotes the current value of the
variable in question (and if so, then it’s something we’ve always just taken for granted). In particular, and
contrary to Gittens’s complaints, it certainly doesn’t seem to require every value of type 7 to be legally assignable
at all times to an arbitrary variable of declared type T.

13. Finally, it can also be noted that Date and Darwen are in violation of the principle of conceptual
integrity and of their own RM Prescription number 21.

Conceptual integrity is being true to one’s chosen concepts. We believe we’ve achieved that, and we’re
relieved to have been able to refute Gittens’s attempted demonstrations to the contrary. As for RM Prescription
21, see the point immediately following.

14. This is obvious because the assignment of a value v to a variable V denoted V := v, where both V and v
share the same type T, does not in general imply that the equality expression V =v yields true.

Here Gittens is invoking RM Prescription 21 directly, which reads as follows (in part):
After assignment of v to V, the equality comparison V= v shall evaluate to TRUE.

Gittens has failed to demonstrate in his critique that there’s anything in The Third Manifesto that violates this
prescription.

At this point we would like to offer a piece of advice to anyone wishing to criticize, question, or just
discuss aspects of computer language design or some particular computer language: Wherever appropriate,

* A superkey for relvar R is a subset of the heading of R that possesses the uniqueness property but not necessarily the irreducibility property.

58 Part 1/ Foundations

illustrate your points by examples, preferably using concrete syntax. After all, in the case of The Third Manifesto
in particular, we provided Tutorial D for that very purpose! With respect to the topic at hand (“semantic
compositionality”), we believe we’ve refuted Gittens’s criticisms, but we’ve also admitted to not fully
understanding all of the points he wanted to make. For all we know he does have a valid issue for us to consider
after all—in which case we warmly invite him to resubmit, but with examples to demonstrate the inconsistencies
he perceives.

15. Again the reason for this inconsistency is because the type of relation variables does not include their
associated candidate keys.

And if it did, exactly which assignments / := v would then result in V"= v evaluating to TRUE that don’t
have the same effect under The Third Manifesto?

REFERENCES AND BIBLIOGRAPHY

1. C. J. Date: “Inclusion Dependencies and Foreign Keys” (Chapter 13 of the present book).

2. C. J. Date and Hugh Darwen: Databases, Types, and the Relational Model: The Third Manifesto (3rd edition). Boston,
Mass.: Addison-Wesley (2006).

3. Maurice Gittens: “The Third Manifesto Revisited,” www.gittens.nl/The TTMRevisited.pdf (March 25th, 2007).

4. Various authors: Wikipedia, http://en.wikipedia.org.

Chapter 7

Setting the Record Straight
(Part 4 of 6):

Integrity and Assignment

In his paper [2], Gittens gives an example in which a relvar AUTHOR with key {SURNAME} and current value
as follows—

SURNAME FIRST NAME

Date Chris
Darwen Hugh

—is updated so that its value becomes:

SURNAME FIRST NAME

Darwen Chris
Date Hugh

The update is carried out by means of the following “double UPDATE” statement:

UPDATE AUTHOR WHERE SURNAME = 'Date' : { SURNAME := 'Darwen' } ,
UPDATE AUTHOR WHERE SURNAME 'Darwen' : { SURNAME := 'Date' } o

This statement is a multiple assignment and the two single assignments (i.e., the individual UPDATE?) it
immediately contains are relational assignments.*> We mention these facts because:

- The title of the pertinent section of Gittens’s paper is “No semantic integrity in the presence of relational
assignment,” implying that it’s, specifically, relational assignment that he wants to criticize.

. By contrast, text in that same section—*"since integrity checking is postponed [until the entire multiple
assignment has been performed]”—implies that it’s multiple assignment that he’s criticizing instead.

Whichever it is, Gittens then goes on to say:

Given the relation values of the AUTHOR relvar before and after this single assignment [sic] and the knowledge that
only one assignment has taken place [sic], consider a forensic application which needs to find out what was changed

30 As is well known, the familiar INSERT, DELETE, and UPDATE operators are all just shorthand for, and therefore logically equivalent to,
certain relational assignments.

59

60 Part 1/ Foundations

by this assignment statement. Not appreciating this fundamental breach of integrity facilitated by The Third Manifesto
will likely lead to seriously erroneous conclusions like:

The first name of the AUTHOR with surname “Date” was changed to “Hugh”
and
The first name of the AUTHOR with surname “Darwen” was changed to “Chris.”

Well, there seems to be some confusion here. In what follows, we take Gittens’s points one at a time.

WHAT WAS CHANGED?

Gittens says: “Consider a forensic application which needs to find out what was changed by [the double
UPDATE shown in the previous section].” Well, the change, as such, is perfectly clear—the original value of the
relvar was changed to (better: replaced by) a different value, and both the original value and the replacement
value are completely explicit.

WHAT BREACH OF INTEGRITY?

Gittens refers to a “fundamental breach of integrity.” There is no breach of integrity. After the update, the relvar
still satisfies the only integrity constraint mentioned (namely, the key constraint to the effect that surnames are
unique); indeed, if it didn’t, the update would be rejected.

We note in passing, incidentally, that one reason multiple assignment is useful is in connection with
examples very similar to the one under discussion. Consider the problem of interchanging the values of two
variables X and Y. The “obvious” way to achieve this result without multiple assignment involves a temporary
variable Z, thus:

Z =X ; X =Y ; Y =47

With multiple assignment, however, the desired effect can be achieved more simply (and more intuitively)
thus:

X =Y , Y :=X;

WHAT ERRONEOUS CONCLUSIONS?

Gittens refers to certain “conclusions” that he claims are “seriously erroneous.” In what sense exactly are the
conclusions in question “seriously erroneous™? Some clarification is required. In fact, we suspect there might be
some muddle over realms here. To elaborate:

. Elsewhere in the same section of his paper, Gittens refers to the double UPDATE as “swapping the key
values for the two tuples” (rewording slightly). But tuples are values and thus can’t be changed, by
definition. (Note that the phrase “swapping the key values” certainly implies that the tuples in question are
being changed.)

- We might, however, guess that what Gittens is getting at is something along the following lines:

1. Each tuple in the AUTHOR relvar represents an author in the real world. More specifically, the
SURNAME value in such a tuple identifies the author in question in the obvious way (since Gittens
says the relvar has “key SURNAME,” and we must therefore understand SURNAME values to be
unique).

2. Let tuple 7 in the AUTHOR relvar represent author x (i.e., the real world author with surname x).

Chapter 7 / Integrity and Assignment 61

Updating the AUTHOR relvar such that (a) its value after the update differs from its previous value
only in that tuple ¢ is replaced by tuple ¢/, and (b) tuple ¢/ differs from tuple ¢ only in that it has a
different FIRST NAME component, can be regarded as reflecting a change to the first name of
author x.

Under such an interpretation, however, we probably wouldn’t want to permit keys to be updated
(apologies for the sloppy phrasing, but we hope our meaning is clear). For suppose we were to
update the AUTHOR relvar such that (a) its value after the update differs from its previous value
only in that tuple ¢ is replaced by tuple #2, and (b) tuple 72 differs from tuple ¢ only in that it has a
different SURNAME component (y, say, instead of x). Then we could hardly regard that update as
reflecting a change to the surname of author x—because authors are identified by surname, and after
the update the phrase “author x” apparently doesn’t denote any real world author at all. Certainly it
doesn’t denote any real world author now represented in the AUTHOR relvar.

