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Abstract

We have developed and implemented in the
QPORTRAIT program a qualitative simulation
based method to construct phase portraits for a
significant class of systems of two coupled first or-
der autonomous differential equations, even in the
presence of incomplete, qualitative knowledge.

Differential equation models are important for rea-
soning about physical systems. The field of non-
linear dynamics has introduced the powerful phase
portrait representation for the global analysis of
nonlinear differential equations.

QPORTRAIT uses qualitative simulation to gener-
ate the set of all possible qualitative behaviors of
a system. Constraints on two-dimensional phase
portraits from nonlinear dynamics make it possi-
ble to identify and classify trajectories and their
asymptotic imits, and constrain possible combi-
nations. By exhaustively forming all combinations
of features, and filtering out inconsistent combi-
nations, QPORTRAIT is guaranteed to generate all
possible qualitative phase portraits. We have ap-
plied QPORTRAIT to obtain tractable results for a
number of nontrivial dynamical systems.

Guaranteed coverage of all possible behaviors
of incompletely known systems complements the
more detailed, but approximation-based results
of recently-developed methods for intelligently-
guided numeric simulation [Nishida et al; Sacks;
Yip; Zhao]. Combining the strengths of both ap-
proaches would better facilitate automated under-
standing of dynamical systems.
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Intoduction

This report® describes a qualitative simulation based
method, implemented in the QPORTRAIT program, to
construct phase portraits for a significant class of sys-
tems of two first order autonomous differential equa-
tions. It is a step towards a useful tool for automated
reasoning about dynamical systems (i.e. differential
equations), and shows that a dynamical systems per-
spective can give a tractable overview of a qualitative
simulation problem.

Differential equations are important for reasoning
about physical systems. While nonlinear systems of-
ten require complex idiosyncractic treatments, phase
potraits have evolved as a powerful tool for global anal-
ysis of them. A state of a system is represented by a
point in the phase space; change of the system state
over time is represented by a trajectory; and a phase
portrait is the collection of all possible trajectories of
the system.

Phase portraits are typically constructed for ex-
actly specified system instances by intelligently choos-
ing samples of trajectories for numeric simulation and
interpreting the results. This has led to recent de-
velopment of numeric methods based reasoning in the
phase space [Nishida et al; Sacks; Yip; Zhao]. These
approaches are able to give good approxiamte results.

Based on qualitative simulation [Kuipers 86], and
using knowledge of dynamical systems, QPORTRAIT is
able to predict all possible phase portraits of incom-
pletely known systems (in the form of qualitative dif-
ferential equations, QDEs). Starting with a total en-
visionment [Forbus 84] of a system, QPORTRAIT pro-
gressively identifies, classifies, and combines features of
the phase portrait, abstracting away uninteresting dis-
tinctions, and filtering out inconsistent combinations
of features. Exhaustive search and elimination of only
provable inconsistencies enable guaranteed coverage of
behaviors. This, and the ability to handle incomplete
information about systems complement numeric meth-
ods based approaches. )

QPORTRAIT is currently applicable to systems of two

!This report summarizes the work of [Lee 93].



first order autonomous differential equations with non-
degenerate fixed points. Various recently developed
techniques have been incorporated to deal with qual-
itative simulation’s potential for intractability. As a
result, QPORTRAIT is able to produce tractable results
for systems with fixed points at landmark values for the
phase variables. We have applied QPORTRAIT to ob-
tain tractable results for QDE versions of several well-
known nonlinear systems, including a Lienard equa-
tion, a van der Pol equation, an undamped pendulum,
and a predator-prey system

In the rest of this report, we will first describe the un-
derlying concepts of our work. Then we will describe
the steps of our method, followed by an tlustration
of the steps using a Lienard equation example. Next
we will present an argument that our method provides
guarantee of coverage, discuss dependencies and limi-
tations, and describe related work. We then end this
report with our conclusion.

