The RETAIN Statement: One Window into the SAS? Data Step
Paul Gorrell, Westat, Rockville, MD

ABSTRACT

The behavior (or, output) of any complex system is a result of the
interaction of its various subsystems. This is certainly true of SAS,
and an understanding of what goes on 'behind the scenes' is an
important step in mastering the use of SAS statements, functions
and procedures. In this paper | will focus on the RETAIN
statement, but with an eye toward certain general properties of the
SAS DATA step. Looking at the DATA step from the perspective of
a particular statement allows for an immediate, and concrete, grasp
of what otherwise might feel like a rather abstract part of the SAS
System.

Even at its best, documentation cannot delineate the full range of
interaction effects a particular statement or function will exhibit as
part of a DATA step or program. Understanding the general
properties of the SAS System as they relate to particular parts is a
prerequisite for creative and productive SAS programming, as well
as a real timesaver when it comes to debugging.

INTRODUCTION

The RETAIN statement allows for comparisons between
observations in a SAS data step. It is also commonly used to
determine column (variable) position in a SAS data set, and to
assign initial values to variables. In this paper | will discuss the
RETAIN statement in detail (but, of course, not exhaustively). The
first section of the paper (The SAS DATA Step) discusses general
properties of the SAS system which will be important for
understanding the specifics of the RETAIN statement. The second
section (The RETAIN Statement: Basic Syntax) discusses the nuts
and bolts of the syntactically-valid uses of the RETAIN statement.
The third section (Comparing Values Across Observations)
illustrates one of the more common uses of RETAIN, and briefly
discusses a PROC SQL alternative. The fourth section of the paper
(RETAIN: Some Efficiency Considerations) shows how the RETAIN
statement can be used to decrease the processing costs of
assignment statements in the DATA step. The fifth section
(Determining Column Order with RETAIN) looks at how RETAIN is
used to determine variable position in output SAS data sets.

THE SAS DATA STEP

The SAS DATA step has the following general characteristics (a
step is a subpart of a program delimited by DATA or PROC and a
step boundary, e.g. RUN).

(Q)an initial conpilation phase (performed once)

(2)a (potentially) |ooping execution phase

During compilation, (i) the syntax of all the statements in the DATA
step is checked, (ii) the program data vector [PDV] is built (and an
input buffer, if raw data is being read), and (iii) the descriptor portion
of the SAS data set is created. Conditionals and loops aside,
during execution each statement is executed once for each
observation of the data set.

Now, let's look at compilation and execution in a bit more detail.
The PDV is an area of memory where the new data set is
assembled (see Whitlock 1998 for an informative discussion of the

PDV and the SAS DATA step). During compilation, when a SET
statement is read, the descriptor portion of the SAS data set(s) is
read and each variable from the input data set(s) is given a PDV
location. In addition, the automatic variables _ERROR_and _N_
are initialized and added to the PDV. Other information is gleaned
as well, e.g. the NOBS= option creates and names a temporary
variable whose value is the number of observations in the input data
sets (subject to certain restrictions, see the difference between
NOBS and NLOBS in SAS Online Documentation).

All variables from input data sets are initially assigned missing
values. Consider the DATA step in (3), which reads in the data set
BEFOREL1 (which has 2 variables and 3 observations). Note that
the LOG OUTPUT given here is limited to the output of the PUT
statement.

@) BEFORE1
Vi w2
1 2
3 4
5 6
@) data AFTERL;

put _ALL_;
set BEFORE1 nobs=nobs;

run;
(5) LOG OUTPUT:
NOBS=3 V1=, V2=, _ERROR =0 N =1

NOBS=3 V1=1 V2=2 _ERROR =0 N_=2
NOBS=3 V1=3 V2=4 _ERROR =0 N_=3
NOBS=3 V1=5 V2=6 _ERROR =0 N_=4

Notice that understanding the distinction between the compilation
and execution phases (and realizing that information is gathered
during compilation) resolves what appears to be an ordering
paradox in the timing of when NOBS gets a value of '3". That is, the
PUT statement initially executes before the SET statement, but (as
the first line of the LOG OUTPUT shows) NOBS already has a value
of '3". Notice also that the PUT _ALL_ statement respects the
order of variables in the PDV, which, in turn, reflects the order of
variables in the input data set. We will return to this aspect of PDV
construction when we consider the use of the RETAIN statement in
determining column order in a SAS data set.