So we might want to introduce a convention according to which certain attributes—certain key
attributes in particular—are explicitly defined to be nonupdatable (apologies for the sloppy phrasing
once again). Suppose SURNAME is such an attribute in the case at hand. Then it would appear
that an UPDATE statement such as

UPDATE AUTHOR WHERE SURNAME = x : { SURNAME := y } ;

would be illegal. (Note that if our interpretation of Gittens’s criticism is correct, there doesn’t seem
to be any need to drag multiple assignment into the picture at all. For simplicity, therefore, we limit
ourselves to single assignments only in the remainder of this discussion.)

Gittens might then complain that relational assignment (which is the sole relational update operator
actually prescribed by the Manifesto) just isn’t fine grained enough for rules like “Attribute A4 is
nonupdatable” to make sense, because it simply replaces the entire value of a target relvar by
another such value lock, stock, and barrel. Certainly it would be hard to state precisely which
assignments would be illegal under such a rule.

Accordingly, Gittens might further complain that an explicit UPDATE statement must be supported
(instead of being just an optional shorthand form of assignment as it is in the Manifesto), in order
for rules like “Attribute A is nonupdatable” to make sense.

But even if we accept the argument of the previous paragraph, defining an attribute to be
nonupdatable actually achieves nothing! Let the tuple with SURNAME value x have
FIRST NAME value z. Then the effect of the UPDATE

UPDATE AUTHOR WHERE SURNAME = x : { SURNAME := y } ;

(which will presumably fail under the proposed nonupdatability rule) can clearly be obtained by the
following entirely legal DELETE / INSERT sequence:

DELETE AUTHOR WHERE SURNAME = x ;

INSERT AUTHOR
RELATION { TUPLE { SURNAME y , FIRST NAME z } } ;

(Or by a logically equivalent pair of explicit relational assignments, of course.)

62 Part 1/ Foundations

A POSSIBLE DISCIPLINE

Gittens continues: “The problem is that assignment lacks facilities for keeping track of specific tuples, because
Date and Darwen have chosen to reject the concept of tuple identity” (somewhat reworded once again). On its
face this sentence does not make sense; more precisely, the phrase “keeping track of specific tuples” does not
make sense. To paraphrase Gertrude Stein, a tuple is a tuple is a tuple; it’s a value; and, like all values, it simply
is—it has no location in time and space, and the question of “keeping track of it” simply doesn’t arise. What
Gittens really wants, we believe, is a means of keeping track of the history of values of tuple variables. But we
agree with Codd in not permitting any kind of variable in the database except relation variables, and we therefore
reject such a requirement.

All of that being said, there’s absolutely nothing in the Manifesto to prevent the adoption of a convention,
or discipline, that does achieve something like what Gittens seems to want. In terms of his example:

1. We could adopt the convention that all tuples that have ever appeared, appear right now, or ever will
appear within the AUTHOR relvar having the same specific SURNAME value x all refer to “the same”
real world author (or, more accurately, the convention that we interpret all such tuples as referring to the
same real world author).

2. We could keep a log showing when such tuples appear in and disappear from the relvar.

3. That log could additionally indicate the values of the other attributes of those tuples. (Of course, there’s
just one such “other attribute,” FIRST NAME, in the example.)

4. That log could also show who and what caused those appearances and disappearances.

5. Alternatively, we could add a surrogate key to the AUTHOR relvar and reinterpret Steps 1-4 above in
terms of values of that key instead of SURNAME values. (Although the Manifesto doesn’t actually
require support for surrogate keys, it does strongly suggest that they be supported—see reference [1], RM
Very Strong Suggestion 1.) Then a given real world author could remain “the same author” even if his or
her surname changes: a realistically desirable state of affairs, in fact, since people do change their surname
from time to time.

What’s more, not only do we believe a convention like the foregoing could easily be adopted, we also
believe it would often be a good idea to do so. What we don’t believe, however, is that the Manifesto can or
should legislate on such matters; by definition, such matters are beyond its purview.

REFERENCES AND BIBLIOGRAPHY

1. C. J. Date and Hugh Darwen: Databases, Types, and the Relational Model: The Third Manifesto (3rd edition). Boston,
Mass.: Addison-Wesley (2006).

2. Maurice Gittens: “The Third Manifesto Revisited,” www.gittens.nl/The TTMRevisited.pdf (March 25th, 2007).

Chapter 8

Setting the Record Straight
(Part 5 of 6):

Relation Valued Attributes

Gittens is very critical of the fact that the Manifesto permits (in fact, requires) support for relation valued
attributes. His comments on this topic in reference [13] begin as follows:

Contrary to Codd, Date and Darwen allow relation valued attributes. Please consider the following questions.
. What problem is solved by support for these attributes that could not be solved otherwise?

= What propositions can be represented by relvars including relation valued attributes? Can these propositions
not be represented by other relational means?

. What positive traits of alternative solutions are not available to solutions based on relation valued attributes?

The first few sections of this chapter address themselves to these opening remarks. Note: Arguments in
support of our position on this topic were first articulated in reference [3]. This chapter can be seen, in part, as an
elaboration on those original arguments.

A SIMPLE EXAMPLE

Of course, Gittens is quite right when he says we allow relation valued attributes (hereinafter abbreviated RV As).
Fig. 1 overleaf shows an example of a relation with such an attribute, which we’ll refer to (the relation, that is, not
the attribute) formally as spg but informally as “shipments.” Relation spg has two attributes, S# and PQ; S#
values are supplier numbers and PQ values are relations, and so attribute PQ is an RVA. Those PQ values (i.e.,
relations) in turn also have two attributes, P# and QTY, where P# values are part numbers and QTY values are
quantities. The intended interpretation, or meaning, of relation spg—i.e., the relation predicate for that relation—
is:

The specified supplier supplies the specified parts in the specified quantities.

For example, the tuple in Fig. 1 for supplier S4 represents the proposition: Supplier S4 supplies part P2 in
quantity 200, part P4 in quantity 300, and part P5 in quantity 400.

Please note, however, that our formulations of the foregoing predicate and sample proposition are
deliberately both quite loose. In the case of the predicate, a more precise formulation is:

For a given supplier, represented by supplier number (S#), the set of parts supplied by that supplier,
together with the corresponding quantities, is represented by the corresponding PQ value; each such part
is represented by part number (P#), and the corresponding quantity is represented by the corresponding
OTY value.

Our reason for giving this somewhat more precise formulation—*“somewhat,” because as a matter of fact it could
still do with some tightening up—will become apparent in the section immediately following.

63

64 Part 1/ Foundations

St PQ

S3 P# | QTY
P2 200

S4 P# | QTY
P2 200
= 300
P5 400

S5 P# | QTY

Fig. 1: Relation spq (“shipments” with an RVA)

REPRESENTING PROPOSITIONS (I)
Now we turn to Gittens’s questions. We choose to address them in reverse order. The last one is:

- What positive traits of alternative solutions are not available to solutions based on relation valued attributes?

We address this question first in order to dismiss it. The fact is, the question can’t be answered in any
absolute sense—sometimes solutions based on RV As are better, sometimes alternative ones are. The remainder
of this chapter can be seen as an extensive elaboration on this position!

Gittens’s second question (or pair of questions, rather) is:

. What propositions can be represented by relations including relation valued attributes? Can these propositions not be
represented by other relational means?

Note: Actually, Gittens frames these questions in terms of relvars, not relations, but relvars are a red herring here;
his question can be discussed in terms of relations without having to drag relvars in at all. We’ll come back to
relvars, as such, later.

Consider the tuple shown in Fig. 1 for supplier S5. Appealing to the more precise form of the predicate,
it’s clear that that tuple represents the proposition:

For supplier S5, the set of part-number/quantity pairs for parts supplied by that supplier is empty.
Or more idiomatically: Supplier S5 supplies no parts at all.