Underlying Concepts

Phase Portraits

In the phase portrait representation, a state of a system
is represented by a point in the system’s phase space,
defined by a set of phase variables of the system. (A
set of phase variables of a system is a minimal set of
variables that fully describes the state of the system.)
Change of the system state over time is represented
by a trajectory in the phase space. A phase portrait
is the collection of all possible trajectories of the sys-
tem. The key characteristics of a phase portrait are
the asymptotic limits of trajectories (i.e. where trajec-
tories may emerge or terminate), and certain bounding
trajectories that divide the phase space into stability

regions.
For autonomous two-dimensional systems,
= f(ws y)
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asymptotic limits of trajectories can only be one of:
fixed points (where the system is stationary), closed
orbits (where the system oscillates steadily forever),
unions of fixed points and the trajectories connect-
ing them, and points at infinity. Fixed points are ei-
ther sinks (where trajectories only terminate), sources
(where trajectories only emerge), saddles (where tra-
jectories may either emerge or terminate), or cen-
ters (where trajectories neither emerge or terminate).
Bounding trajectories other than closed orbits are as-
sociated with saddles, and are called separatrices.

In restricting our attention to system with nonde-
generate fixed points (which are noncontiguous}, lo-
cal characteristics of fixed points are essentially lin-
ear. This means, in particular, that unions of fixed
points and the trajectories connecting them can only
be unions of saddles and separatrices connecting them.

Furthermore, the essentially linear characteristics of
saddle points means that exactly one separatrix en-
ters a saddle in either of two opposite directions, and
exactly one separatrix exits a saddle in either of two
opposite directions.

Reasoning in Qualitative Phase Space’

To reason about phase portraits in qualitative phase
space, we integrate the total envisionment and behav-
ior generation approaches in qualitative simulation. A
total envisionment [Forbus 84], using a coarse state
space representation®, produces a transition graph of
the n-dimensional state space for the QDE of the sys-
tem in question. This includes all possible qualitative
states a system can take on, and possible transitions
between them, capturing all possible trajectories, and
their asymptotic limits. Behavior generation [Kuipers
86] refines trajectory paths for two purposes: to check
for each trajectory that not all behavior refinements
of it are provably inconsistent, and to depict detailed
trends of cyclic paths. These ideas are further dis-
cussed in the next section.

A QDE description of a system may apply to in-
stances of a system that give rise to phase portraits
with different local characteristics. For example, a
nonlinear oscillator may be overdamped, giving rise to
non-spiraling (nodal) trajectories into a sink; partially
underdamped, with trajectories spiraling an arbitrary
finite number of times around a sink; or totally under-
damped, spiraling infinitely many times as it converges
to the sink. These trajectories are mutually intersect-
ing, and belong to different phase portraits, but the
distinctions are local to the cyclic paths around a par-
ticular sink.

In order to arrive at a tractable global view of the set
of qualitative phase portraits, we abstract such a local
configuration into a spiral-nodal bundle of trajectories
around a given sink or source [Lee93], representing the
bundle with one of the constituents. Other examples
of abstracting away detailed distinctions are discussed
subsequently.

Steps of QPORTRAIT
The major steps of QPORTRAIT are:

1. envision, through total envisionment, to capture all
possible trajectories and their asymptotic limits,

2. identify the asymptotic limits (possible origins and
destinations) from the envisionment graph,

3. gather trajectories by exhaustively tracing paths be-
tween possible origins and destinations,

?Notable earlier work in this area has been done by
[Chiu 88], [Lee & Kuipers 88] and [Struss 88].

3The value a variable can take on is from a predeter-
mined set of landmark values for the variable, or the set of
intervals between these landmarks.



4. compose mutually non-intersecting trajectories into
phase portraits.

With a few exceptions identified explicitly below,
all steps in this analysis have been automated. These
techniques are described in more detail in [Lee93].

Capturing all Trajectories

A QDE is first constructed for the system in question.
While this process is manually performed, there are
often straightforward transformations between func-
tional relationships and QDE constraints. Next, to-
tal envisionment captures all possible trajectories and
their asymptotic limits. Fixed points are then identi-
fied and checked for nondegeneracy*. This involves
symbolic algebraic manipulation, and is performed
manually (though a simple version can be relatively
easily implemented). Potentially degenerate fixed
points suggest possible bifurcation, and the system
needs to be decomposed along these points.