Now let's add an assignment statement to the DATA step in (4) and
see how values of the new variable V3 change as each observation
is read and the DATA step loops. Note the addition of a second
PUT statement (a prefix of ‘A’ or 'B' will distinguish the output of the
two PUT statements). In (6) I've removed the NOBS= option from
the SET statement, as well as the LOG report of _ERROR_, as
they're irrelevant here.



(6) data AFTERL;
put "Ar ' _ALL_;
set BEFOREL,
v3=v1+v2,
put 'B: ' _ALL_;
run;
7 LOG OUTPUT:
A V1=, V2=, V3= N =1

B: Vvi=1 V2=2

(10) LOG OUTPUT:

A V3=, Vi=. V2=, _N-=1
B: V3=7 Vi=1 V2=2 _N =1
A V3=7 Vi=1 V2=2 _N =2
B: V3=7 Vi=3 V2=4 _N =2
A V3=7 V1=3 V2=4 _N =3
B: V3=7 VI=5 V2=6 _N =3
A V3=7 VI=5 V2=6 N_=4

A Vi=1l V2=2 V3=, N =2
B: V1=3 V2=4 V3=7 _N =2
A V1=3 V2=4 V3=. N =3
B: V1=5 V2=6 V3=11 _N =3
A V1=5 V2=6 V3=. N =4

As in (5) we see that the values of V1 and V2 are initially set to
missing. The value of V3 is initially missing as well. Then the first
observation from BEFOREL is read and the values of V1 and V2 are
read into the PDV, along with the value of V3 (product of the
assignment statement). But the top of the loop for the second
iteration of the DATA step (as shown by the second A line) reveals
a difference between variables V1 and V2 (from the input data set
listed on the SET statement) and V3 (from the assignment
statement). V3 is now set to missing, while V1 and V2 have
retained their previously assigned value.

This is because values of variables read in via a SET, MERGE or
UPDATE statement are automatically retained, but variables whose
values are initially determined by an assignment statement are set
to missing at the top of the loop. The second B line shows the
value of all 3 variables after the second row of BEFOREL is read in.
The DATA step repeats until the last observation of BEFOREL1 is
read, with the assignment statement executing for each observation
(i.e. if there were 1 million observations, then the assignment
statement would apply 1 million times).

The next DATA step illustrates this implicit retention when a
variable is read in via a SET statement. Here there are two input
data sets. Data set BEFOREL is unchanged. Data set BEFORE2
has 1 variable (V3) and 1 observation. Its SET statement is within
a conditional restricting its application to when _N_ = 1;

8) data AFTERZ;
put "Ar ' _ALL_;
if N =1
then set BEFOREZ;
set BEFOREL,
put 'B: ' _ALL_;
run;
) BEFORE2
V3

7

Once the first observation is read, there are no more missing values
for any of the variables. This is because all the variables are read in
via a SET statement (with its implicit retention). It is important to
note that this does not mean impervious to change or subsequent
alteration, but simply that when a value of a variable is retained, it is
not set to missing when the DATA step resets in preparation for the
next row of data to be read in. The value of V3 in the first row of
AFTER?2 persists through the subsequent rows only because there
is no operation in the execution of the DATA step which would alter
it.

Notice also the order of the variables in the PUT _ALL_ output. V3
is listed first. This is because it was read in by the first SET
statement. Input variables are accorded positions in the PDV (and
consequently in the output data sets) based on when they are
encountered during compilation (see the discussion of PDV-
relevant below). We can easily illustrate this by reversing the order
of the two SET statements in the DATA step in (8). Consider the
revised DATA step in (11) and the output in (12).