Aside: Actually this latter “more idiomatic” formulation is a trifle sloppy. Abstracting a little, if we know
only that no y-z pairs exist for a given x, we can’t logically infer that no y’s exist for that x; we can only
infer that either no y’s exist or no z’s exist (or both) for that x. Taking x’s, y’s, and z’s to be supplier
numbers, part numbers, and quantities, respectively, however, we can appeal to a certain real world fact—
namely, the fact that if a supplier supplies a part, it must do so in some quantity—to infer that if there are

Chapter 8 / Relation Valued Attributes 65

no part-number/quantity pairs for a given supplier number, then there aren’t any parts for that supplier.
End of aside.

Now suppose we were to choose (as in practice we normally would) to represent shipments, not by a
relation like spg with an RV A, but rather by a relation—Iet’s call it sp—Tlike the one shown in Fig. 2, with no
RVA. The predicate is: Supplier S# supplies part P# in quantity QTY. Then we observe that such a relation
cannot explicitly represent a proposition like that just given for supplier S5 (“Supplier S5 supplies no parts at
all”). Why not? Because, for such a supplier (s# say), there is no part p# and no quantity ¢ for which the
predicate Supplier s# supplies part p# in quantity q evaluates to TRUE, and hence no tuple that can logically
appear in the relation.

S# P# QTY

S3 P2 200
sS4 P2 200
sS4 P4 300
sS4 P5 400

Fig. 2: Relation sp (“shipments” without an RVA)

So now we’ve provided a partial answer to Gittens’s question; to be precise, we’ve shown a proposition
that can be explicitly represented by a relation with an RV A and can’t be explicitly represented by a relation
without an RVA. However, note the repeated use of the qualifier explicitly in the foregoing sentence. The point
is, it can be argued that relation sp (the one without an RVA) does at least represent the proposition in question
implicitly. To be specific, relations are conventionally interpreted in accordance with what’s called The Closed
World Assumption; and The Closed World Assumption says, among other things, that if some tuple ¢ could appear
in relation but doesn’t, then the proposition represented by that tuple ¢ is false. (For more details regarding The
Closed World Assumption, see reference [6].) In the case at hand, therefore, we might argue as follows:

- Relation sp contains no tuple for supplier S5.

" Therefore, the predicate Supplier S5 supplies part P# in quantity QTY evaluates to FALSE for all possible

part/quantity pairs.

. Therefore, there is no part/quantity pair for which the predicate Supplier S5 supplies part P# in quantity
QTY evaluates to TRUE.

- Therefore, there is no part that supplier S5 supplies.

. Therefore, supplier S5 supplies no parts at all.

. Therefore, relation sp does indeed represent the pertinent proposition as claimed—it just doesn’t do so
explicitly.

REPRESENTING PROPOSITIONS (II)

The arguments of the previous section notwithstanding, the question remains: Can the proposition Supplier S5
supplies no parts at all be represented explicitly without using an RVA? And of course the answer is yes. All we
need to do is have, in addition to relation sp (which shows which suppliers supply which parts), another relation
snp showing which suppliers supply no parts at all. See Fig. 3.

66 Part 1/ Foundations

S# P# QTY S#
S3 P2 200 S5
S4 P2 200

sS4 P4 300
S4 P5 400

Fig. 3: Relations sp and snp

Figs. 1 and 3 are logically equivalent, of course, in the sense that the relations in Fig. 3 can be derived from
the relation in Fig. 1 (and vice versa) by means of appropriate expressions of the relational algebra. However,
situations do exist where no such equivalence applies; that is, relations with RVAs do exist that have no exact
equivalent in terms of relations without RVAs. An example, relation sibs (taken from reference [5]), is shown in
Fig. 4. The intended meaning of that relation is that the persons represented within any given PERSONS value
are all siblings of one another (and have no other siblings). Thus, Amy and Bob are siblings; Cal, Don, and Eve
are siblings; and Fay is an only child. The sole attribute of relation sibs (viz., PERSONS) is an RVA.

PERSONS
SIB SIB SIB
Amy Cal Fay
Bob Don
Eve

Fig. 4: Relation sibs

To repeat, there’s no relation without an RVA that’s logically equivalent to (i.e., carries exactly the same
information as) relation sibs. In particular, if we ungroup relation sibs on attribute PERSONS, thus—

sibs UNGROUP (PERSONS)

—we obtain the relation shown in Fig. 5 opposite, a relation that clearly fails to show who is a sibling of whom.
In other words, the ungrouping has “lost information,” in a certain (rather fuzzy!) sense.

Of course, it’s possible to come up with a relation not involving RV As that does represent the same
information, more or less, as relation sibs does. Fig. 6 opposite shows such a relation. But note that “more or
less”! The fact is, the relations in Figs. 4 and 6 really represent different things; to be specific, the relation in
Fig. 6 really means the specified person belongs to the specified family, a concept that isn’t represented in the
relation of Fig. 4 at all. More precisely, there’s no relational expression (in general) by which a relation like that
in Fig. 6 can be derived from one like that in Fig. 4.

Chapter 8 / Relation Valued Attributes 67

SIB

Amy
Bob
Cal
Don
Eve
Fay

Fig. 5: Ungrouping relation sibs on attribute PERSONS

FAMILY SIB

Mozart Amy
Mozart Bob
Walton Cal
Walton Don
Walton Eve
Dvorak Fay

Fig. 6: A relation showing family memberships

So now we’ve answered another of Gittens’s questions: “Can these propositions not be represented by
other relational means?” The answer is: Yes, they can, but not always in a precisely equivalent fashion. (In any
case, we observe that a given proposition can typically be represented in many different relational forms even
without using RVAs—that’s why different designers come up with different database designs for the same
information—and so this particular question is perhaps not a very important one.)

DISPENSING WITH OUTER JOIN
Gittens’s first question is:
] What problem is solved by support for [RVAs] that could not be solved otherwise?

Well, we believe we’ve now given at least one good answer to this question, inasmuch as we’ve given an example
of a relation with an RV A that has no exact equivalent in terms of relations without RVAs. But there’s quite a lot
more that can usefully be said on the matter.

Suppose we were to agree that it’s a good idea to try to avoid RVAs, at least in base relvars (a discipline
we happen to subscribe to, incidentally, and one we’ll have a little more to say about later). In accordance with
this discipline, we might come up with a design for suppliers and shipments that looks as suggested by the sample
values in Fig. 7 overleaf. Note that there’s no explicit representation in that figure of the fact that supplier S5
supplies no parts; instead, we appeal—as indeed we normally do—to The Closed World Assumption to infer that
fact, implicitly.

68 Part 1/ Foundations

S S# CITY SP S# Pi# QTY
S3 Paris S3 P2 200

S4 London S4 P2 200

S5 Athens sS4 P4 300

S4 P5 400

Fig. 7: Suppliers and shipments (conventional design)—sample values

Now consider the query: “For each supplier, get supplier number, city, parts supplied, and corresponding
quantities.” The most immediately obvious formulation of this query involves a join: S JOIN SP. But this
formulation doesn’t do the job, of course, because, in terms of the sample values in Fig. 7, it misses supplier S5
(see Fig. 8).

S# CITY P# QTY

S3 Paris P2 200
S4 London P2 200
54 London P4 300
54 London P5 400

Fig. 8: Join of relations from Fig. 7

Precisely for that reason, a user familiar with SQL would probably try to formulate the query in terms of
outer join, perhaps as follows:

SELECT * FROM S NATURAL LEFT OUTER JOIN SP

This SQL expression yields the result shown in Fig. 9 (note the nulls in that result in particular).

