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Abstract

In this paper, we show the novel application of hidden condi-
tional random fields (HCRFs) – conditional random fields with
hidden state sequences – for modeling speech. Hidden state se-
quences are critical for modeling the non-stationarity of speech
signals. We show that HCRFs can easily be trained using the
simple direct optimization technique of stochastic gradient de-
scent. We present the results on the TIMIT phone classification
task and show that HCRFs outperforms comparable ML and
CML/MMI trained HMMs. In fact, HCRF results on this task
are the best single classifier results known to us. We note that
the HCRF framework is easily extensible to recognition since it
is a state and label sequence modeling technique. We also note
that HCRFs have the ability to handle complex features without
any change in training procedure.

1. Introduction
Recently, there has been a resurgence of interest in discrimina-
tive methods for automatic speech recognition (ASR) due to the
success of extended Baum-Welch (EBW) based techniques such
as maximum mutual information (MMI) and minimum phone
error (MPE) training in large vocabulary conversational speech
recognition (LVCSR) [1]. However, the methods are poorly un-
derstood as they are used in ways in which their convergence
guarantees no longer hold, and their successful use is as much
art as it is science [1]. The rationale for the use of these EBW
based techniques is that general unconstrained optimization al-
gorithms are not well-suited to optimizing generative hidden
Markov models (HMMs) under discriminative criteria such as
the conditional likelihood [2]. We present a class of models that
in contrast to HMMs are discriminative rather than generative
in nature, and are amenable to the use of general purpose un-
constrained optimization algorithms.

The HMM framework is restrictive in that all states need
to model the observations in a uniform way, and that it is
difficult to incorporate long-range dependencies between the
states and the observations. Maximum entropy Markov models
(MEMMs) [3] are direct (non-generative) models that attempt
to remedy this – instead of observations being generated at each
state, the state sequence is generated conditioned on the obser-
vations. The state at each time is chosen with a probability that
depends on the previous state as well as the observations. The
model does not assign probability to the observations, and the
conditional state transition probabilities are exponential (“max-
imum entropy”) distributions that may depend on arbitrary fea-
tures of the entire observation sequence.

Conditional random fields (CRFs) [4] are generalizations

of MEMMs where the conditional probability of the entire state
sequence given the observation sequence is modeled as an ex-
ponential distribution. Although the CRF framework allows ar-
bitrary dependencies between states, we will impose a Markov
structure on the state sequence, but will not insist on normal-
ized conditional transition probabilities at each transition. Thus,
while MEMMs use per-state exponential distributions to model
the transition probability at each state, CRFs use a single ex-
ponential distribution to model the entire state sequence given
the observation sequence. In effect, CRFs allow unnormalized
or weighted transition probabilities, allowing them to trade off
the influence of less informative parts of the observation se-
quence against that of more informative parts [4]. In both cases,
a Markov assumption on the state sequence allows the use of
dynamic programming to yield a Viterbi algorithm for decod-
ing [4].

MEMMs and CRFs have been used successfully for tasks
such as part-of-speech (POS) tagging and information extrac-
tion [3, 4]. MEMMs have also been applied to ASR with some
success [5], while recent work on maximum entropy acoustic
models [6] can be interpreted as an application of a somewhat
constrained CRF to ASR. In ASR, the use of mixture models
and multiple state models in modeling the observations means
that the training data is incomplete in that the frame by frame
state and mixture component alignments are hidden. This is
in contrast to POS tagging and information extraction, where
each training token is completely labeled. In both previous ap-
proaches using MEMMs and CRFs for speech [5, 6], an HMM
system is used to reveal the “correct” training state sequence
through Viterbi alignment, which is used as ground truth during
training. This allows the models to be trained using the gener-
alized iterative scaling (GIS) [7] algorithm and its variants.

We generalize this work and use CRFs with hidden state
sequences for modeling speech. We term these models hidden
CRFs (HCRFs). HCRFs are able to use features which can be
arbitrary functions of the observations without complicating the
training. In this paper, we have not taken the advantage of this
ability of HCRFs, but instead have limited ourselves to using
the standard per-frame MFCC based features which have typi-
cally been used in speech recognition. This allows for a careful
controlled comparison of the HMM and HCRF model families.

HCRFs, unlike HMMs, do not have normalized probabil-
ity distributions for transitions or output probabilities. This
makes it unnecessary to use special purpose algorithms such as
the EBW algorithm used in MMI and MPE estimation. CRFs
are typically trained using iterative scaling methods or quasi-
Newton methods such as L-BFGS [8]. It is possible to train
HCRFs using Generalized EM (GEM) where the M-step is an



iterative algorithm such as GIS or L-BFGS, rather than a closed
form solution. As an alternative to (G)EM, direct optimization
of the conditional log likelihood using a general optimization
technique such as L-BFGS is possible and probably desirable
since it avoids the indirection involved in the use of the EM
auxiliary function. We have successfully used direct optimiza-
tion techniques such as L-BFGS and stochastic gradient descent
[9] to estimate HCRF parameters. We note that this approach
is generalizable to other smooth discriminative criteria such as
the conditional expectation of the raw phone or word error rate
[10], or the smoothed empirical error of the training data [11].