(12) data AFTERS;
put "Ar ' _ALL_;
set BEFORE1L;
if _N =1
then set BEFORE2;
put 'B: ' _ALL_;
run;
12) LOG OUTPUT:
A V1=, V2=, V3=. _N =1
B: Vi=1 V2=2 V3=7 _N-~=1
A V1=l V2=2 V3=7 _N =2
B: V1=3 V2=4 V3=7 _N =2
A V1=3 V2=4 V3=7 _N =3
B: Vi=5 V2=6 V3=7 _N =3
A V1=5 V2=6 V3=7 _N =4

As we discuss the RETAIN statement in the next and subsequent
sections, the following properties of the DATA step will be important
to bear in mind:



(13) a. The PDV is constructed during
conpilation, with input variables
positioned fromleft to right in the
order they are encountered in
PDV-rel evant statenents.

b. Assignment statenments are potentially
executed for each observation.

c. The values of variables from assi gnment
statements are set to missing at the
begi nning of each iteration of the DATA

step | oop.

THE RETAIN STATEMENT: BASIC SYNTAX

The core operation of the RETAIN statement is to prevent a
variable's value from being set to missing from one iteration of the
DATA step to the next. Why would you want to do this? One
common reason is that you need to make some form of
comparison between rows in the same way that you often do
between columns. A comparison such as if x >y is a within-row
comparison, and easy to do given that the DATA step is executing
row by row. But row by row execution makes between-row
comparisons less straightforward. That's where the RETAIN
statement is most useful. Here's the basic syntax:

(14) retain [variable namel/list | array name] [initial_value];

We will consider variations on this theme below, but for now let's
minimally alter the DATA step in (6), as in (15), which illustrates
the basic use of RETAIN. Here, in the absence of an overt
specification, the value of V3 is initialized by the RETAIN statement
as missing.

(15) data AFTERL;
put "Ar ' _ALL_;
set BEFORE1L;
retain v3;
v3=v1+v2;
put 'B: ' _ALL_;
run;
(16) LOG OUTPUT:
A V1=, V2=, V3=, _N-=1
B: Vi=1 V2=2 V3=3 _N-~=1
A V1=l V2=2 V3=3 _N =2
B: V1=3 V2=4 V3=7 _N =2
A V1=3 V2=4 V3=7 _N =3
B: Vi=5 V2=6 V3=11 _N =3
A V1=5 V2=6 V3=11 _N =4

Notice that this output resembles that in (12). The effect of the
RETAIN statement is similar to that of the SET statement: values of
variables are not set to missing at the top of the DATA step loop.

The statements in (17) comprise a partial list of various
syntactically-valid uses of RETAIN.

a7 a. retain varl,;
b. retain varl 0;
c. retain varl-var3 O;
d. retain varl 0 var2 1 var3 2;
e. retain varl-var3 ( 0);
f. retain varl-var3 ( 0 1);
g. retain varl-var3 ( 01 2);
retain varl-var3 ( 0, 1, 2 );
i. retain;

j. retain _ALL_; [or _CHAR , _NUMERIC_ ]

In (17b) the statement indicates that VAR1 should be (re)set with a
value of '0" at the top of the DATA step loop. Similarly for the
variable list in (17c), VAR1, VAR2, and VARS3 are all '0' before the
next row of data is read. The statement in (17d) shows one way to
assign distinct initial values to different variables. In general the
lack of parentheses around the initial value indicates that that value
should be assigned to all variables to its left (until another initial
value is encountered).

Parentheses are used for one-to-one assignment of an initial value
to a variable. For example, in (17e) the initial value of '0' is
assigned only to the leftmost variable, i.e. VAR1. Following this
logic, the value of '0" in (17f) is assigned to VAR1 and '1' is
assigned to VAR2. In (17g), the values '0", '1', and '2' are assigned
to VAR1, VAR2, and VARS3 respectively. The use of commas in
(17h) is optional. Commas do not carry any meaning; they are
simply an alternative delimiter for the initial-value list.

The syntax in (17i) shows that neither a variable nor an initial value
is required. It is interpreted as an instruction that all variables be
retained (and if you think that makes it equivalent to retain _ALL_
then I've got a NODUP option I'd like to sell you). As the
documentation outlines, the difference between (17i) and (17j) is
that (17i) causes all variables to be retained, whereas (17j) affects
only those variables defined before the RETAIN statement (similarly
for _CHAR_ and _NUMERIC_). It's one of those 'minor' differences
that can cause debugging headaches.