Before proceeding to identify asymptotic limits, the
envisionment graph is projected onto the phase plane,
and states not giving rise to distinctions in the phase
plane are removed. These techniques are described in
[Fouché 92] and [Lee93].

Identifying Asymptotic Limits

The complete set of possible asymptotic limits (origins
and destinations) of trajectories for autonomous two-
dimensional systems with nondegenerate fixed points
can be identified from the total envisionment graph.

1. Fixed points are quiescent states in the envisionment
graph. Sinks have only predecessors; sources have
only successors; saddles have both; and centers have
neither.

2. Closed orbits are closed paths in the graph. (Closed
paths may also represent inward or outward spirals.
These possibilities are distinguished in the next step,
gathering trajectories.)

3. Separatrices are paths connecting to saddle points.
The union of saddle points and separatrices connect-
ing them (homoclinic and heteroclinic orbits) can
also be asymptotic imits of trajectories.

4. Points at infinity that are asymptotic limits have
either oo or —oco as their gmag, and either have no
predecessors, or have no successors.

Gathering Trajectories

Trajectories are gathered by exhaustively tracing pos-
sible paths between origins and destinations, abstract-
ing away unimportant distinctions. Loops representing

47This is done by checking to see that the eigenvalues of
the Jacobian matrix of the system at the fixed points have
nonzero real parts.
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Figure 1: Phase portraits of the Lienard equation: a)
from [Brauer & Nohel 69] and [Sacks 90], and b) from
QPORTRAIT.

chatter [Kuipers & Chiu 87], and topologically equiv-
alent paths (i.e. sets of mutually homotopic trajecto-
ries), are abstracted away and replaced by their sim-
plest representative path.

When one of the resulting trajectories contains a
cyclic path in the envisionment graph, its qualita-
tive description is refined through behavior genera-
tion in order to determine possible trends of the cy-
cle (spiral inward, spiral outward, and/or periedic).
Envisionment-guided simulation [Clancy & Kuipers
92], the energy filter [Fouché & Kuipers 92], and cycle
trend extraction [Lee93], are used for this task. Once
cycle trends have been established, incomplete cyclic
trajectory fragments can be combined in all consistent
ways with connecting fragments to form complete tra-
jectories.

Next, trajectories around sinks and sources are ana-
lyzed, and spiral-nodal bundles are identified and ab-
stracted. Each trajectory is checked to see that not all
behavior refinements are provably inconsistent.

Composing Portraits

Trajectories gathered are first classified as either sep-
aratrices, which connect to saddle points (and are
bounding trajectories that divide the phase space into
stability regions), and flows, which do not. At each
saddle, QPORTRAIT composes all possible separatrix
sets, each consisting of non-intersecting separatrices
with exactly one entering the saddle in each of two
opposite directions, and exactly one exiting in each
of two opposite directions. The method for enforcing
non-intersection of qualitative trajectories is described
in [Lee & Kuipers 88].

All possible non-intersecting combinations of sepa-
ratrix sets between saddle points are then formed, and
all possible non-intersecting flows are composed into
each combination to form all possible qualitative phase
portraits.

A Lienard Equation Example



A particular instance of the Lienard equation takes
the form ([Brauer & Nohel 69] pp. 217):

'+ +zl 4+ =0,
or equivalently:

=y

v = ——(zz +z)—y.

It has an interesting phase portrait, discussed in detail
in [Brauer & Nohel 69] pp. 217-220, and used in [Sacks
90] as a main example. Its phase portrait (from [Brauer
& Nohel 69] pp. 220) is as shown in Figure 1a. The
portarit produced in [Sacks 90] has the same essential
qualitative features.

A QDE generalization of this equation has the z?+z
term replaced by a U™ function®:

=y

y’ = —f(iE) -y, fe€ U(t.b),(c.O),(O.O);a" b<0;c<a.