We compare the performance of the novel HCRF models
for speech to that of ML trained HMMs and maximum mutual
information (MMI) trained HMMs on the TIMIT phone clas-
sification task and show that HCRFs outperform both types of
HMMs using the same feature set and the model structure. The
performance of HCRFs is the best single classifier results we
know of on this task – including techniques such as support vec-
tor machines [12] and neural networks [13]. The advantage of
HCRFs is that the model is a state sequence probability model,
even when applied to the phone classification task, and can eas-
ily be extended to recognition tasks where the boundaries of
phonetic segments are unknown.

2. HCRFs as a generalization of HMMs
The HCRF model gives the conditional probability of a seg-
ment (phonetic) labelw given the observation sequenceo =
(o1, · · · , oT ):

p(w|o; λ) =
1

z(o; λ)

X
s∈w

exp {λ · f(w, s,o)} . (1)

If the hidden state sequences = (s1, · · · , sT ) is not marginal-
ized out, we would have a CRFp(w, s|o; λ) rather than an
HCRF. The marginalization is over state sequences that belong
to the model forw. λ is theparameter vectorandf(w, s,o) is
a vector of sufficient statistics referred to as thefeature vector.
Note that in this context, the term feature vector refers to the
vector of sufficient statistics used by the model, and not to the
output of the acoustic front-end. The latter will be referred to
as anobservation vector. Thepartition functionz(o; λ) ensures
that the model is a properly normalized probability, and is given
by z(o; λ) =

P
w,s∈w exp {λ · f(w, s,o)} .

The choice of sufficient statistics determines the dependen-
cies modeled by the HCRF. In order to compare the perfor-
mance of HCRFs with that of discriminatively trained Gaus-
sian emission HMMs, we restrict our attention HCRFs with the
same sufficient statistics. Namely, we use the vector of suffi-
cient statisticsf with components

f
(LM)

w′ (w, s,o) = δ(w = w′) ∀w′

f
(Tr)

ss′ (w, s,o) =

TX
t=1

δ(st−1 = s)δ(st = s′) ∀s, s′

f (Occ)
s (w, s,o) =

TX
t=1

δ(st = s) ∀s (2)

f (M1)
s (w, s,o) =

TX
t=1

δ(st = s)ot ∀s

f (M2)
s (w, s,o) =

TX
t=1

δ(st = s)o2
t ∀s,

whereδ(s = s′) is equal to one whens = s′ and zero other-
wise. Each (unigram) language model featuref

(LM)
w triggers

on the occurrence of the labelw. The transition featuresf (Tr)

ss′

count the number of times the transitionss′ occurs ins, while
the occupancy featuresf (Occ)

s count the occurrences of the state
s. The first and second momentsf

(M1)
s andf

(M2)
s are the sum

and sum of squares of observations that align with the states.
These sufficient statistics may be recognized as the ones that are
commonly accumulated in order to estimate HMMs. Since all
components off are sums of terms that involve at most pairs
of neighboring states, the state sequence is Markov given the
observation sequence, which allows the use of dynamic pro-
gramming algorithms such as Forward-Backward and Viterbi
as with HMMs. Note that for simplicity, we have only given
expressions for using scalar observations and single Gaussian
emission densities, although the arguments hold for vector val-
ued observations and mixture densities. In fact, all experiments
were performed with the familiar vector valued observations
and diagonal covariance Gaussian mixture emissions.

It can be shown that setting the corresponding components
of λ to

λ
(LM)

w′ = log uw′ ∀w′

λ
(Tr)

ss′ = log ass′ ∀s, s′

λ(Occ)
s = − 1

2

„
log 2πσ2

s +
µ2

s

σ2
s

«
∀s

λ(M1)
s =

µs

σ2
s

∀s

λ(M2)
s = − 1

2σ2
s

∀s

gives the conditional p.d.f. induced by an HMM with transition
probabilitiesass′ , emission meansµs, emission covarianceσ2

s

and unigram probabilityuw.
Note that equation (1) with the feature vectorf of equa-

tion (2) gives a valid conditional probability foranyvalue of the
parameter vectorλ. However, not every value ofλ corresponds
to an HMM. In particular,λ(M2)

s may be non-negative,and
λ

(Occ)
s and λ

(Tr)

ss′ may include a weight that emphasizes or
deemphasizes a particular state or transition. Therefore, even
though they model the same dependencies through the same
sufficient statistics, the HMMs give a constrained subset of the
the set of HCRF conditional probabilities.

