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ABSTRACT

The analysis of equimolar counterdiffusion, diffusion with one component
stationary, and equimass/isobaric counterdiffusion in a binary gas mixture is introduced
using the stagnant film model. To obtain corresponding results for continuum diffusion in
a tube, the phenomenon of diffusion creep is introduced and rigorous analytical resulis
obtained where possible. Finally, usual textbook presentations of these topics are

reviewed and critiqued.
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1.  INTRODUCTION

When teaching transport phenomena, students are first exposed to simple and well
posed problems of some engineering relevance. Poiseuille flow in fluid mechanics is an
example, as are one-dimensional conduction problems in heat transfer. Textbooks usually
do an excellent job presenting such analyses. In the case of mass transfer, the situation is
rather different. Meaningful simple diffusion problems are not straightforward and
textbooks often give incorrect analyses that can only servé to hinder the learning process.
Three diffusion problems of significance are:

1. Equimolar counterdiffusion
2. Diffusion with one component stationary

3. Equimass/isobaric counterdiffusion

The first two are examined in most elementary texts. The third is only indirectly
mentioned in perhaps two or three texts, but, as will become evident, should receive more
attention. Nearly all texts consider the diffusion to take place in a capillary tube, and then
perhaps extend consideration to a porous solid. In this paper we will first present correct
analyses of appropriate model problems and then conclude with an examination of what
is found in textbooks. The focus will be continuum diffusion in isothermal, ideal, binary
gas mixtures. Texts usually deal with diffusive mass transfer before continuing with
convective mass transfer. For convective mass transfer, chemical engineering texts
introduce the equivalent stagnant film model before advancing to rigorous solutions of
the governing conservation equations. Mechanical and aerospace engineers have
preferred to use the Couette flow model which yields results identical to those of the film
model, e.g. [1]. We will first examine diffusion problems in the context of the stagnant

film model because the analyses are relatively simple and the results very useful.




2.1

2.2

2.3

EQUI VALENT STAGNANT FILM MODEL

In using the stagnant film model, the true convective transfer process is
imagined to be equivalent to one-dimensional diffusion across a stagnant {luid

film of thickness §f .

Equimolar counterdiffusion
The physical problem could be distillation involving two species whose
molar latent heats are essentially equal, that is, obey Trouton’s rule, or it could be

a chemical reaction such as oxidation of carbon to carbon dioxide by oxygen

where one mole of CO, is produced for each mole of O, consumed. The solution
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Diffusion with one component stationary

The physical problem could be evaporation of a liquid into a gas flow
when the gas is negligibly soluble in the liquid (or the liquid is saturated with the

gas). The solution on a molar basis to take advantage of the nearly constant molar

density is: N, = €Dy Enlm Xae ‘N, =0 (3)
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Equimass Counterdiffusion

The physical problem could be a catalytic reaction A—> B . If both A and
B are in small concentrations in a carrier gas C, the mixture density may be

assumed constant, and an effective binary diffusion coefficient 22, used to give:

n, = Jj, = E“?‘%(wfx.; _wA.e) =fg 3
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If we consider a true binary mixture and allow for a variable mass density o, the

result is more complicated.
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Use of these results requires specification of the equivalent stagnant film

thickness d, , which is obtained by considering the limit of zero transfer rate to

relate & to the mass transfer coefficient as:

5, =2

where k is obtained from an appropriate Sherwood number correlation. Note that
all three cases involve essentially isobaric diffusion in accord with boundafy layer
theory.

Using a stagnant film (or equivalently Couette flow) model to introduce
the student to these fundamental diffusion situations has advantages and
disadvantages. One disadvantage is that the student has already had a fluid
mechanics course in which boundary layers and velocity profiles have been seen:
then the concept of an equivalent stagnant film is difficult to accept since it
violates physical realty rather seriously. On the other hand, an advantage is that
the analyses are truly one-dimensional because wall effects, present when

diffusion takes place in a tube or porous solid, are absent.



But nearly all texts introduce the elementary diffusion problems in the
context of diffusion in a tube or porous solid. Thus, we will present correct
analyses of appropriate model problems for diffusion in a capillary tube, and with
these results as a basis, subsequently examine what is found in textbooks. Correct
analysis requires the introduction of the phenomenon of diffusion creep on the
walls of the capillary tube. This phenomenon is not discussed in relevant
engineering texts. One might speculate that this omission was not by choice
because diffusion creep was considered an advanced topic inappropriate to the
beginning student: rather, the omission was because the authors were unaware of

the phenomenon, or did not appreciate the role it plays.

