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1. Introduction 
Malaria is a vector-borne disease caused by the 

Plasmodium parasite and transmitted between humans 
through the bite of the female Anopheles mosquito. Four 
species of protozoan parasite of the plasmodium genus - P. 
falciparum, P. vivax, P. ovale, and P. malariae - cause 
malaria in humans. Though malaria caused by P.vivax is 
the most common, but it is, however, malaria caused by P. 
falciparum that is most dangerous and sufficient to cause 
death [1]. Most people who die from malaria are African 
children below the age of 5 years and pregnant women. 
The dreaded disease is recognised as difficult to eradicate 
and its control is possible only with coordinated efforts of 
the general public, healthcare personnel and government 
and international agencies [2]. 

Chemicals have been and are still extensively used all 
over the world to control wild insect populations. 
However, there are significant challenges, including the 
increase insect resistance to insecticides, environmental 
contamination, effects on non-target organisms and the 
selection of resistance hampering its effectiveness [3]. As 
viable alternative, non-polluting methods also known as 
biological control tools are more explored, with a special 
focus on the ecology and behaviour of the involved 
species. One of the most promising methods is the sterile 
insect technology (SIT). For example, we refer the reader 
to [4] and [5] for details.  

This technology (SIT) can also be used to control 
anopheles mosquito, the vector responsible for malaria 
transmission [6]. In this case, male mosquitoes are bred 
and then exposed to enough gamma radiation to render 
them sterile. The sterile males are then released repeatedly 

into the environment in large numbers in order to mate 
with the native female anopheles mosquitoes preventing 
production of offspring (e.g. see [7,8]). 

This paper contributes to this work by modifying the 
models by [6,9] and [10] to include the release of sterile 
male mosquitoes. Non-standard finite difference schemes 
are developed to simulate the models. The use of these 
schemes is motivated by the fact that standard schemes 
may give spurious and unstable numerical solutions which 
depend strongly on time step-size. Also, standard schemes 
may give results which do not preserve positivity property. 
This paper is organised as follows: In Sections 2 and 3 
DAMP and SIT models are formulated and discussed. 
Non-standard finite difference schemes for DAMP and 
SIT are developed in Sction 6. Numerical simulations are 
implemented in Section 5 and Section 6 gives concluding 
remarks. 

2. DAMP Model Formulation 
The model divides population at any time t is into four 

compartments namely; immature population, I; the non-
laying female mosquitoes, Y; fertilized egg laying 
mosquitoes, F and male mosquitoes, M.  

We consider a female mosquito to be in the Y 
compartment starting from its emergence from pupae 
until when her gonotrophic cycle has begun, (that is the 
time of mating and taking the first blood meal) which 
takes typically 3-4 days. 
A female mosquito needs to mate successfully only 

once and get a blood meal before it starts laying eggs 
during the gonotrophic cycle. The compartments for the 
dynamics of anopheles mosquitoes are shown in Figure 1. 
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Figure 1. A Compartmental Model for Wild Mosquito Population 

The population in immature stage grows to adult 
mosquitoes at a per capita rateσ ; a fraction f of such 
emerging population represents females and the remaining 
fraction ( )1 f− , males. The per capita mortality rates for 
the immature stage, the young females not yet laying eggs, 
the mating fertilized females, and the wild male mosquitoes 
are denoted by Iµ , Yµ , Fµ  and Mµ  respectively.  

The net oviposition rate per female mosquito is 
proportional to their density, though it is also regulated by 
the carrying capacity effect depending on the occupation 
of the available breeding sites. In this model the per capita 
oviposition rate is assumed to be ( )1 /I Kη −   , where K 
is the carrying capacity related to the amount of available 
nutrients and space, and η is the average amount of eggs 
laid per fertilized female per day. Thus, the rate (per day) 
of laying eggs in the breeding sites is ( )1 /I K Fη −   .  

The male mosquito can mate practically throughout all 
its life. Since the female needs one successful mating there 
is an overabundance of males. Therefore, in general, it is 
reasonable to assume that the waiting time for mating does 
not depend on the number of males M in the sense that if 
M is increased further this rate remains the same. For the 
model this means that the transfer rate γ  from compartment 
Y to compartment F is independent of M.  