Variables which require an explicit RETAIN statement are those
appearing on an INPUT statement and those initialized in an
assignment statement. Generally, if you are reading in a variable
from a SAS data set, it will be retained. Here's a list which shows
when variables are automatically (implicitly) retained, i.e. retained in
the absence of a RETAIN statement. With the exception of _N_
and _ERROR_, all of these variables may be assigned initial values
in a RETAIN statement.

(18) a. variables read in with a SET, MERGE,
or UPDATE st at enment.
b. a variable whose value is assigned
in a sum statenent.
c. the automatic variables _N_,
_ERROR, _I_, _CMD, and _MsSG.



d. variables created by the END= and
I N= options.
e. variables created by FILE and I NFILE

options.

f. _TEMPORARY_ array elements, or those
given initial values in an ARRAY
st at ement .

The values of array variables are automatically retained if you have
assigned initial values to them in the ARRAY statement. There is
no need for a RETAIN statement in this case.

COMPARING VALUES ACROSS OBSERVATIONS

Suppose you had the following data set BEFORES, and, as part of
your DATA step, you needed to determine the maximum and
minimum values of V1.
(19) BEFORE3

V1 V2 V3

3

A W O L O N
o N A W O

4
2
6
1
5

Here you could use the RETAIN statement as in (20).

(20) data AFTERS;
set BEFORE3 end=itsover;
retain low vl 10 high_v1;
if vl > high_vl
then high_vi=v1;
if vl < lowvl
then | ow _vi1=v1;
if itsover
then put high_vl= |low vl=;

run,;

(1) LOG OUTPUT
HI GH_V1=6 LOW V1=1

The retained variables HIGH_V1 and LOW_V1 are successively
compared to the values of V1 in the current row. Note that the
initial value of LOW_V1 is set sufficiently high that it will be altered
by the data. If the default missing value is used, that will be the
final value which is output. If the value of V1 is higher (or, lower)
than HIGH_V1 (or, LOW_V1) then the value of the retained variable
is updated. But of course there is another way to do this in SAS
(SAS almost always offers more than one way to accomplish a
particular programming goal.). Intuitively, you could sort the data
set (ascending or descending) and output the last observation of
the resulting data set (or subgroup of interest). This is fine if you
are working with small data sets, but an extra sort of even a

modestly-large data set is to be avoided if possible. Further, if you
need more than either the highest or lowest value of a particular
variable (as in (20)), you would need additional sorts.

In addition to statistical PROCs (e.g. SUMMARY), a better
alternative might be the MAX and MIN functions of PROC SQL.

(22) proc sql;
create table AFTER3 as
sel ect max(v1l) as high_vl1,
mn(vl) as low vl
from BEFORES;

quit;

Whether or not PROC SQL can serve as an alternative may depend
on what you need to accomplish with the DATA step (see Gao
1999 for one interesting comparison). For example, suppose that
your data set contains missing values for V1, as in (23).

(23) BEFORE3 (final row added)
V1 V2 V3
3 2

1
4 6 5
2 1 3
6 5 4
1 3 2
5 4 6
8 9

In this case, the output of DATA step (20) would be (24a), but the
output of PROC SQL (22) would be (24b).

(24) a. HIGH V1=6 LOW D=
b. H GH V1i=6 LOWID=1

The reason for this difference is that aggregate functions such as
MAX and MIN do not consider missing values. This difference may
or may not be relevant to your needs. The point is simply that the
more you know about the specific properties of the functions or
statements you are using, and how they interact with general
properties of the SAS DATA step, the better off you are in writing
programs that accomplish all (and only!) what you want to
accomplish. In the next section we consider RETAIN with respect
to efficiency considerations.

RETAIN: SOME EFFICIENCY CONSIDERATIONS

An important fact about the RETAIN statement from an efficiency
perspective is that it is NOT an instruction for SAS to do
something, rather it is an instruction for SAS to NOT do something
which it otherwise would. That is, SAS normally resets certain
variables to missing at the top of the DATA step. This is an
operation with some minimal processing cost, but it is a cost that
is paid observation by observation. If you have a data set with a few
million observations, then you are probably looking for ways to keep
processing costs to a minimum. The RETAIN statement can play
a significant role in this.



