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Abstract

We describe the * — right annihilator (x — left anihilator) of a subset of a ring and we investigate the relationships
between the right annihilator and x — right annihilator. These connections permit the transfer of various properties from
annihilators to = — annihilators . It is known that the quotient ring constructed from a ring and a maximal ideal is a
field, whereas we prove that the quotient ring constructed from a ring and a *-maximal ideal is not a *-field. Equivalent
definitions to *—regular ring are given.
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1. Introduction

A ring A is said to be a ring with involution or simply *-ring if there is a unary operation *: A— A such that for all a, b €
A we have:
a”® =a,(ab) =b'a",(a+b) =a" +b"

In this paper, only associative rings are considered. For more details concerning the ring with involution see (Rowen,
1988).

An ideal I of an involution ring A (I <1 A) is called *-ideal (I <* A), if it is closed under involution; that is /*= 1. An
involution * of a *-ring R is said to be proper (semiproper) if x*x = 0 (x*Rx = 0) implies x = 0 for every x € R. In
(Rowen, 1988), the right annihilator of a € A, denoted by r(a), is defined as r(a) = {b € A| ab = 0}. Similarly, the left
annihilator of a is 1(a) = {b € Alba = 0}.

A ring (resp. *-ring) A is semiprime (resp. *-semiprime ) if I> = O for every nonzero ideal (resp. *-ideal) I of
A. A ring A is called reduced if it has no nonzero nilpotent elements (a" = 0 for any a € A and positive integer n).
(see (Berberianetal., 1988), (Rowen, 1988)) . A ring A is called regular if for every a € A, a € aAa. Equivalently, every
principal one-sided ideal of A is generated by an idempotent (see (von Neuman, 1960)).

An element e of A is called idempotent (projection) if > = e (and e* = e. Equivalently, e = ee*).
2. Properties of *-annihilators

Let A be a ring with involution which does not necessary have identity. Recall that the right annihilator of a subset S of
A is defined as S” = {x € A/Sx = 0}. Now, let S be a non empty subset of the *-ring A, define the = — of S to be the
self adjoint subset S’ = {x € A/Sx = 0and S x* = 0}. Similarly, the = — left annihilator can be defined. It is clear that
S7 € S”. However the converse is not true as shown in the following example.

Example 1. Consider the ring A of all 2 X 2 matrices rings over the real field R, M, (R), with transpose of matrices as
invotution. Let S = {(g g) /a € R} ,then §" = {(_bb _cc) /b,c € ]R} and S’ = {(_tt _tt) Jt € R} At is clear that in

this example the right annihilator of S is not a = — right annihilator of S.

In (Anderson et al., 1992), it is proved that the right annihilator of S is a two sided ideal, a similar proof is given in the
following proposition to show that the * — right annihilator of arightideal S of A is a * — ideal of A.

Proposition 2. IS is a right (resp. left) ideal of a *- ring A, then the = — right annihilator S, (resp. left) is a * — ideal of
A.

Proof. Let x,y be two elements of the * — right annihilator S’, a €A. Then S(x —y) C Sx—Sy =0and S(x — y)* C
Sx* =Sy =0.Also, S(ax) = (Sa)x CSx =0,S(ax)* = (Sx*)a* = 0 and similarly S (xa) = 0 = S (xa)*. O
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The %— annihilator of a non empty subset S is defined by .. = S”NSL.IfS is self adjoint, then itis clear that S” = S! = S ..
The following is an immediate corollary of the previous proposition.

Corollary 3. If S is a *-ideal of A, then S” = S’ = S, is also a *-ideal of A.

Our main goal is to give some properties of *-annihilators.

Theorem 4. Let S, T be subsets of a ring A, then:

1. SI=()

2. S = Ney (@

3. SuUT). =S'NnT/ ,(SUT). =8 nT!
Proof. 1. letxeS’,Sx=0and Sx* =0,x*S* =0and xS* =0,s0x € (S*). and S” C (S*).. Let x € ()., xS* =0
and x*S* =0,Sx* =0and Sx =0, So, x € S and (S*). C S” therefore S’ = (S*).
2.LetxeS,,Sx=0and Sx* =0,ax =0and ax* = 0 forevery a € S then x € (a) ; foreverya € § hence x e N (a) .
Let x € Nies) (@), ax = 0 and ax* = 0 for every a € S, Sox € S’. Hence, S, = N(ey) (@) .

3.letxe SUT)Lx(SUT)=0and x*(SUT) = 0,(xS =0and x7 = 0) and (x*S =0 and x*T = 0). Then x € S
andx e T'andx e SLNT. Letx e S!NT!, x e SLand x € T!, (xS = 0and x*S = 0) and (xT = 0 and x*T = 0) so,
(xS =0and xT =0) and (x*S = 0and x*T = 0), finally, x(S UT) =0 and x*(S UT) =0, Hence x € (S U T) . O

Proposition 5. If A is reduced then S” = S'.
Proof. Let x € S” then Sx = 0 and Sx* = 0, yx = 0 and yx* = 0 for every y € S, we also have (xy)*> = xyxy = 0 and

(x*y)*> = x*yx* y = 0. But A is reduced then it has no non zero nilpotent element. Thus, xy = 0 andx*y = 0 for every
y€eS.So,xeS. Similarly, we get S. € S”. Hence, S” = S'. O

Proposition 6. If * -is a proper (semi proper) involution then S N SL =0

Proof. Letxe S NS, xeS and x € S! which implies that xS = 0 andx*S = 0, but x € S then x*> = 0 and x*x = 0. But
*— is a proper involution then x*x = 0 gives x = 0 (due to (Berberian, 1988)). Hence S N S’ =0 m]

By a similar reasoning we obtain that S N S’ = 0 if *~ is a semi proper involution or if A is a reduced ring.