The description above leads to the following system of 
ordinary differential equations for the DAMP: 
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1

1
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The DAMP model (1) has two equilibrium points, the 
trivial equilibrium *

0 (0,0,0,0)P = where the wild 
mosquitoes are absent and the non-trivial 
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with
( )* 1K R

I
R
−

= where the wild mosquitoes survive and 

R is the basic offspring number defined by 

( )( )I Y F

fR ησ γ
σ µ γ µ µ

=
+ +

. 

The trivial equilibrium point 0P •  is locally 
asymptotically stable (LAS) if 1R < and unstable 
otherwise while the non-trivial equilibrium point *

1P is 
locally asymptotically stable whenever 1R > and unstable 
otherwise. 

3. The SIT Model Formulation 
In this section we extend the basic model for the 

dynamics of anopheles mosquito population by introducing 
compartments T  of treated males and U  of females that 
would be laying sterile (not hatching). This formulation 
yields a SIT model, in which we study the effect of sterile 
male release for control of the wild mosquito population. 
The death rate, Tµ of treated male mosquitoes depends on 
the procedure used during sterilization and we denote the 
death rate of females that would not be hatching eggs 
by Uµ . 

Flows from Y to F and from Y to U compartments 
depend mainly on the number of encounters of females 
with native and sterile males, and on the corresponding 
mating rates. Under the assumption that the mosquitoes in 
the compartments M and T  are equally likely to mate, a 
mating female mosquito has probability M

M T+
to be with 

wild mosquito and probability T
M T+

 to be with a sterile 

mosquito. Hence the transfer rate γ from the compartment 

Y splits into transfer rate of M
M T
γ
+

to compartment F of 

fertile females that would be laying eggs that hatch into 
young mosquitoes and a transfer rate of T

M T
γ
+

to 

compartment U of infertile females that would be laying 
sterile (not hatching) eggs. 

 
Figure 2. SIT Control of Mosquito Flow Chart 
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Note that the total mating rate M T
M T M T
γ γ

γ+ =
+ +

remains 

unchanged by the introduction of the sterile mosquitoes. 
This indeed has to be the case since, as mentioned earlier, 
an increase of the number of males does not change the 
mating rate. 

Similar to the immature stage for natural population of 
mosquitoes, the growth rate of sterile male mosquitoes is 
assumed to be regulated by a carrying capacity effect. This 
feature takes into account the limiting capacity (of 
laboratories, for instance) to produce and release sterilized 
male mosquitoes, which allows the release rate of sterile 
male insects to be described by 1 TT

C
α  − 

 
where C is the 

maximum capacity related to the sterile insect production. 
Note that 1 TT

C
α  − 

 
 is the per capita release rate whereα  

represents the intrinsic release rate. 
Based on the model descriptions (see Figure 2) and 

assumptions, we have the following equations: 

 ( )1 I
dI I F I
dt K

η σ µ = − − + 
 

 (2)  

  ( )Y
dY fI Y
dt

σ γ µ= − +  (3) 

 F
dF MY F
dt M T

γ µ= −
+

 (4) 

 ( )1 M
dM f I M
dt

σ µ= − −  (5) 

 1 T
dT TT T
dt C

α µ = − − 
 

 (6)  

 U
dU TY U
dt M T

γ µ= −
+

 (7) 

 Note that equation (6) can be considered as a logistic 
release of sterile male mosquitoes. Equation (7) for mating 
unfertilized females can be decoupled from the system (2) 
– (7) and equation (6) can be easily solved, which has the 
exact solution given by 

 ( ) ( )
( ) ( )exp

T

T T

C
T t

BC t
α µ

α α µ α µ
−

=
+ − − −    

where B is a constant of integration which can be found 
from the initial condition ( ) 00 .T T=

 
Equation (6) for the sterile male mosquitoes has two 

equilibrium points: * 0T =  and ( )*
T

CT α µ
α

= − . Note 

that equation (6) is biologically feasible if and only 
if Tα µ> . The value * 0T = gives rise to two equilibrium 
points. One is the trivial equilibrium 

0 (0,0,0,0,0,0)P = where both natural and sterile male 
mosquitoes are absent and the other is  
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With 
( )* 1K R

I
R
−

= where only the natural mosquitoes 

survive. When * 0T = , the SIT model reduces to the 
DAMP model and therefore the stability nature of 0P  and 

1P is the same as *
0P and *

1P  respectively. 

For ( )*
T

CT α µ
α

= − , we have three equilibrium points. 