Consider the three DATA steps in (25).

(25) a. data TWO,
set ONE;
dat evar =" &SYSDATE";
run;
b. data TWO,
set ONE;
retain datevar;
if _N=1
then dat evar =" &SYSDATE";
run;
c. data TWO,
set ONE;
retain datevar "&SYSDATE";
run;

All three of these DATA steps accomplish the same thing: each
observation of the data set TWO has the SYSDATE value for
DATEVAR (a client once actually requested output data sets with
this property). Virgile (1998) reports that, although the differences
are small, there is a "consistently measurable" cost for the
intuitively simple assignment statement (as in (25a)) when
compared to the use of a RETAIN statement with an initial-value
specification, as in (25c)). Note that Virgile (1998) compared DATA
steps with 5 assignment statements and an input data set with
100,000 observations. The differences may appear too minor to
bother with, but with the increasing size of data sets, interacting
costs can quickly build up.

Why would (25a) use more processing resources than (25c)?
Recall that an assignment statement is executed for each
observation. Further, the variables defined in assignment
statements are reset to missing at the top of each iteration of the
DATA step. The RETAIN statement prevents this from occurring
(remember, RETAIN is an instruction NOT to do something). In
(25c) the variable DATEVAR is given a value once, and this value is
retained for every subsequent observation. In (25b) two statements
are used to accomplish the same goal. Although | have never found
a measurable processing difference between (25b) and (25c), it
does save a few keystrokes to use (25c).

DETERMINING COLUMN ORDER WITH RETAIN

For processes internal to SAS, column order doesn't play a
significant role (e.g. I've never wished | could sort by column). It is
usually when it comes to output that appearances matter, and PUT
and VAR statements are fairly handy for that. But SAS often
interfaces with applications which do care about column order. In
these circumstances, it is very useful to know how to (re)arrange
the order of columns in a SAS data set.

In the discussion of the PDV, we noted that input variables are
positioned from left to right as they are encountered in the DATA
step. This property of SAS processing can be used in conjunction
with the fact that the RETAIN statement (as a non-executable
statement) can appear anywhere in the DATA step. First we should
note that the phrase "can appear anywhere in the DATA step" does
not mean that the RETAIN statement's position relative to other
statements is meaningless. It was noted above that RETAIN
_ALL_ affects only those variables defined before this statement.

In discussing the difference in column (or, variable) order resulting
from the DATA steps in (8) and (11), it was the relative position of
the two SET statements which determined column order. That is,

the variables from the data set referenced in the first SET statement
were positioned to the left of variables from the data set named on
the second SET statement. The generalization being that input
variables are positioned in the order they are encountered in PDV-
relevant statements. Given this, we can modify the output of the
DATA step in (15) by changing the relative positions of the SET and
RETAIN statements, as in (26). Compare the output in (27) with
(16).

(26) data AFTERL;
put "Ar ' _ALL_;
retain v3;
set BEFOREL,
v3=v1+v2,
put 'B: ' _ALL_;
run;
27 LOG OUTPUT:
A V3=, Vi=. V2=, N =1
B: V3=3 V1=l V2=2 _N =1
A V3=3 V1=l V2=2 N =2
B: V3=7 V1=3 V2=4 _N =2
A V3=7 V1=3 V2=4 N =3
B: V3=11 V1=5 V2=6 _N =3
A V3=11 Vi1=5 V2=6 _N =4

In (26) the RETAIN statement occurs before the SET statement,
and consequently, the variable named there (V3) is positioned first
(leftmost) in the PDV and the output data set.

Care must be taken with the generalization that order of
appearance in the DATA step determines PDV order. For example,
referring to a variable as part of the KEEP= option in the DATA
statement, or as an argument of a KEEP statement, does not
affect PDV order. This is because neither use of KEEP affects
PDV behavior. This can be shown by replacing the RETAIN
statement in (26) with a KEEP statement. Compare DATA step
(28), and LOG OUTPUT (29), with (26) and (27).