QPORTRAIT is able to produce for this QDE the phase
portrait in Figure 1b. This portrait has the same es-
sential features as the one in Figure la, though ours is
applicable to the QDE. We describe briefly below re-
sults of intermediate steps for arriving at this portrait.

Applying total envisionment, projecting the envi-
sionment graph onto the phase plane, and removing
states not giving rise to interesting distinctions give
the envisionment graph in Figure 2a. The potential
asymptotic limits are the fixed points at $-26 which is
a saddle, the fixed point at S-27 which is a sink, the
closed paths around S-27, the paths connecting $-26
to itself (which are separatrices connecting a saddle to
itself), and the points at infinity, S-47 and S-57. They
are automatically identified from the graph. Both fixed
points are nondegenerate.

Trajectory gathering then proceeds progressively.
Initially, paths emerging from points at infinity and
fixed points are traced. This results in the paths shown
in Figure 2b. Note that topologically equivalent paths
are abstracted together. The cycle associated with tra-
jectories 7 and 13 is then refined to extract its possible
trends. It is found to be inward spiraling, and is con-
sistent with trajectories 7 and 13. Further processing
of trajectories 7 and 13 produce trajectories that spiral
into the sink in various manners.

Subsequently, when analyzing trajectories for spiral-
nodal bundles, spiraling trajectories associated with 7,
together with 5 and 6, are bundled. Also bundled are
spiraling trajectories associated with 13, together with
11 and 12.

°A Ut ,, function is a QSIM [Kuipers 86] modeling
primitive. Intuitively speaking, it is a ‘U’ shaped func-
tion consisting of a monotonically decreasing left segment
and a monotonically increasing right segment, with (a,b)
the bottom point.
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a) Envisionment graph of the Lienard equation in
the phase plane.
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b) Trajectories from initial gathering. Trajectories

7 and 13 are cyclic and incomplete. Trajectory 10
1s a homoclinic orbit.

Figure 2: Intermediate results from applying QpPoOR-
TRAIT to a QDE generalization of a Lienard equation.



Trajectory 10 is a separatrix connecting a saddle to
itself (a homoclinic orbit). It is a potential asymptotic
limit, and is further processed for trajectories emerg-
ing from or terminating on it. Subsequent checking for
consistent behavior refinements of trajectories, how-
ever, finds trajectory 10 to be inconsistent (violating
energy constraints). Trajectory 10 and its associated
trajectories are therefore eliminated. Trajectory 9 is
also found to violate energy constraints and eliminated.

Trajectories resulting from gathering are 1 through
4, 8, and the two bundles. Of these, 3, 4 , 8 and the
bundle associated with 13 are separatrices. Composing
separatrix set, then phase portrait, give the result in
Figure 1b.

Discussions

While some phase portraits produced by QPORTRAIT
may be spurious, and some may contain spurious tra-
jectories, the set of portraits that remain consistent
after spurious trajectories are removed is guaranteed
to capture all real portraits of systems consistent with
the given QDE. We have applied QPORTRAIT to obtain
tractable results for a set of nontrivial examples to of-
fer reasonable coverage of possible asymptotic limits of
systems in our domain. Included are a Lienard equa-
tion, a van der Pol equation, an undamped pendulum,
and a predator-prey system.

Guarantee of Coverage

Guaranteed coverage follows from the guarantees of
the individual steps. First, qualitative simulation is
guaranteed to predict all qualitatively distinct solu-
tions. Second, possible asymptotic limits of trajecto-
ries are exhaustively identified for systems in our do-
main. Third, possible flows between asymptotic im-
its are exhaustively traced, eliminating only provably
inconsistent flows. Fourth, in abstracting away un-
interesting qualitative distinctions, asymptotic limits
and flows are preserved. Fifth, all possible phase por-
trait compositions are exhaustively explored, eliminat-
ing only provably inconsistent compositions. Thus,
given a QDE, QPORTRAIT is guaranteed to produce
all qualitatively distinct phase portraits of it.