S# CITY P# QTY

S3 Paris P2 200
sS4 London P2 200
sS4 London P4 300
S4 London P5 400
S5 Athens & nulls

Fig. 9: Outer join of relations from Fig. 7

Observe, however, that the object depicted in Fig. 9 isn’t a relation—and we don’t refer to it as such—
precisely because of those nulls. (See reference [4] for detailed arguments in support of the position that a
“relation” that “contains a null” isn’t truly a relation at all.) Here by contrast is a formulation of the query that

Chapter 8 / Relation Valued Attributes 69

does yield a result that’s a relation—to be specific, the relation shown in Fig. 10, with an RVA:'

WITH (xyz := SP RENAME { S# AS SNO })
EXTEND S : { PQ := (xyz WHERE SNO = S#) { P# , QTY } }
S# CITY PQ
S3 Paris P# QTY
P2 200
sS4 London P# QTY
P2 200
P4 300
P5 400
S5 Athens P# QTY

Fig. 10: Relational analog of Fig. 9

Explanation: The first step (involving WITH) introduces a temporary name xyz in order to avoid a naming
clash that would otherwise arise in the second step; the name xyz denotes a relation that’s identical to SP, except
that attribute S# is renamed SNO. The second step then extends each tuple of S with an additional attribute,
called PQ, whose value in any given tuple ¢ is a relation, derived from xyz (in effect, from SP) and containing part-
number/quantity pairs for all shipments corresponding to the supplier number in that tuple £. We stress the point
that the expression (xyz WHERE SNO = S#) {P#, QTY}, and hence the “introduced” attribute PQ, are both
relation valued.

Observe now that, in the relation shown in Fig. 10, the empty set of part-number/quantity pairs
corresponding to supplier S5 is represented by an empty set—not by some weird “null” construct as in Fig. 9. To
represent an empty set by an empty set seems like such an obviously good idea! In fact, as the example suggests,
there would be no need for outer join at all if RVAs were supported—a fact that can be seen as another strong
argument in favor of RVAs.

DATABASE DESIGN ISSUES

On the basis of examples like the foregoing, we claim that RV As are certainly useful for query purposes; in other
words, derived relations, at least, should be allowed to have RVAs. But what about base relations? More
precisely, when we design a database, and in particular when we decide what base relvars that database is to
contain, should those base relvars be allowed to have RVAs?

' A much simpler formulation uses an image relation, thus: EXTEND S : {PQ := !!SP}. See reference [10].

70 Part 1/ Foundations

The short answer to the question is yes—in accordance with The Principle of Interchangeability [11], if
relations in general are allowed to have RV As, then base relations (and hence base relvars) in particular must
certainly be allowed to have RVAs as well. But note the italics here: Although RVAs must indeed be allowed in
base relvars, we should immediately add that in our opinion such RV As are usually contraindicated; that is, RVAs
in base relvars are usually a bad idea. Detailed arguments in support of this position can be found in reference [5].
Note, however, that we’re talking here about database design issues: Whether RV As should be allowed in base
relvars is a database design question, not a question of what’s allowed according to the underlying theory (or
model). Database design issues are important, of course, but they’re beyond the scope of The Third Manifesto as
such; the Manifesto is concerned with database language design issues (and hence DBMS design issues also), not
database design issues.

Despite the foregoing, there’s a little more we’d like to say regarding the specific database design issue
under consideration. As we’ve already said, we think such database designs are usually not a good idea (and
there’s nothing in the Manifesto to suggest otherwise). But we must make it clear that this position is only a
guideline—it’s not an inviolable rule. In fact, we’ve found at least one fairly compelling example where a base
relvar with an RVA seems to be exactly the right design. The example (taken from reference [5] once again)
involves a catalog relvar KEYS that documents the relvars in the database and their keys. A sample value for that
catalog relvar is shown in Fig. 11 below; we assume in that figure that (a) one of the relvars in the database is
called MARRIAGE, and it has attributes SPOUSE1, SPOUSE2, and wedding DATE, and (b) relvar MARRIAGE
has three distinct keys, each consisting of two of those three attributes.

RELVAR KEY

MARRIAGE ATTRIB

SPOUSEL
DATE

MARRIAGE ATTRIB

DATE
SPOUSE?2

MARRIAGE ATTRIB

SPOUSEZ2
SPOUSEL

Fig. 11: The catalog relvar KEYS—sample (and partial) value

We close this section with one final observation. Suppose for the sake of argument that we decide to adopt
a database design discipline according to which we prohibit RVAs in base relvars but permit them in derived
ones. Then that position is analogous to one adopted by many designers today, according to which base relvars

Chapter 8 / Relation Valued Attributes 71

are required to satisfy the constraints of, say, Boyce/Codd normal form but the results of queries aren’t, and often
don’t.

SUMMARIZATION QUERIES

We have one further answer to Gittens’s question “What problem is solved by support for [RVAs] that could not
be solved otherwise?” In a word, our answer is: Summarization. By way of example, consider the following
query against the conventional design for suppliers and shipments as illustrated in Fig. 7:

SUMMARIZE SP PER (S { S# }) : { TQ := SUM (QTY) }

This expression represents the query: “For each supplier, get the supplier number and total shipment quantity.”
The result, given the sample values in Fig. 7, is shown in Fig. 12.

S# TQ

S3 200
sS4 900
S5 0

Fig. 12: Supplier numbers and total shipment quantities

It should be intuitively clear that the semantics of the foregoing SUMMARIZE expression can be defined
as follows (in outline):

. From S and SP, derive an intermediate result » with attributes S# and PQ, where PQ is an RVA. (That
result might look like relation spq as shown in Fig. 1.)

. From that intermediate result », derive the desired final result by evaluating the expression SUM(SP, QTY)
for each of the relations that happen to be values of the relation valued attribute PQ.

In other words, the SUMMARIZE operator is fundamentally defined in terms of RVAs.?

Note: Reference [12], by Nikos Lorentzos and the present authors, contains a detailed set of proposals for
applying the relational model to the problem of temporal data. A crucial aspect of those proposals is the
definition of two new relational operators called PACK and UNPACK. We mention this point here because, like
SUMMARIZE, those operators too are fundamentally defined in terms of RVAs.

IS OUR POSITION “CONTRARY TO CODD”?

Gittens opens his criticism of our position of allowing RVAs by claiming that it’s “contrary to Codd.” Actually
this claim is not correct; Codd changed his mind on the matter over the course of time. In his first paper [1], he
did allow RVAs. In his second [2], he said the possibility of eliminating them “appears worth investigating,” but
he didn’t actually insist on such elimination. In later writings, of course, he did prohibit RV As; however, we
believe his reasons for doing so were based on a misconception—namely, that the notion of “data value
atomicity” has some kind of absolute meaning. We reject those reasons, and we do support RVAs. For further

? You might think SQL manages to do summarization without involving RVAs, but it doesn’t—not really. However, to discuss SQL’s
approach to the problem would take us further afield than we wish to go here. A detailed discussion can be found in Chapter 7 of reference

[9].

72 Part 1/ Foundations
discussion of these matters, see reference [5].

A REMARK ON CONSTRAINTS
Following his list of questions as quoted near the beginning of the present chapter, Gittens continues:

[The foregoing] questions are ... pertinent in the light of the fact that [values of] these relation valued attributes are
[relations] and as such they lack associated candidate keys. In addition relation valued attributes cannot play any role
in foreign key constraints given the facilities provided by The Third Manifesto. Which is to say that alternatives to
relation valued attributes have more facilities to accurately constrain databases to adhere to requirements of business
and other applications.