(28) data AFTERL;
put "Ar ' _ALL_;
keep v3 v2;
set BEFOREL,
v3=v1+v2,
put 'B: ' _ALL_;
run;

(29) LOG OUTPUT:

Vi=. V2=, V3=, N =1
Vi=l V2=2 V3=3 N =1
Vi=l V2=2 V3=, N =2

w > @ »

V1=3 V2=4 V3=7 N_=2



A V1=3 V2=4 V3= N_=3
B: V1=5 V2=6 V3=11 _N =3
A V1=5 V2=6 V3=. N =4

Although the output data set will only contain the variables V3 and
V2, it is clear that the KEEP statement did not affect the PDV.
That is, the variable V1 is present for each iteration (despite its
absence from the KEEP statement), and the order of variables is
exactly what it would have been if no KEEP statement were
present. Again, the more you know about the interacting properties
of the SAS System, the less often you'll be surprised at its output
(Now you know why | was careful to refer to PDV-relevant
statements in (13a)).

One final note on column order: With the RETAIN statement, you
can even 'pick and choose' from the input data set to rearrange
column order, as in (30), which produces the output in (31). Here
the RETAIN statement refers to one variable from the assignment
statement and one from the SET statement.

(30) data AFTERL,;
put "Ar ' _ALL_;

retain v3 v2;

set BEFOREL,

v3=v1+v2,

put 'B: ' _ALL_;
run;

(31) LOG OUTPUT:

A V3=, V2=, Vi=. N =1
B: V3=3 V2=2 Vi=1 _N =1
A V3=3 V2=2 Vi=1 _N =2
B: V3=7 V2=4 V1=3 _N =2
A V3=7 V2=4 V1=3 _N =3
B: V3=11 V2=6 V1=5 _N =3
A V3=11 V2=6 V1=5 N_=4

CONCLUSION

I've discussed four important functions of the RETAIN statement.

32) a. Conparisons between observations.
b. Assigning initial values to variables.
c. Efficient use of assignnent
statenments.
d. Determination of columm (variable)
order.

Although in many cases PROC SQL can serve as a viable (and
more readily coded) alternative to the use of RETAIN for certain
between-observation comparisons, the RETAIN statement is still
commonly used for this purpose, and remains a powerful DATA

step tool. With respect to the efficient use of assignment
statements, whenever a constant must be repeatedly assigned to a
variable, the RETAIN statement is more efficient than the simple
assignment statement (which must be executed for each eligible
observation). Finally, the RETAIN statement (suitably positioned)
is a straightforward way to arrange the order of columns in a SAS
data set to meet external requirements.

Y2K AFTERWARD

In order to insure that this paper is Y2K compatible, | would urge
you to replace &SYSDATE in (25) with a 4-digit year specification,
e.g. &THE_DATE as defined in (33).

(33) %gl obal THE_DATE;

data _NULL_;
call synput ("THE_DATE",
put (i nput (" &SYSDATE", datell.),
mmddyy10.) ) ;
run;

You can use &SYSDATED9 if you have Version 7.
REFERENCES

Gao, D. (1999) "Efficiency Techniques: SQL vs. Retain
Variables," Proceedings of the Twenty-Fourth Annual SAS? Users
Group International Conference, pp. 580-581.

Virgile, R. (1998) Efficiency: Improving the Performance of Your
SAS*® Applications. Cary, NC: SAS Institute Inc.

Whitlock, M. (1998) "The Program Data Vector as an Aid to DATA
Step Reasoning," Proceedings of the Sixth Annual Conference of
the Southeast SAS*Users Group, pp. 229-238.

ACKNOWLEDGMENTS

I would like to thank Marianne Whitlock and Mike Rhoads for
comments on a draft of this paper.

CONTACT INFORMATION

Paul Gorrell

Westat, Inc.

1650 Research Blvd.
Rockville, MD 20850

email: gorrelpl@westat.com

SAS is a registered trademark or trademark of SAS Institute Inc. in
the USA and other countries. * indicates USA registration.