The trivial equilibrium ( )2 0,0,0,0,P T=  with 0U =  and 
the non-trial equilibriums
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( )
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f
µ α µ
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−
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−
 and the parameter R is the basic 

offspring number where 
( )21

4
K R

W
R
−

≤ and 1R > are the 

conditions for biological existence of the non-trivial 
equilibriums. 

The remaining decoupled mating unfertilized females is 
given by  
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* *

* *
0,

( ) 1
M

U
Y M

f I T U
f I T

σ γ µ
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γ µ σ µ
− =
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implying that 
( )

* *
*

* *( ) 1
M

U Y M

f I TU
f I T

σ γ µ

µ γ µ σ µ
=

 + − + 

 

with *I  being substituted by *I− and *I+ to produce the 
equilibrium points 3P − and 3P + respectively, and 

( )*
T

CT α µ
α

= − . 

The parameter W measures the ratio between the 
number of sterile males and the number of natural male 
mosquitoes in equilibrium. If W is sufficiently high, the 
next generation of wild mosquitoes would be much more 
lower than the actual one since a considerable proportion 
of eggs would not hatch. If sterile male mosquitoes are 
released for a long period of time, this pattern would drive 
the natural mosquito population to zero. 
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The stability nature of the non-trivial equilibriums 
indicates that 3P −  is always unstable and 3P + locally 
asymptotically stable. 

4. The NSFD for DAMP and SIT Models 
A continuous dynamical system given by system of 

ordinary differential equations can be solved by using 
standard numerical methods such as Runge–Kutta 
methods [11]. However, these methods may give spurious 
solutions and numerical instabilities that depend strongly 
on the time step-size. They may also give results that do 
not preserve the positivity property. New procedures 
known as Non-standard Finite Difference (NSFD) 
schemes were developed to obtain schemes that are 
dynamically consistent and their solutions preserve the 
physical properties of the approximated differential 
system for arbitrary time step-sizes [12]. Such properties 
include conservation law, positivity, monotonicity, 
replication of the fixed points and their stability.  

A finite difference scheme is called nonstandard finite 
difference method if at least one of the following 
conditions is met: 

(i) In the discrete derivative, the traditional denominator 
is replaced by a nonnegative function ϕ  such that 

2( ) ( )h h hϕ = +Ο  
(ii) Nonlinear and negative linear terms that occur in 

the differential equation are approximated in a non-local 
way. For example, xy  may be approximated by 1n nx y+ or 

by 1n nx y + , 2x by 1n nx x+  and yδ− by 1nyδ +− , where δ  
is any given parameter and x and y represent a given 
phenomenon (see [12,14] and [15]). 

In this section, we develop NSFD numerical schemes 
for DAMP and SIT systems (1) and (2) - (7). The new 
NSFD methods preserve both the positivity of the 
solutions and the stability of the equilibriums of the 
corresponding DAMP and SIT systems. In addition, the 
designed numerical approximations allow us to solve the 
discrete systems explicitly, which increases the efficiency 
of the methods. 

Assume that all the death rates are equal denoted 
by µ and let the total number of natural population be 
given byV I Y F M= + + + . The DAMP model becomes: 
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The discrete model is given as: 
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Since we do not have an exact scheme we need to solve 
for the total population V as well. Note that if 0η = , we 

have an exact scheme with ( ) 1.
heh

µ
ϕ

µ
−

=  

Expressing in Gauss-Seidel-like structure, we have: 

 

( )

( )

1

1
1

1
1

1
1

1

1

1

1 ( )

1
1

1

1

1

n n
n

n

n n
n

n n
n

n n
n

n
n n

n

I F
I

F
K

Y fI
Y

F Y
F

M f I
M

IV F
KV

ϕη
ϕη

ϕ σ µ

σϕ
ϕ γ µ
γϕ
ϕµ
σϕ

ϕµ

ηϕ

µϕ

+

+
+

+
+

+
+

+

+

+ =
+ + + 


+ = + +


+ = 
+ 

+ −
=

+ 
  + −   = + 

 (8) 

Proposition 1: The NSFD scheme preserves the positivity 
property. 
Proof: Consider the Gauss-Seidel-like system (8) above. 
Using the initial conditions 0 0I ≥ , 0 0Y ≥ , 0 0,F ≥  

0 0M ≥ , it can be seen clearly from (10) that 1 0I ≥ and 

1 0M ≥ . If we substitute 0 0Y ≥  and 1 0I ≥ into equation 
for Y  results into 1 0Y ≥  and substituting 0 0F ≥ and 

1 0Y ≥ into equation for F gives 1 0F ≥ . 
Assuming that 0nI ≥ , 0nY ≥ , 0,nF ≥ 0nM ≥ .Then 

using the same argument, we have 1 0,nI + ≥ 1 0nM + ≥ . 
Again this will result into 1 0,nY + ≥ 1 0nF + ≥ .Therefore the 
positivity property holds for all n N∈  
Proposition 2: The discrete DAMP model has the same 
equilibrium points as those of the continuous system. 