3. DIFFUSION CREEP

The non-slip boundary condition of viscous fluid flow does not apply to a
gas mixture when there is a concentration gradient along the boundary surface:
there is a “diffusion creep” velocity. This phenomenon is; analogous to the more
well known “thermal creep” on a non-isothermal surface that was first studied by 7
Maxwell [2] in 1877. Both phenomena are perhaps peculiar in that the kinetic
theory of gases is used to describe molecule surface interactions, and yet they can
play an important role when the appropriately defined Knudsen number tends to
zero, and continuum analysis is indicated. Diffusion creep is also called “diffusion
slip” or “concentration creep” in the literature.

denived
A formula for the diffusion creep velocity was first deyerse by Kramers

and Kistemaker [3] in 1944. They used a simple flow model of diffusion to

examine the momentum balance at the wall, and found that the gas adjacent to
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wall had to be in motion. For a binary mixture, the mass average creep velocity is

found to be {4] 1 1
M M dw
v, = a‘;‘ C: DAB P 4 (10)
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Notice that v, is in the direction of diffusion of the heavier species. The

molar equivalent of Eq. (10) 1s:

32 2
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and v, is in the opposite direction to the mass average value: it is in the direction

of diffusion of the lighter species.

More recently, there -have been many maore rigorous kinetic theory
analyses of diffusion creep: a review is given by Mills {4]. The simple Kramers
and Kistemaker result proves to be surprisingly accurate, particularly when the

two molecular weights are substantially different.

4. ANALYSES INCLUDING DIFFUSION CREEP

da,

Eguimolar Counterdiffusion

Most texts introduce equimolar counterdiffusion in gases by considering a
virtual experiment where two large, well stirred chambers are connected by a
capillary tube. Initially one chamber contains pure species A, and the other pure
species B. At time ¢ =0, a stopcock is opened and it is postulated that, following

an initial transient, a quasi-steady state is attained with equimolar

counterdiffusion, N, =—N, . The molar average velocity v, is then zero, but the

mass average velocity v, is not:

N N .
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where N, , N, and v, are averages over the tube cross-section. Thus we expect a
pressure gradient along the capillary tube as was demonstrated in the experiments

of Kramers and Kistemaker [3].
We seek a one-dimensional model, so plug flow at the mass average
velocity v, can be assumed; for laminar flow in a tube of radius R :

v, =VW+~—-(-—-—~—») (13)

where v, is the diffusion creep mass average velocity. The corresponding molar

based result is [4]:

v*“v*+§-2—[u@ =0 14
zZ
P84,
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Since J, and ¢D,, are constant, Fick’s Law withx,, =1, x,, =0 gives:
1
dz L (16)

Substituting Eqs. (11) and (16) in Eq. (15) and integrating with £ assumed

constant gives:

44D (M )
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which is one-half the value for Poiseuille flow (v, =0). Numerical integration of

Eq. (15) allowing for variable viscosity is reported by Kramers and Kistemaker
[3]; Mills [4] further refined the analysis using the creep velocity of Ivcﬁenko et al
[5]. There remains a 20% discrepancy with the experiments of [3], but an
examination of the data suggests a true quasi-steady state was not attained. Other
difficulties in the experiment were also noted [3]. Further experimental data

would be desirable.




4b.

Isobaric Counterdiffusion

In 1833, Graham [6] repdrted experiments on continuum isobaric counterdiffusion
of various gas mixtures through a porous plug, and concluded that the molar

fluxes were inversely proportional to the square root of molecular weight.

Ny _ (M)
N, M, (18)

Graham’s result was confirmed in more recent work, notably by Hoogschagen in

1955 [7] and others subsequently [8,9,10], provided the molecular weights were
sufficiently different. Experiments have in fact shown that Eq. (18) is valid over
the whole Knudsen number range from freeh molecule flow to continuum
diffusion. Equation (18) follows directly from Knudsen’s analysis for free

molecule flow, but our concern here is the continuum limit. Notice that Eq. (18)

does not indicate equimass counterdiffusion for which N, /N, =-M, /M, as

obtained in the stagnant film analysis of 2.3, where the diffusion was both

equimass and isobaric.