Dependencies and Limitations®

While QPORTRAIT is dependent on its supporting tech-
niques, the dependency is in terms of tractability”. In
other words, improvement in performance of the sup-
porting techniques gives more tractable results, and

% Aspects concerning construction of QDE, determina-
tion of nondegeneracy of fixed points, and system bi-
furcation have been discussed when describing steps of
QPORTRAIT, and will not be repeated here.

"The problem with tractability can be due to an in-
tractable number of spurious predictions, or an intractable
number of overly detailed distinctions, or both. Refer to
[Lee 93] for further discussion.

converse otherwise. Guarantee of coverage, however,
is preserved regardless of the performance of the sup-
porting techniques, though the guarantee becomes in-
creasingly less useful as results become increasingly less
tractable.

Although QPORTRAIT is able to produce tractable
results for the examples we've attempted, it would
not be difficult to come up with examples where in-
tractability would result. No general characteriza-
tion relating system property to the potential for in-
tractability has been developed. Nevertheless, knowl-
edge of system fixed points helps produce tracable re-
sults, such as when fixed points are at landmark values
for the phase variables.

QPORTRAIT’s applicability is limited to autonomous
two-dimensional systems with nondegenerate fixed
points. Extending QPORTRAIT to apply to systems
with degenerate fixed points would require incorpo-
rating knowledge of asymptotic limits of such sys-
tems. While nonautonomous systems can be trans-
formed into equivalent autonomous systems, systems
of higher dimensions will result. Extending QPOR-
TRAIT to higher dimensional systems will be diffi-
cult, largely because the qualitative non-intersection
constraint [Lee & Kuipers 88] may not apply gener-
ally. Furthermore, trajectory flows and their asymp-
totic imits have more complicated structures in higher-
dimensional systems, and are hard to characterize ex-
haustively.

Related Work

Various numeric methods based approaches to reason
in the phase space have recently emerged. These in-
clude the work of Nishida et al, Sacks, Yip, and Zhao.
They work with exactly specified system instances to
produce approximate solutions, and are able to pro-
duce qualitative conclusions from underlying numeri-
cal results. Although each approach iterates in an at-
tempt to capture all essential qualitative features, none
guarantees coverage.

An early attempt to use qualitative simulation to
construct phase portraits is the work of {Chiu 88]. Chiu
was able to use the few available qualitative simulation
techniques to perform complete analysis of various sys-
tems. Using his work as our foundation, we are able to
take advantage of more recently developed techniques
to perform more sophisticated reasoning, and incor-
porate sufficient knowledge of dynamical systems to
handle a significant class of systems.

Conclusion

We have developed a qualitative simulation based
method to construct phase portraits of autonomous
two-dimensional differential equations with nondegen-
erate fixed points. It has been implemented in the
QPORTRAIT program. It has the attractive property
that it is guaranteed to capture the essential quali-
tative features of all real phase portraits of systems



consistent with an incomplete state of knowledge (a
QDE). This complements the ability of numeric meth-
ods based approaches to produce good approximate
results for particular system instances.

While the potential for intractable results remain, we
have demonstrated that QPORTRAIT is able to produce
tractable results for nontrivial systems. In particular,
results will be tractable when fixed points of the system
are at landmark values for the phase variables.

Extending our approach to higher-dimensional sys-
tems will be hard, and will be a very significant con-
tribution. It will need to proceed in smaller steps
(covering a smaller class of systems at a time) due to
the more complicated phase space structures of higher-
dimensional systems. Integration with numeric meth-
ods to combine the power of both approaches appears
to be a particularly attractive line of future work.

Despite a concern (notably in [Sacks & Doyle 92a]
and [Sacks & Doyle 92b]) that qualitative simulation
methods may not be useful for scientific and engineer-
ing reasoning, our work represents a significant steps
towards automated reasoning about differential equa-
tions, which are important for scientists and engineers.
Furthermore, our work is a demonstration that a dy-
namical systems (phase space) perspective can give a
tractable overview of a qualitative simulation problem.
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