We can use system (8) to find the fixed points of the 
system by letting 1n nI I I+ = = and similarly with Y, F and M. 

 

( )

( )

1

1 ( )

1
1

1

I FI
F

K
Y fIY

F YF

M f I
M

ϕη
ηϕϕ σ µ

σϕ
ϕ γ µ
γϕ
ϕµ
σϕ

ϕµ

+
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+
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  (9) 
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Implying that 
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Thus, the NSFD scheme reduces to DAMP model after 
setting the derivatives equals to zero and therefore it will 
have the same fixed points ( )*

0 0,0,0,0P =  and 
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 as shown in 

the continuous case (since I Yµ µ= = F Mµ µ µ= = ). The 
equilibrium solution for V can be obtained by 

solving 1 0I F V
K

η µ − − = 
 

. 

For the trivial equilibrium point *
0P , 0I F= = , which 

implies that 0V =  as well. For the non-trivial equilibrium 

point *
1P , we need to solve 1 0I F V

K
η µ − − = 
   

(for I 

and F different from zero), implying that 
( )K I F

V
K
η

µ
−

= . 

4.1. The Stability Analysis of the Discrete 
Model 

The stability properties for the discrete model can be 
studied by analysing the Jacobian matrix of the Gauss-
Seidel-like structure and applying the Jury stability 
criterion [16]. The Jury stability criterion is a method of 
determining the stability of a linear discrete time system 
by analysis of the coefficients of its characteristic 
polynomial. It is the discrete time analogue of the Routh-
Hurwitz stability criterion. The Jury stability criterion 
requires that the system poles are located inside the unit 
circle centred at the origin, while the Routh-Hurwitz 
stability criterion requires that the poles are in the left half 
of the complex plane.  

The discrete approximation (NSFD) for SIT model is 
given by: 
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Expressing discrete SIT model in Gauss-Seidel-like 
structure, we have 
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Summing up the right equations Y, F, M, and U gives 
the total number of wild flying mosquitoes 

1 1 1 1 1n n n n nW Y F M U+ + + + += + + + . Now, we find the 
denominator function for treated male mosquitoes using 
the following procedures: 

First, the fixed points of equation (6) need to be obtained 

by solving equation ( ) 0,s T =  ( ) 1 T
Ts T T T
K

α µ = − − 
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1 0,T⇒ =  
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1 0T =  and
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2
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= . Then the roots jr  of equation 

(6) need to be obtained using the formula j
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= −
=
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{ } ( )* max : 1,2j Tr r j α µ= = = − , and the denominator 

function is defined by 
*

*
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r
ϕ

−−
= . Thus the 

denominator function for treated male mosquitoes is given 

by 
( )
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hTeh
T

α µ
ϕ

α µ

− −
−

=
−

 where h t= ∆ . 

For other equations we use the denominator function 

1( ) .1
heh

µ
ϕ

µ
−

=  

5. Numerical Simulations 
In this section, simulations of the discrete (NSFD) 

DAMP and SIT models are carried out using Matlab 
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software. The main aim is to verify some of the analytical 
results on the stability of the systems. Beside verification 
of our analytical findings, these numerical solutions are 
very important from practical point of view. The basic 
model for the dynamics of anopheles mosquito population 
is simulated in the absence of release of treated male 
mosquitoes and then this model is simulated after release 
of treated male mosquitoes, and then the effects of varying 
the release rate (α ) are observed. 