In general, for any subset S of A, S & (S7)..

Example7.S:{(8 g)/aeR},T:S;:{(;t _tt)/teR},Ti:{(Z Z)/beR},S;(S;)i.

If S is self adjoint, then S C (S7)..

!
Proposition 8. IfS = S* then S C (7). ; moreover S € (7). and S C (Si)*

Proof. Let T = S”. To show that § C T' we need to show that ST = 0 andS*T = O but S = §* then it is enough to show
ST =0.

!
ButT = S gives ST =0and ST* = 0, hence ST = 0 and S C (S”)" .Notice that if S = S* then S” = S’ and § Q(Si)

*

and S C (S7). m]
Corollary 9. If A is semiprime ring and S < A then S” = S'.(same reasoning as (Herstein), corollary 1, p.6)

Corollary 10. Every element of S, is a *-zero divisor. (definition of *-zero divisor is given in (Anderson, et al., 2010))

Proof. Let x € S7 then Sx = 0 and Sx* = 0 then there exist y € S such that yx = 0 and yx* = 0. Hence x is a * —zero
divisor. O

The converse is not true; not every = — zero divisor of a ring belongs to S”.

Example 11. Let R = A & A°P with exchange involution (a,b)" = (b,a),A = Zg, (2,0) is a * —zero divisor, (2,0)(3,0) =
(0,0) and (2,0) (0,3) =(0,0), but (2,0) ¢ S'.S = Z3 & Z3 since there exist (1,3) € S such that (2,0) (1,3) # (0,0).
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3. *-maximal Ideal

Motivated by a theorem in ring theory which said that an ideal I of a ring A is maximal if and only if the quotient ring
A/l is a field, the involutive version will be shown in this section. birkenmeier has defined *—prime ideal and *—maximal
ideal in a ring with involution in (Birkenmeier et al., 1997), he showed that every prime (maximal) ideal is *—prime
(*—maximal) ideal.

The ring A considered in this section is commutative.
Every maximal ideal of A is a s—maximal ideal of A but the converse is not true. Indeed, consider the ring R = Z, & Z4

with exchange involution (a, b)* = (b,a). I = {0,2} is a maximal ideal of Z, then J = I & I is a * — maximal ideal of
Z4 ® Z4 under the exchange involution. But J is not maximal since it is contained in Z, @ I.

Proposition 12. Let A be a «— ring, every x— maximal ideal of A is a *—prime ideal of A.

Proof. Let M be a »— maximal ideal of A. if M is a maximal ideal of A then M is a prime ideal and therefore M is a
x—prime ideal of A. if M is not a maximal ideal K of A then there exists a maximal K of A such that: K + K* = A and
K N K* = M (see (Birkenmeier et al., 1997)). K is a maximal ideal of A then K is prime, So K is «—prime and K N K™ is
x—prime (see (Birkenmeier et al., 1997)), Then M is =—prime ideal of A. m]

Proposition 13. Let A be a commutative — ring with identity and M <* A. If the factor ring A/M is a — field then M
is a x— maximal ideal of A.

Proof. Let A/M is a =— field then A/M is a field then M is a maximal ideal of A and M is a *— maximal ideal of A. m]

The converse is not always true; the following example shows that is if M is a *— maximal ideal of A then A/M is not a
x—field.

Example 14. Let A = Z,®Z4, M = 11 with I = {0, 2} is a *— maximal ideal of A under the exchange iyvglution (a,b)" =
(b,a), but O # (2,1) € A/M is not invertible for the reason that (2, 1) is a zero divisor (2,1)(2,0) = (0, O) henceA/M is
not a field and not a =—field.

Proposition 15. Every «— field is a «— integral domain.

Proof. Let A be a x—field with a, b and ¢ are non zero elements in A such that ab = ac and a*b = a*c, a admits an inverse
elementa™!,a 'ab = a'ac and a'a*b = a~'a*c then b = c and A is a *— integral domain since the cancellation property
holds true. o

4. *-regular Ring

Definition 16. Refer to (vonNeuman, 1960), A «—ring A is called *-regular, if every principal one-sided ideal of A is
generated by a projection.

Theorem 17. For every x—ring A, the following statements are equivalent:

1. Ais * — regular.
2. ac€Aa*aforeverya € A
3. acaa*Aforeveryac A

4. a € Aa*a Naa*A for every a € A

Proof. (1) => (2) Let A be * — regular, then for every a € A, aA = eA for some projection e of A. Hence a = ea and
e = ar for some r € A Thus a = e*a = r'a*a € Aa*a.

(2) = (3) Let the condition be satisfied. Then for every a € A, we have a* € A (a*)" (a*) = Aaa*. Take the involution,
then a € aa*A.

(3) = (4) obvious

(4) = (1) we have a = xa*a for some x € A. But (xa*) (xa*)" = xa*ax* = ax* implies (xa*) (xa*)* = (xa*) which means
that xa™ is a projection. Then a = ea for some projection e of A implies aA = eA and hence A is * — regular. O
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