We respond to these comments as follows. First of all, of course it’s true—by definition!—that RVA
values are relations (i.e., relation values) and not relvars, and hence that, as Gittens says, they have no candidate
keys (keys for short). To say that something—R, say—has a key is to say that (a) that R is a variable (again by
definition) and (b) updates to R are constrained in a certain way (they will fail if they attempt to assign a value to
R that fails to satisfy the associated key constraint). So a relation—meaning, to repeat, a relation value—has no
key, by definition. However, it does at least make sense to say of some given relation that it either does or does
not satisfy some key constraint; we might even go further and say, a trifle sloppily, that if the relation in question
does satisfy the key constraint in question, then that relation actually “has” that key—though such a manner of
speaking is likely to cause confusion, and we wouldn’t recommend it.

Now, The Third Manifesto certainly requires support for any constraint that can be stated in terms of a
Tutorial D expression of the form IS EMPTY (rx), where rx is a relational expression of arbitrary complexity,
and the constraints that Gittens is concerned about in the passage quoted above can certainly be so expressed,
even if RVAs are involved; so his concerns in this connection are groundless. (It’s true that Tutorial D provides
no syntactic shorthands to simplify the task of expressing those particular constraints, but that’s because we
believe, as mentioned earlier, that base relvars with RVAs should be discouraged. But the Manifesto doesn’t
prohibit the provision of such shorthands, just so long as they’re logically and psychologically well designed; as a
matter of fact, a possible shorthand is suggested, albeit very tentatively, in Chapter 26 of the present book.)

ARE WE COMPLICATING THE RELATIONAL MODEL?
Gittens continues:

So, the question remains, why should the relational model be complicated for dubious gain relative to Codd’s
alternative? Appendix B of The Third Manifesto represents an elaboration of sorts on this topic. This [appendix]
digresses much but provides little that is of substance. I quote:

What then is the criterion for making something a type and not a relvar? In our opinion this question is still somewhat open.

Put another way, Date and Darwen do not seem to know (!), in any definite sense, what the advantages of relation
valued attributes are relative to alternative solutions. The disadvantages, however, are clear: The employment of
relation valued attributes as introduced by The Third Manifesto provides less opportunity for the expression of
candidate key and foreign key constraints in databases, relative to alternatives not involving relation valued attributes.

Is it not up to Date and Darwen to provide proper arguments for adding relation valued attributes to the
relational model? Until logically valid advantages of relation valued attributes can be illustrated, relative to
alternatives, support for such attributes, as defined by The Third Manifesto, seem[s] not only a solution in search of a
problem but also a needless and pointless complication. Consequently, given the current state of affairs on this issue, I
maintain that support for relation valued attributes as defined by The Third Manifesto represents a violation of at least
the parsimony requirement of RM Prescription 26.

We respond to these criticisms as follows. First of all, it could be argued that permitting RV As not only
fails to complicate the relational model, it actually simplifies it, by removing a restriction on the permitted types

Chapter 8 / Relation Valued Attributes 73

of attributes. (And in any case, we’ve already observed that Codd’s rule to the effect that attribute types must be
“atomic” doesn’t stand up, in our opinion, because the notion of “data value atomicity” fails to stand up in turn.)
As for “dubious gain,” we believe we’ve demonstrated some of the advantages of permitting RVAs in preceding
sections of the present chapter.

Second, Gittens’s reference to “Appendix B of The Third Manifesto” is completely out of left field! That
appendix has nothing to do with RV As as such. Its title is “A Design Dilemma,” and it has to do with questions
of the following nature (this is a lightly edited quote from the opening to that appendix):

Suppose we need to deal with employees, where every employee has an employee number (EMP#), a name
(ENAME), a department number (DEPT#), and a salary (SALARY) ... Clearly, we could define an EMP #ype (“Design
T”) or an EMP relvar (“Design R”). The question we address in this appendix is: Which approach is better? In other
words, are there any grounds for choosing one over the other?

So, although it might indeed be claimed that the appendix “provides little that is of substance” (we would
dispute any such claim, of course), Gittens’s conclusion that “Date and Darwen do not seem to know ... what the
advantages of [RVAs] are” simply doesn’t follow. We do know, and we’ve documented them in the present
chapter. What’s more, we’ve also shown that Gittens’s claimed disadvantages are specious.

Gittens continues: “The employment of relation valued attributes as introduced by The Third Manifesto
provides less opportunity for the expression of candidate key and foreign key constraints in databases, relative to
alternatives not involving relation valued attributes.” As we’ve already shown, this claim is also false.

Gittens continues: “Is it not up to Date and Darwen to provide proper arguments for adding [RVAs] to the
relational model?” Well:

. First, we aren’t adding them. The relational model originally included them; it’s true they were
subsequently removed, but only for what we consider to be invalid reasons.

- Second, we gave “proper arguments” in favor of RVAs years ago, in reference [3]. It’s not our intent to
repeat such arguments in the Manifesto as such; the Manifesto is a detailed proposal for database language
and DBMS externals design, based on principles and positions that have been adequately articulated
elsewhere, and it’s meant to be judged on its own merits. If we had to justify every aspect of that proposal
within the Manifesto itself, the document would be orders of magnitude bigger than it already is.

Finally, Gittens says: “I maintain that support for relation valued attributes as defined by The Third
Manifesto represents a violation of at least the parsimony requirement of RM Prescription 26.” No, it doesn’t, for
reasons adequately documented in the present chapter and elsewhere.

IMPLICATIONS FOR RELATIONAL ALGEBRA

Appendix A of reference [11] contains a formal definition of a relational algebra called A (described in reference
[7], slightly tongue in cheek, as “the one true relational algebra”). Our aim in defining that algebra was to provide
a rigorous foundation for the design of relational languages; reference [11] itself uses it as a basis for defining
Tutorial D, and it’s our hope that designers of other relational languages will use it for analogous purposes. But
Gittens’s criticisms of RVAs include some remarks on A that suggest some misunderstandings of that algebra and
our intent with respect to it:

[The] algebra A appears to have no operators which allow [values of] relation valued attributes to be singled out for
manipulation. This entails that from the perspective of The Third Manifesto’s algebra A, [values of] relation valued
attributes are not relation values at all. This is obviously true because [values of] these relation valued attributes
cannot be manipulated by the set of relational operators specifically designed to accommodate the transformation of
relation values. Consequently, from the perspective of the transformations facilitated by A, relation valued attributes
seem a purpose unto themselves. So from the perspective of the algebra A questions like the following can be asked:

74 Part 1/ Foundations

. In what way would the algebra A be logically different if the GROUP operator produced an XML value?

. More generally, in what way is support for relation valued attributes logically different from, for example,
built in support for XML valued attributes?

The most serious claim here, and the one we want to deal with first, seems to be that relations that happen
to be values of RVAs are somehow special, inasmuch as operators that apply to relations in general don’t apply to
such relations in particular. This claim is false. Consider the following example:

spg WHERE TUPLE { P# P#('P2') } € PQ { P# }

This expression has the effect of restricting relation spg (see Fig. 1) to just those tuples in which the PQ
value—a relation, of course—contains a tuple for part P2. The expression PQ{P#} denotes the projection of the
PQ value over P#; in other words, it’s an example of the application of a conventional relational operator—viz.,
projection—to a relation that happens to be the value of an RVA within (some tuple within) some relation. More
generally, in fact, reference [11] explicitly states on page 155 that “the Manifesto requires support for relations
with relation valued attributes, and a// ... operators that apply to relations in general are available for values of the
attributes in question” (emphasis added).