Consider isobaric diffusion along a tube in the continuum limit. There is a

diffusion creep velocity v, on the tube wall, and we assume plug flow at velocity
v,,. The flow is strictly not one dimensional because v, is not constant along the

tube; how@er, the Reynolds number is very small (<<1) so that the velocity
profile is very nearly uniforrn. The absolute flux of species Ais:

do, (19)

ny =W, 0%, ~ Dy iz

Writing Eq. (19) for species B with dw, /dz = -dw, [dz , dividing into Eq. (19),
and using Eq. (10) for v, gives:
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where f(a))—- 1 . 1 o, o,
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Substituting @, =1-w, gives:

M ¥z

Pa _ | Ma '
- (2]
N, (1, 22)
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which is Graham’s Law. Notice that it is the diffusion creep velocity given by
Eq. (10) that essentially yields Graham’s Law. With Eq. (22) established we
continue on a molar basis to take advantage of the constant total molar

concentration. The absolute molar flux of species A is:

dx
NﬁxA(NﬁNs)—CDArd—f (23)
Hence dx
NA(].—CKXA):"CDAB“&?‘ (24)

where ot =1+(N, /N, ). Separating variables and integrating with x, =x,,at

z=0and x=x,, at z=1L gives:

N, =P g 17 P (25)
ol l-ax,,

where o =1—(M /M, )1/ * from Eq. (22). As for equimolar counterdiffusion, a

more accurate result can be obtained by using an improved diffusion creep

velocity from kinctic theory.




4c.

Diffusion with One Component Stationary

The usual analysis of diffusion with one component stationary is done in
the context of the Stefan tube to measure diffusion coefficients eg. [11], but also
in the context of a heatpipe eg. [12]. These analyses are one-dimensional and thus
assume plug flow. Some years ago there was a concem about the impact of
violating the nonslp boundary coalition for viscous flow. McDonald et al. [13] in
1971 obtained an exact numerical solution for a cylindrical tube heatpipe and
showed the error incurred by using a plug flow model was less than 5%, even at
very high mass transfer rates. In 1991 Whitaker [14] pointed out that the
numerical studies ignored the presence of diffusion creep, but did not take the
matter further.

To examine the possible effect of diffusion creep, consider the usual one-

dimensional analysis with species B stationary. The bulk velocity is:

y, = ——t D, 4% (26)
1-w, dz

The diffusion creep velocity v, is given by Eq. (10} and thus:

VY _ (lﬂwA)(l—ﬁ)
v, Bro,(1-B) @n

. For the water vapor-air system, Eq. (27) shows that v, is

2

where 3= (M, /M)
at most 25% of v, , and is opposite tov,. Based on the exact solutions with
v, =0, a significant effect on N, is not expected. In contrast to the previous two

cases, diffusion creep cannot be included in a one-dimenstonal analysis. The flow

has an essential two-dimensional character. For M, < M ;there is flow fowards




5b.

5a.

10

z=0 on the walls, and away from z= 0 in the core, with lvw[ <v,. Also radial

concentration variations are required to satisfy species conservation.

TEXTBOOK PRESENTATIONS

Eaguimolar Counterdiffusion

Nearly all texts eg. [15, 16, 17, 18] specify a uniform pressure when
analyzing equimolar counterdiffusion in a tube connecting two chambers. In 4a
we saw that the pressures in each chamber are constant but unequal since a
pressure differential is required to overcome viscous forces in the tube: the
diffusion is not isobaric as claimed. Not only does such a claim confuse the
student, but also the result has been to ignore the proper analysis of
equimass/isobaric diffusion as given in 2c and 4b. Perhaps it would be simpler to

replace the closed system of two chambers with an open system as was

" considered for isobaric diffusion in 4b. Then the pressure differential can be

viewed as a controllable parameter: isobaric diffusion is a special case as is
equimolar diffusion, the latter corresponding to a unique value of pressure
differential that depends on the dimensions of the tube and the particular gaseous
species.
Isobaric Diffusion

Geankoplis [151] first considers free molecule flow (Knudsen diffusion,

KEn={/R>>1) to write

>}
g

KA

N, =
RTL

(%40~ %4z 28)

where D, is the Knudsen diffusion coefficient. For temperature in kelvins and

tube radius R in meters, D, =97.0R{T/M )1/2 . Thus N, is proportional to
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M;¥* in the Knudsen regime, in accord with Graham’s Law. Geankoplis goes on

to consider continuum diffusion for Kn— 0, and obtains Eq. (25) of 4b:

D 1—-ax
A= ABP n Al ;a:1+wjy,,‘?_
aRTL  1-ax,, N, (25)

However, at this point of the analysis, it is not mentioned how ¢ is to be
evaluated in the continuum regime. Eq. (25) is not a solution of the diffusion
problem without a specification of the flux ratio &z. Only subsequently in

Section 7.61§ does Geankoplis address the flux ratio issue. He states that Graham’s

Law is valid for the Knudsen, transition and continuum regimes and
thus, e =1—(M, /M, )W. He gives his own paper with Remick [10] as a reference

for this result. This paper presents as excellent set of experimental data covering a
wide Knudsen number range, but has an unsatisfactory treatment of the
continuum limit theory.

Bird, Stewart and Lightfoot [11] restrict their discussion to two limiting
situations, namely free molecule flow, and con_tinuum flow of gases for which the
“generalized Maxwell-Stefan equations for multi-component diffusion can be

used.” Like Geankoplis, they first introduce free molecule flow to show N A

proportional to M /7, and state that this is Graham'’s Law. They subsequently

state that the ratio N, /N, =~(M, /M, )]ﬂ was first observed by Graham in 1833 -

and rediscovered by Hoogschagen in 1953, without mentioning that these two
experiments were in the continuum regime. Finally, they state that, “Though
derived here for Knudsen flow, this relation is valid for isobaric diffusion well

outside the Knudsen region.” The reader may well conclude that Graham’s Law is
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not expected to be valid in the continuim limit. If their advice is followed and the

Maxwell-Stefan equations used for the continuum limit, the incorrect result
N, /N, =~(My/N,)would be obtained, unless the diffusion creep wall

boundary condition were introduced. But the phenomenon of diffusion creep is
not mentioned in the text. Indeed, both thermal creep and diffusion creep are
ignored in their Example 24.2-1, to yield an erroneous result.

Cussler [19] describes Graham’s 1833 experiment and notes that the
diffusion was isobaric. But he does not discuss Graham’s Law and the role played
by diffusion creep.

The text by Mills [1] also does not mention diffusion creep. One of the
analyses presented involves equimass counterdiffusion in a tube where at z=0
there is a catalytic reaction, and the rea'ctaﬁts are held at a specified composition
by a gas flow over the open end at z =L . The solution assumes a mass average
velocity of zero and constant density to give linear mass fraction profiles. The
diffusion creep velocity is not negligible in such situations and an exact solution
must consider a two-dimensional flow. When the diffusion creep velocity is
directed towards the catalyst, there must be a core flow away from the catalyst
and vice-versa. The results of the analysis are subsequently applied in the context

of a stagnant film analysis with tube length L replaced by &, , for which the wall

effect is irrelevant. But the author admits that this feature was fortuitous, since he

was ignorant of diffusion creep at the time!

. CONCLUDING COMMENTS

Tt should be clear from Section 4 that correct solutions of continuum mass

transfer problems can be obtained by solving classical conservation equations
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with the diffusion creep wall boundary condition applied to the momentum
equation. Recently, the validity of the “classical approach” has been questioned
by Kerkhof and coworkers, eg. [20], but these workers failed to recognize the role

played by diffusion creep. The classical approach is alive and well!




7. NOMENCLATURE

total molar concentration

[

binary diffusion coefficient

Knudsen diffusion coeffiecient

SIS

diffusive molar flux

ey

diffusive mass flux

mass transfer coefficient

tube length

N T

mean free path

molecular weight

z X

absolute molar flux,

absolute mass flux

<

pressure

v I~

gas constant
tube radius
temperature

mass average velocity

< = N o

molar average velocity
x mole fraction

Z Coordinate

(kmol/m®)
(m?*/s)
(m*/s)
(kmol/m?)
(kg/ m®s)
(m/s)

(m)

(m)
(kg/kmol)
(kmol/ m?s)
(kg/ m’s)
(Pa)
(J/mol K)
(m)

(X)

(m/s)
(m/s)

(m)
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GREEK

5, equivalent stagnant film thickness
U dynamic viscosity

W mass fraction

Js; mass density
SUBSCRIPTS

AB species in a binary mixture
b bulk

0 atz=0

L atz="L

¢ free stream

m effective binary

5 surface

w creep

(m)
(kg/ms)

(kg/m?)

15
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