3. HCRF Estimation
As noted in Section 1, we have chosen to use direct optimization
of the conditional log-likelihood of the training set rather than
GEM. We therefore need to findλ to maximize the conditional
log-likelihood of the training set

L(λ) =

NX
n=1

log p(w(n)|o(n); λ).

L-BFGS is a well-known low-memory quasi-Newton
method which has been applied successfully to the estimation
of CRF parameters [14]. L-BFGS approximates the inverse of
the Hessian using the history of the changes in parameter and
gradient values (known as correction pairs) at previous L-BFGS
iterations. Typically, 3 to 20 such most recent correction pairs
are stored [8].

L-BFGS is a batch training method which uses the statis-
tics such as∇L(λ) computed from the entire training set in



order to make an update to the parameter vectorλ. In con-
trast, stochastic gradient descent (SGD) updates the parame-
ter vector after processing each single training sample using
noisy estimates of the gradient∇L(λ). More specifically, if
(w(1),o(1)) . . . (w(N),o(N)) is the entire sequence of training
samples processed by SGD, then:

λ(n+1) = λ(n) + η(n)U (n)∇λ log p(w(n)|o(n); λ(n))

whereη(n) is the learning rate andU (n) is a conditioning matrix
which can be used to speed up the convergence. We used a con-
stant learning rateη(n) = η and an identity conditioning matrix
U (n) = I. The training samples processed by SGD can be ran-
domly drawn from the training set and the same sample can be
processed multiple times. We also used a parameter averaging
technique which is known to benefit robustness of stochastic
approximation algorithms like SGD [9, 15]. The averaged pa-
rameters are obtained asλavg = 1

N

PN
n=1 λ(n). SGD training

can be viewed as a softened extension of perceptron training
[15] to hidden variable problems.

Both L-BFGS and SGD require the computation of the gra-
dient of log p(ŵ|ô). It can be shown that taking the gradient of
equation (1) and rearranging gives

∇λ log p(ŵ|ô; λ) =X
s∈ŵ

f(ŵ, s, ô)p(s|ŵ, ô; λ)−
X

w,s∈w

f(w, s, ô)p(w, s|ô; λ).

Substituting the vector of sufficient statisticsf from equa-
tion (2) into the gradient, it can be shown that the first and
second terms are the “numerator” and “denominator” counts
used in MMI estimation of HMMs [1]. Because the HCRF im-
poses a Markov structure on the state sequences these statistics
can be efficiently computed from the occupancy probabilities
p(st−1 = s, st = s′|w,o) andp(st = s|w,o), which in turn
can be computed using a forward-backward algorithm, just as
with MMI estimation of HMMs. The forward and backward
recursions and the computation of occupancy probabilities are
analogous to the case of HMM estimation, with the transition

probabilityass′ replaced by a transition scoreexp
“
λ

(Tr)

s′s

”
and

the observation probabilityN (ot; µs, σ
2
s) replaced by an ob-

servation scoreexp
“
λ

(Occ)
s + λ

(M1)
s ot + λ

(M2)
s o2

t

”
. For ex-

ample, the forward recursion for HCRFs is given by

αt(s) =

 X
s′

αt−1(s
′)eλ

(T r)
s′s

!
e

“
λ
(Occ)
s +λ

(M1)
s ot+λ

(M2)
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t

”

in contrast to

αt(s) =

 X
s′

αt−1(s
′)as′s

!
N
`
ot; µs, σ

2
s

´
for HMMs. Thus, the gradient of the log conditional likelihood
can be efficiently computed, just as with MMI estimation of
HMMs.

Note that the conditional log-likelihood is not convex inλ.
Training methods will therefore in general find a local optimum
rather than the global optimum. We initialized the HCRF esti-
mation from ML trained HMM parameters.

3.1. Generalizing to multi-component models on vector val-
ued observations

Most state-of-the-art ASR systems use vector valued observa-
tions, which are modeled with Gaussian mixture emission den-
sities. In this case, the corresponding HCRF model generalizes
to

p(w|o; λ) =
1

z(o; λ)

X
(s,m)∈w

exp {λ · f(w, s,m,o)} .

wherem is a sequence of mixture components. In principle,
this can be viewed as the HCRF of equation (1) with a factored
state of the form(s, m), with vector-valued first and second
moment features. The forward recursions generalize to

αt(s, m) =

 X
s′

αt−1(s
′)eλ

(T r)
s′s

!
·

e

“
λ
(Occ)
sm +λ

(M1)
sm ·ot+λ

(M2)
sm ·o2

t

”

αt(s) =
X
m

αt(s, m)

whereo2 denotes the vector of per-component squares of the
observation vectoro, and the first and second moment parame-
tersλ

(M1)
sm andλ

(M2)
sm are now vector valued. The backward re-

cursions and the computation of posterior occupancy probabili-
ties generalize analogously. Note that when an HMM is written
in HCRF form,λ(Occ)

sm will include the logarithm of the mix-
ture weight. If we modeled dependencies between components
of the observation vector (i.e. full covariance matrices in the
HMM case), there would additional second moment features for
cross-terms, rather than just the squared terms as shown above.