Of course, relations are values, and so “operators that apply to relations in general” are read-only operators
by definition. In particular, the operators of A are all read-only, since A is an algebra and therefore has no notion
(nor any need for a notion) of either variables or update operators, relational or otherwise. But there’s nothing to
prevent a relational language from providing convenient shorthand update operators for updating relvars with
RVAs. Tutorial D in particular provides such shorthands. Here are a couple of examples (also taken from
reference [11], page 155):

UPDATE SPQ WHERE S# = S#('S2"')
{ UPDATE PQ WHERE P# = P#('P3') : { QTY := QTY * 2 } } ;

UPDATE SPQ WHERE S# = S#('S2'")
{ INSERT PQ RELATION { TUPLE { P# P#('P5') , QTY QTY(500) } } } ;

(We assume in these examples that SPQ is a relvar of the same type as relation spq from Fig. 1.)

There are a few more things we want to say in connection with Gittens’s criticisms of A and related
matters. First, we don’t really understand what it would mean for [values of] RVAs “to be singled out for
manipulation.” We can certainly “single out” individual RVA values if we want to. For example, the following
expression “singles out” the relation that’s the PQ value for supplier S4 within relation spq.

PQ FROM (TUPLE FROM (spg WHERE S# = S#('S4')))

What’s more, in accordance with the well known language design principle called orthogonality, this
expression can be used to denote the specified relation in any context where the rules of the language require a
relation of the appropriate type: for example, within an expression calling for the join of that relation with some
other relation. So if that’s what Gittens means by “singling out for manipulation” some value of some RVA, well,
we can certainly do it. In other words, RVA values certainly can be “manipulated by the set of relational
operators specifically designed to accommodate the transformation of relation values,” contrary to Gittens’s
claim.

Or perhaps by “manipulation” Gittens really means update? (The term manipulation is often used in this
sense; it isn’t a very apt term, but it has become sanctified, somewhat, by usage.) Well, we’ve already shown how

Chapter 8 / Relation Valued Attributes 75

syntactic shorthands can be defined that give the illusion of directly updating an RVA.*> So we can do this one,
too.

Gittens also asks: “In what way would the algebra A be logically different if the GROUP operator
produced an XML value?” It’s very tempting here to answer with another question: “In what way would a cat be
different if it were a dog?” More politely, perhaps, we should admit that we simply don’t understand the
significance of the question. If we allow relation valued attributes, we clearly need operators for mapping
between relations that contain such attributes and relations that don’t. That’s what GROUP and UNGROUP
do—GROUP transforms a relation without an RV A into one with one, and UNGROUP does the opposite
(speaking rather loosely in both cases).

All of that being said, we now add that, pace Gittens’s claim, the algebra A doesn’t include explicit
GROUP and UNGROUP operators anyway! Part of the point of Appendix A of reference [11] is precisely to
show that, while such operators are very useful in a concrete relational language, they are in the final analysis just
shorthand for certain combinations of other operators.

We would like to say too that there’s nothing wrong in principle with the idea of defining an operator that
transforms a relation into an XML document. However, (a) such an operator couldn’t be part of any relational
algebra as such, precisely because it yields something that’s not a relation; (b) it would probably not be a good
idea to call that operator “GROUP,” because the name “GROUP” is already spoken for, as it were.

Finally, Gittens asks: “More generally, in what way is support for relation valued attributes logically
different from, for example, built in support for XML valued attributes?”” Again we have to admit that we don’t
really understand the significance of this question. Part of the point of the Manifesto is to define a theory of types:
one that accompanies, but is orthogonal to, the theory that is the relational model. And part of the point of that
theory of types is to say, in effect, that relational attributes can be of any type whatsoever.* So attributes “of type
XML” (more accurately, of type XML document) are certainly not prohibited. Whether support for that type is
built in or user defined makes no difference as far as we’re concerned. By contrast, we do require support for
RVAs to be built in, insofar as relation types are themselves built in.

Note: Actually the last sentence of the foregoing paragraph is a little oversimplifed: Relation types aren’t,
in general, built in—at least, not exactly. However, we can treat them as if they were, at least to a first
approximation, and that’s good enough for present purposes. (The complete story is a little complicated, and to
explain it fully would take us further afield than we wish to go in the present chapter. More specifics can be
found in Chapter 2 of reference [9].)

CONCLUDING REMARKS

Gittens is not the first writer to criticize The Third Manifesto’s support for RVAs. Curiously enough, however,
most previous critics have limited their criticisms to one or both of the following two issues, neither of which
Gittens mentions in reference [13] (at least, not explicitly):

u Don’t RVAs violate first normal form?

- Don’t RVAs take us into the realms of second order logic?

Since Gittens didn’t ask these questions explicitly, we choose not to respond to them in detail here. For the

3 Perhaps we should remind the reader that a// shorthands that allow “direct updating” of attributes (relation valued or otherwise) are in fact
illusory, in a sense. See Chapter 5 of reference [9] for further discussion.

* With two small exceptions, which we mention here for completeness: First, we don’t allow recursively defined types (i.e., types that are
defined in terms of themselves); second, the relational model doesn’t allow relations to have attributes of type pointer (where by “type pointer”
we mean a type with associated referencing and dereferencing operators).

76 Part 1/ Foundations

record, however, the answer to the first question is no, the answer to the second is maybe, with the rider that we’re
not sure it’s the right question to ask, anyway. Detailed discussions of these issues can be found in references [5]
and [8].

REFERENCES AND BIBLIOGRAPHY

1. E. F. Codd: “Derivability, Redundancy, and Consistency of Relations Stored in Large Data Banks,” IBM Research
Report RI599 (August 19th, 1969).

2. E. F. Codd: “A Relational Model of Data for Large Shared Data Banks,” CACM 13, No. 6 (June 1970). Republished
in “Milestones of Research,” CACM 26, No. 1 (January 1982).

3. Hugh Darwen: “Relation Valued Attributes; or, Will the Real First Normal Form Please Stand Up?”, in C. J. Date and
Hugh Darwen, Relational Database Writings 1989-1991. Reading, Mass.: Addison-Wesley (1992).

4. C. J. Date: “Missing Information,” in An Introduction to Database Systems (8th edition). Boston, Mass.: Addison-
Wesley (2004).

5. C. J. Date: “What First Normal Form Really Means,” in Date on Database: Writings 2000-2006. Berkeley, Calif.:
Apress (2006).

6. C. J. Date: “The Closed World Assumption,” in Logic and Databases: The Roots of Relational Theory. Victoria, B.C.:
Trafford Publishing (2007). See www.trafford.com/07-0690.

7. C. J. Date: “Why Is It Called Relational Algebra?”, in Logic and Databases: The Roots of Relational Theory. Victoria,
B.C.: Trafford Publishing (2007). See www.trafford.com/07-0690.

8. C. J. Date: “Frequently Asked Questions,” in Logic and Databases: The Roots of Relational Theory. Victoria, B.C.:
Trafford Publishing (2007). See www.trafford.com/07-0690.

9. C. J. Date: SQL and Relational Theory: How to Write Accurate SQL Code. Sebastopol, Calif.: O’Reilly Media, Inc.
(2009).

10. C. J. Date: “Image Relations” (Chapter 14 of the present book).

11. C. J. Date and Hugh Darwen: Databases, Types, and the Relational Model: The Third Manifesto (3rd edition). Boston,
Mass.: Addison-Wesley (2006).

12. C. J. Date, Hugh Darwen, and Nikos A. Lorentzos: Temporal Data and the Relational Model. San Francisco, Calif.:
Morgan Kaufmann (2003).

13. Maurice Gittens: “The Third Manifesto Revisited,” www.gittens.nl/The TTMRevisited.pdf (March 25th, 2007).

Chapter 9

Setting the Record Straight
(Part 6 of 6):

Nulls and Three-Valued Logic

Gittens asserts in his paper [8] that The Third Manifesto displays “no sound substantiation for [its] rejection of
unknown values.” The implicit reference is to RM Proscription 4 (“No Nulls”) of reference [7], which reads as
follows:

D shall include no concept of a “relation” in which some “tuple” includes some “attribute” that does not have a value.