The vital parameters are η , µ , σ , α , γ and f as 
indicated in the table below. The values of the parameters 
are kept fixed at K=120 and C=100 where K and C 
represents the maximum carrying capacity for immature 
stage and sterile insect production respectively. The 
figures are plotted using the parameter values in table 5 
and the initial conditions (estimated initial average values 
of the population) are given for each graph. The initial 
time is taken to be 0 0t = and the step size 0.1h =  

Table 1. Parameter Values Used in Simulations 
Parameter Value Source 
η  50 [6] 
µ  0.25 Estimated 

σ  0.06 [6] 

f 0.5 Estimated 
γ  0.75 Estimated 

α  0.8 Estimated 

5.1. Simulation without SIT Control 
The simulation of DAMP model has been done to find 

out the dynamics of the anopheles mosquito population 
before release of treated male mosquitoes. 

 
Figure 3(a). The graph for ( )I t (Immature Population) 

The results show that, the immature population 
increases/decreases with time until it reaches its 
equilibrium level depending on the initial condition as 
shown by Figure 3(a). 

The same trend as for immature population occurs for 
young female population, fertile females and wild males 
as indicated by Figures 3(b), 3(c) and 3(d) respectively. 
This shows that as long as there is no release of treated 
male mosquitoes to control the population, there will exist 
a wild population of natural mosquitoes since the average 

number of secondary female mosquitoes produced by a 
single female mosquito R > 1 (R = 14.7465). This result 
supports the theorem on local stability of nontrivial 
equilibrium point 1P

• . 

 
Figure 3(b). The graph for ( )Y t (Young Female Mosquitoes) 

 
Figure 3(c). The graph for ( )F t  (Fertile Female Mosquitoes) 

 
Figure 3(d). The graph for ( )M t  (Wild Male Mosquitoes) 

5.2. Simulations with SIT Control 
When sterile males are released, all the subpopulations 

are affected. We simulate the SIT discrete model using 
initial conditions: 0 25;I =  0 1;Y =  0 2;F =  0 2;M =  

0 2;U =  0 10;T =  0 30;V =  and 0 10W = . Figure 4(a) 
shows the number of released sterile male mosquitoes 
with time. This subpopulation increases with time until 
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when it reaches its equilibrium. It can be observed in 
Figure 4(b) that immature population initially increases to 
a maximum and then starts to decrease with increase in 
time until it goes to extinction as a result of the released 
treated male mosquitoes.  

 
Figure 4(a). The graph representing exact solution for ( )T t (Treated 
males) 

 
Figure 4(b). The graph for ( )I t after release of ( )T t  

Figure 4(c), shows the sum of the young females, fertile 
females, wild males and unfertile females that are grouped 
together as wild flying mosquito population ( )W t . The 
graph indicates that after the release of treated males, the 
wild mosquito population initially grows to a maximum 
and then starts to decrease with time to until it goes to 
extinction.  

 
Figure 4(c). The graph for ( )W t (Wild flying population) after release 
of ( )T t  

The reason for the trends in Figures 4(b) and 4(c) is that, 
when sterile male mosquitoes are released into the 
environment they will mate with the native female 
mosquitoes. A native female that mates with a sterile male 
will lay eggs, but the eggs will not hatch. Hence the 
immature population and wild mosquito population will 
decrease with time eventually reaching extinction. 

5.3. Variation of Population for Different 
Values of Release Rate 

The simulation of SIT model when there are changes to 
the release rate value has been done to find out the 
dynamics of the population. We simulate this model using 
initial condition: 0 25;I =  0 1;Y =  0 2;F =  0 2;M =  

0 2;U =  0 10;T =  0 30;V = 0 10;W =  and two different 
release rates; 0.3α =  and 0.9α = by keeping all other 
parameter values fixed and observe the nature of resulting 
graphs. Figure 5 shows the variation of immature 
population and wild flying mosquito population for 
different values of release rate (α).  

The graph indicates that the control of the wild-type 
mosquito population is highly dependent on the rate 
( Tα µ> ) at which the sterile males are released, with 
only high release rates giving sufficient control for a short 
period of time. This is because the sterile males become 
larger in size as compared to wild males such that the 
probability of sterile males to mate with fertile female 
mosquitoes is greater than the probability of wild males to 
mate with fertile female mosquitoes. In turn, most of the 
fertile female mosquitoes will lay eggs that cannot hatch 
to become larvae and pupae. 