4. Experimental Results
In this paper, we validate the ideas described above on the
TIMIT phone classification task. We use the experimental setup
described in [16]. Results are reported on the MIT development
test set [16] and the NIST core test set. The training, develop-
ment, and evaluation sets have 142,910, 15,334, and 7333 pho-
netic segments respectively. We follow the standard practice
of building models for 48 different phones, and then mapping
down to 39 phones for scoring purposes [16]. We use a stan-
dard Mel-Frequency Cepstral Coefficient (MFCC) front end.
The cepstral analysis uses a 25 msec Hamming window with a
frame shift of 10 msec. Frames are aligned so that there is equal
overlap at the start and the end of each segment. Spectral analy-
sis is performed using a 40 channel Mel filter bank from 64 Hz
to 8 kHz. A pre-emphasis coefficient of 0.97 is used to correct
spectral tilt. The first twelve cepstral coefficients as well as the
zeroth cepstral coefficient are computed for each frame. The
first and second time derivatives of the cepstra are used. The re-
sulting 39-dimensional vectors are normalized so that they have
zero mean and unit variance over the training set. The offset
and scaling from the training set are used for normalizing the
test data. Our baseline HMM system models each of the 48 un-
mapped phones with a three state left to right model, with 10,
20, or 40 diagonal Gaussians per state. We test HCRF models
with exactly the same topologies and feature vectorsf .

We provide results both for ML trained HMMs and MMI
trained HMMs [1]. Technically, our discriminative HMMs
are conditional maximum likelihood (CML) trained rather than
MMI trained, as the (unigram) language model is also discrim-
inatively estimated using the EBW algorithm, whereas MMI



Mix
Comp.s

HMM
(ML)

HMM
(MMI)

HCRF
(L-BFGS)

HCRF
(SGD)

10 27.8% 23.8% 22.1% 20.6%
20 25.8% 23.2% 21.6% 20.3%
40 25.1% 23.4% 21.4% 20.4%

(a) Development set results

Mix
Comp.s

HMM
(ML)

HMM
(MMI)

HCRF
(L-BFGS)

HCRF
(SGD)

10 28.1% 24.8% 23.7% 21.8%
20 26.8% 24.6% 23.2% 21.7%
40 26.4% 25.3% 23.3% 22.3%

(b) Evaluation set results

Table 1: Classification error as a function of the number of mix-
ture components. HMMs estimated using ML and MMI criteria
are compared to HCRFs estimated using L-BFGS and stochas-
tic gradient descent.

only updates acoustic model parameters. However, we yield
to common usage in the sequel and refer to these models as
MMI trained. We build exactly comparable HCRFs using L-
BFGS [8] and stochastic gradient descent [9]. ML models are
used to initialize MMI HMMs and HCRFs. In the HMM case,
we searched for the optimal language model weight on the de-
velopment set. In the case of the HCRFs and MMI HMMs,
the training algorithms were observed to automatically scale
the acoustic and language components of the model appropri-
ately. Training parameters such as learning rate, MMIE flatten-
ing weights, number of training iterations etc are optimized on
the development set and held fixed on the evaluation set. The
optimal learning rate was0.003, while the LM scale and MMIE
flattening weight were4 and0.25 respectively.

The results are compared in Table 1. It can be seen that
HCRFs significantly outperform even discriminatively trained
HMMs (p < 0.001). Our best result is21.7% classification er-
ror, as compared to22.4% reported in [12]. It should be noted
that while MMI estimation of the HMMs and SGD estimation
of the HCRFs converged within ten iterations over the training
set, L-BFGS convergence was much slower, taking up to fifty
iterations. Since all three algorithms make use of exactly the
same statistics of the data, estimation time per iteration is com-
parable. Since the partition functionz(o; λ) does not need to
be computed during decoding, the decoding costs of HMMs and
HCRFs are also comparable.

5. Conclusions
We have proposed HCRFs, which extend CRFs to problems
with hidden variables. In particular, the use of hidden state se-
quences as in HMMs allows the use of HCRFs for the model-
ing of speech. Our results show that HCRFs can be efficiently
trained using direct optimization of the conditional likelihood
by stochastic gradient descent, and that they significantly out-
perform discriminatively trained HMMs at phone classification
on the TIMIT database. In fact, the 21.7% classification rate
yielded by HCRFs is the best result known to the authors that
does not take advantage of combining multiple classifiers. Since

the model deals naturally with hidden state sequences, it can
easily be extended to recognition.
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