The name D here refers generically to any language that conforms to the prescriptions of The Third
Manifesto. The proscriptions (RM Proscription 4 in particular) are included in the Manifesto for purposes of
clarification and emphasis only—they all follow logically from the prescriptions (in fact, most of them are
included precisely because SQL violates the relevant prescription, as is the case here).

Further discussion of the RM Proscriptions appears in Chapter 7 of reference [7]. The discussion of RM
Proscription 4 is brief:

By definition, tuples, and therefore relations, do not contain nulls (nulls are not values!). SQL, however, does permit
nulls in its tables—yet another reason why SQL tables are not true relations. In the Manifesto, by contrast, nulls are
absolutely, categorically, and unequivocally outlawed (and so too therefore is n-valued logic for any n > 2).

Note: The reason for the remark in parentheses is that, as is well known, SQL’s support for nulls is based on
three-valued logic specifically (hereinafter abbreviated 3VL).

There’s one important point to be made before we elaborate on our rejection of nulls and 3VL and respond
to Gittens’s criticisms in connection with this issue. The fact is, the problem that nulls are supposed to address
has been shown (e.g., in reference [4]) to be solvable without them, and indeed without recourse even to “special
values” (which were suggested in earlier editions of reference [7] but were dropped from the third edition). So
it’s certainly not the case that a problem that might be perceived as solvable using nulls and 3VL can’t be solved
using a D.

GENERAL OBSERVATIONS

We find Gittens’s criticisms on this topic quite hard to follow. Throughout reference [8] he appears to agree with
Codd—in particular, with reference [1], which we refer to throughout the present chapter as “Codd’s 1979
proposal”—and he does note in Section 6 of his paper that Codd himself proposed a form of support for nulls in
reference [1] that’s very similar to what we find in SQL. On the other hand, he also appears to agree with our
rejection of 3VL and with our outlawing what he calls “instances” of null (we prefer the term appearances):

Date and Darwen seem to have rejected the concept of the unknown based on issues with nulls encountered in SQL.
For example, since many agree that nulls are not values, it just might be possible that a language with consistent
semantics can be designed that accommodates the concept of the unknown in databases while, at the same time, the
same language would have no notion of an instance of a null value. Such a language would accommodate Codd’s
concept of an attribute whose value is not known without mandating three valued logic.

77

78 Part 1/ Foundations

After some elaboration of the foregoing idea (which we refer to hereinafter as “Gittens’s suggestion™), he
concludes with the following question, in italics:

. Is it a matter of fact that Date and Darwen have provided proper substantiation for the rejection of nulls?

The apparent contradictions in these extracts from reference [8] make it a little difficult for us to know how
to respond and, indeed, what to respond to. It’s clear that Gittens wants to see our justification for rejecting
something. The question in italics explicitly calls that something “nulls,” but the earlier text appears to be asking
why we reject some other approach (“Gittens’s suggestion”) that doesn’t involve either nulls or 3VL. Then again,
however, the idea that such an approach “would accommodate Codd’s concept” doesn’t make sense to us, because
“Codd’s concept” certainly did involve both nulls and 3VL.

Be that as it may, we fully agree that the Manifesto includes no justification for our rejection of nulls and
3VL. We justify the omission by observing that (a) the Manifesto is a proposal, meant to be judged on its own
merits (note that reference [7] is already over 500 pages long), and (b) we’ve already given detailed justifications
elsewhere for rejecting various aspects of SQL in general, and nulls in particular, on many occasions and in many
publications. Note: In the case of nulls in particular, such justifications are to be found in 18 (!) separate chapters
in the books listed under reference [5], also in reference [6].

We also agree that the Manifesto includes no justification for rejecting Gittens’s suggestion—but it’s
surely unreasonable to expect any such justification. Why should we give a justification, anywhere, for rejecting
something that as far as we know has never been properly spelled out?'

In this chapter we first respond to Gittens’s italicized question by summarizing the justifications we’ve
given previously for rejecting SQL-style (and Codd-1979-style) nulls and 3VL. Then we comment on Gittens’s
suggestion—viz., that we might be able to avoid appearances of anything like null and stay with two-valued logic
(2VL) and yet still “accommodate the concept of the unknown,” as Gittens puts it.

WHAT’S WRONG WITH NULLS AND 3VL?

As already noted, we’ve answered the question that forms the title of this section elsewhere in numerous
publications and on numerous occasions. For completeness, however, we give below a succinct summary of our
position on the matter. But first we want to offer a preliminary observation. Here again is Gittens’s question:

. Is it a matter of fact that Date and Darwen have provided proper substantiation for the rejection of nulls?

We want to comment on Gittens’s use of the phrase “rejection of nulls.” In our opinion, that phrase is
quite misleading. We would prefer to say rather that The Third Manifesto proposes a scheme based on the
mathematical theory of n-ary relations, as Codd did in 1969. That mathematical theory is based in turn on the
well established first order predicate calculus, which includes the propositional calculus that’s been with us,
arguably, for some 2300 years, and whose logic is two-valued. The main aim of The Third Manifesto was to
clarify what it takes to make a truly relational DBMS. We didn’t think it either necessary or appropriate to
explain yet again why relational databases might be preferred over databases based on other ideas, such as
hierarchies, or networks, or variables of absolutely any kind (as in the object oriented approach), or the kind of
structures Gittens appears to be contemplating. We could argue, therefore, that Gittens’s question could be
paraphrased thus: Is it a matter of fact that Date and Darwen have provided proper substantiation for rejecting
structures other than relations? And then we could respond in kind by asking whether Gittens has provided
proper substantiation for rejecting relations.

! Actually, reference [9], by the late Adrian Larner, might be seen as an attempt to spell out something similar to Gittens’s suggestion; but that
paper has received little attention, and in any case it appears to us not to stand up to careful analysis.

Chapter 9 / Nulls and Three-Valued Logic 79

Anyway, here yet one more time is our position on three-valued logic. We begin by summarizing certain

salient features of the propositional and predicate calculus (i.e., features of rwo-valued logic) that lie at the very
heart of our foundation:

1.
2.

There are just two truth values, TRUE and FALSE.

Because there are just two truth values, the number of monadic operators that can be defined to operate on
a truth value and return a truth value is four (2 to the power 2); and the number of dyadic operators that are
similarly closed over truth values is 16 (2 to the power 2 squared—i.e., 2 to the power 4).

Of the total set of 20 logical operators (so called) mentioned in point 2, several proper subsets have been
identified as being fruth functionally complete. A set of logical operators is truth functionally complete
(with respect to 2VL) if and only if all 20 operators can be defined in terms of those in that set. Well
known examples of such sets, using the familiar English names of the operators, are {AND,NOT},
{OR,NOT}, {NAND}, and {NOR}.> The set usually chosen for its practicality and usefulness is of course
{AND,OR,NOT}. If and only if a set of operators is truth functionally complete, then every proposition
that’s theoretically expressible using the logic in question can be expressed using just the operators of that
set (in particular, there’s no theoretical need to give any other operators explicit names of their own).

The truth functional completeness of AND, OR, and NOT notwithstanding, several other operators are so
useful in practice that they are given names of their own. By way of example, (» AND g) OR (NOT(p)
AND NOT (g))—i.e., “p has the same truth value as g”—is called logical equivalence, often written p < g
or p = q. By way of another example, NOT(p) OR ¢ is called logical implication, often written p = ¢,
and pronounced “p implies g” or “if p then ¢.” Note that p & ¢ is equivalent to (p = ¢) AND (¢ = p).