 

Figure 5. SIT Model for Different Values of Release Rate 

6. Conclusion 
In this study, we have presented both the DAMP and 

SIT models. The main objective of the study was to assess 
the effect of SIT for the control of anopheles mosquito 
using NSFD schemes. Numerical results show that before 
release of sterile male mosquitoes the wild mosquito 
population was approaching the non-trivial equilibrium. 
Soon after release, there was a major change in trend 
whereby the immature and wild flying population started 



 Journal of Mathematical Sciences and Application 32 

 

to decrease to zero. With increase in release of sterile 
males, it is was shown that we can control the wild 
mosquito population for a short period of time due to the 
fact that the probability of sterile males to mate with wild 
females will be higher compared to that between wild 
males and females. Therefore the eggs that will be laid by 
unfertilized female mosquitoes will not hatch. In general 
the model predicts that when Tα µ>  (where Tµ  is the 
death rate for treated males) extinction of the wild 
mosquitoes depends on its initial population size and the 
rate of release of sterile males, with only high release rate 
giving sufficient control. Based on the model of this study, 
it is proposed that future work should consider: 

1. Finding better methods of sterilizing and releasing 
sterile males that do not affect their behavior as well 
as fitness to mate with wild females. 

2. Comparing the SIT approach with standard chemical 
vector control for anopheles mosquito population.  

Acknowledgements 
J.A. Mwasunda gratefully acknowledges for the study 

leave and financial support from MUCE. 

References 
[1] World Health Organization (WHO): Media Centre Malaria 

Factsheet, No.94.October, 2011 http://www.who.int/ mediacentre / 
factsheets/fs094/en/ [Accessed October 22, 2011]. 

[2] World Health Organization (WHO), Media centre – Malaria 
Factsheet, No.94. April 2010. http: // www.who.int/mediacentre/ 
factsheets/ fs094/en/[Accessed August 28, 2011].  

[3] Dorta,D.M., Vasuki, V and Rajavel, A, Evaluation of 
organophosphorus and synthetic pyrethroid insecticides against six 

vectormosquitoes species. Revistade SaúdePública 1993, 27:  
391-7.  

[4] Knipling, E.F, Sterile insect technique as a screwworm control 
measure: the concept and its development, in: O.H.Graham (Ed.), 
Symposium on Eradication of the Screwworm from the United 
States and Mexico, 62, Misc. Publ.Entomol. Soc. America, 
College Park, MD, p. 4, 1985.  

[5] Bartlett,A.C and Staten, R.T, The sterile release method and other 
genetic control strategies, in: E.B. Radcliffe, W.D.Hutchison 
(Eds.), Radcliffe’s IPM World Textbook, University of Minesota, 
St. Paul, MN, Available at: http://ipmword.umn.edu, 1996. 

[6] Anguelov, R.,Dumont, Y andLubuma,J, Mathematical modelling 
of sterile insect technology for control of anopheles mosquito, 
Computers and Mathematics with Applications. 

[7] Steinau, R, Tips from a real pest Control expert-Sterile Insect 
Technique: 
www.asktheexterminator.com/Do_It_ 
Yourself_Pest_Control/Sterile_Insect_ Technique.shtml, 2007. 

[8] Mwasunda, JA, Modelling the Effect of Sterile Insect Technology 
for control of Anopheles mosquito population in Tanzania, MSc. 
Dissertation , University of Dar es Salaam, 2012. 

[9] Esteva, Land Yang, H.M, Mathematical model to assess the 
control of Aedesaegypti mosquitoes by the sterile insect technique, 
Mathematical Biosciences, 2005, 198, 132-147. 

[10] Esteva, L and Yang, H. M, Control of Dengue Dengue Vector by 
the Sterile Insect Technique Considering Logistic Recruitment, 
TEMA Tend. Mat. Apl. Comput., 7, No. 2, 259-268, 2006. 

[11] Dobromir, T. D and Hristo, V. K, Nonstand-ard finite-difference 
methods for predator–prey models with general functional 
response, J. Mathematics and Computers in Simulation 2007, 78 
1-11.  

[12] Mickens, R.E Advances in the applications of nonstandard finite 
difference schemes.World Scientific, Singapore, 1994.  

[13] Dumont, Y and Lubuma, J Non-standard finite difference methods 
for vibro-impact problems, Proc.R. Soc. London, 461A, 2005, 
1927-1950. 

[14] Mickens, R..E, Advances in the applications of nonstandard finite 
difference schemes. World Scientific, Singapore. 1994. 

[15] Mickens, R, Non-standard Finite Difference models of Differential 
Equation. World Scientific, Singapore 2005. 

[16] Kasim, M. A, Stability of Real-Time Systems, Computer 
Engineering Department, Philadelphia University, 2011. 

 