Based on the aforementioned operators we have certain well defined rules of inference by which further
propositions can be derived from a given set of propositions. Such a derivation is called a proof and such
derived propositions are called theorems. Moreover, if the given propositions are true and the rules of
inference are valid, it follows that those derived propositions (i.e., those theorems) are also true. The rules
of inference include, for example, modus ponens (given p = q and p, we can conclude ¢) and modus
tollens (given p = g and NOT(g), we can conclude NOT(p)). One important application of these rules in
the database context is the use of modus tollens in checking integrity constraints: When the database is
updated, the proposed new value of that database is checked against declared constraints; if the proposition
expressed by some constraint is false, then it follows that the result of applying the update also represents
falsehood, and so the update is rejected.

Two-valued logic is known to be both sound and complete, where soundness means that every proposition
that can be derived by a proof is true (in other words, every theorem is a tautology), and completeness
means that every expressible proposition that is true can be proved to be true (in other words, every
tautology is a theorem). Note: For present purposes, a tautology can be defined as a proposition that’s
necessarily true, regardless of the truth values of any component propositions it might contain. For
example, let p be some arbitrary proposition; then p OR NOT(p) is clearly true and thus a tautology,
regardless of whether p itself is true.

Let P be an n-adic predicate and let ¢ be an n-ary tuple whose n components are in one to one
correspondence with the parameters of P. Then ¢ satisfies P if and only if—to use an obvious notation—

2 In fact, these particular sets aren’t just truth functionally complete, they’re primitive, in the sense that removing an operator from any of them
would result in the set in question being truth functionally complete no longer.

80

Part 1/ Foundations

P(?) is true. The body of the n-ary relation r that represents P is the set of tuples that satisfy P. The n-ary
relation 7' that represents NOT(P) is the complement of r; its body is the set of n-ary tuples ¢’ such that the
components of ¢’ are in one to one correspondence with the parameters of P but ¢ doesn’t satisfy P (i.e.,
P(¢') is false).

One particular relation—the identity relation—is of paramount importance. It corresponds to what’s
sometimes called The Axiom of Equality and hence to the comparison operator equals (“="). Its body
consists of every 2-tuple that pairs something with itself;’ the body of its complement therefore consists of
every 2-tuple that pairs something with something other than itself. The operators of the relational algebra
depend for their definition on the identity relation.

In Codd’s 1979 proposal, by contrast, none of the foregoing properties holds. Instead:
There are three truth values, TRUE, FALSE, and UNKNOWN.

Because there are three truth values, the number of monadic operators that can be defined to operate on a
truth value and return a truth value is 27 (3 to the power 3), and the number of dyadic operators that are
similarly closed over truth values is 19,683 (3 to the power 3 squared—i.e., 3 to the power 9).

3VL counterparts of AND, OR, and NOT are proposed that reduce to their 2VL counterparts when applied
to just TRUE and FALSE. However, this set of three operators is patently not truth functionally complete
(i.e., in the 3VL sense of that term, which would require all 19,710 operators to be definable in terms of
those three). In other words, there exist 3VL operators that can’t be defined in terms of the proposed 3VL
counterparts of AND, OR, and NOT. For example, there’s no way, using just AND, OR, and NOT, to
define the monadic operator whose result is UNKNOWN for every possible input. In fact, reference [1]
doesn’t even address the pragmatically important question of defining a (desirably small!) proper subset of
the 19,710 operators in total that would be truth functionally complete.”

Further interesting operators are also not discussed in reference [1]. We observe, however, that the
operator meaning “p has the same truth value as ¢” isn’t equivalent to (p AND ¢) OR (NOT(p) AND
NOT(g)), because if p and g are both UNKNOWN, the result is UNKNOWN instead of TRUE. Moreover,
no counterpart of 2VL’s implication (p = q) is proposed. Note in particular that its 2VL definition, as
being equivalent to NOT(p) OR ¢, would fail under 3VL to satisfy our intuitive requirement that p = pis a
tautology.

No counterparts of 2VL’s rules of inference have been proposed. It follows that no proof procedure has
been proposed either. Furthermore, several familiar 2VL tautologies aren’t tautologies in 3VL—Ieading to
many traps for the unwary. An example is p OR NOT(p), which is a tautology in 2VL as we know, but not
in 3VL. One possibly surprising consequence of this fact, for SQL in particular, is that the SQL
expressions

CASE
WHEN p THEN a
ELSE b

END

? There’s a question here you might like to ponder: In the formalism of reference [7], attributes of relations have types; so what type are the
attributes of the identity relation?

* A fortiori, therefore, it doesn’t address the question of defining a primitive subset either.

Chapter 9 / Nulls and Three-Valued Logic 81

and

CASE
WHEN NOT (p) THEN b
ELSE a

END

aren’t logically equivalent.

6. Because no rules of inference have been proposed, we have no concept of what either soundness or
completeness might mean in this system.

7. It’s not clear what it might mean for a tuple to satisfy a predicate. In SQL in particular, the criterion used
for evaluating restriction (WHERE) is different from the one used for checking constraints. Also in SQL
(and in Codd’s 1979 proposal), although the comparison x = y doesn’t yield TRUE when x and y are both
null, two or more appearances of null are regarded as equal in the treatment of operators such as
DISTINCT, GROUP BY, and UNION.

8. 3VL doesn’t seem to have a proper counterpart of the identity relation. As noted in the previous
paragraph, in both SQL and Codd’s 1979 proposal there are two distinct equals operators. In one of them
null isn’t considered to be the same thing as itself;’ in the other it is. For psychological reasons we might
refer to the first of these operators as horizontal equals, the second as vertical equals, horizontal equals is
used in restriction and extension, vertical equals in projection and grouping. The fact that the comparison
x =x can yield TRUE in some contexts and not in others doesn’t seem to offer a sound basis for
consistency (to put it mildly).

Actually, Codd later rejected his own 1979 proposal in favor of a different one, based on four truth values
and four-valued logic (4VL). He first briefly mentioned this possibility in reference [2]; he then went on to
publish two different sets of 4VL truth tables, the first in reference [3] and the second, to supersede the first, in a
July 1991 reprinting of that reference. Further details are given in reference [6], which describes yet another
subsequent revision by Codd (and it’s worth noting that this latest revision is strictly incompatible with his own
3VL, which is why we say Codd “later rejected” his original 3VL proposal). It seems, then, that people in favor
of either 3VL or 4VL should be very wary of citing Codd in support of their position.

In any case, our commentary on Codd’s 3VL applies with even more force, mutatis mutandis, to each of
Codd’s 4VLs.® As for nulls, support for nulls implies support for 3VL by definition, so rejecting 3VL implies
rejection of nulls as well. 4VL arises when two different (but equally malignant) varieties of null are supported.

Gittens poses a second question that we need to respond to:

. Is it a matter of fact that The Third Manifesto has provided evidence of properly researching the issue of nulls?

The answer is “No, it isn’t.” The Third Manifesto is a proposal, not a criticism of other proposals. We
don’t consider it the Manifesto’s responsibility to include arguments against everything it doesn’t include. It
should be judged on its own merits.

* Nor is it considered to be not the same thing as itself (!).

¢ More generally, our position on n-valued logic (nVL) for any n > 3 is similar but stronger. The more truth values, the worse it gets, we say.

82 Part 1/ Foundations

GITTENS’S SUGGESTION
We turn now to Gittens’s suggestion:

[Many] agree that nulls are not values, [so] it just might be possible that a language with consistent semantics can be
designed that accommodates the concept of the unknown in databases while, at the same time, the same language
would have no notion of an instance of a null value. Such a la