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Abstract. Various algorithms have been proposed for dictionary learning. Among those for image processing, many use

image patches to form dictionaries. This paper focuses on whole-image recovery from corrupted linear measurements. We

address the open issue with representing an image by overlapping patches: the overlapping leads to an excessive number of

dictionary coefficients to determine. With very few exceptions, this issue has limited the applications of image-patch methods to

the “local” kind of tasks such as denoising, inpainting, cartoon-texture decomposition, super-resolution, and image deblurring,

for which one can process a few patches at a time. Our focus is global imaging tasks such as compressive sensing and medical

image recovery, where the whole image is encoded together, making it either impossible or very ineffective to update a few

patches at a time.

Our strategy is to divide the sparse recovery into multiple subproblems, each of which handles a subset of non-overlapping

patches, and then the results of the subproblems are averaged to yield the final recovery. This simple strategy is surprisingly

effective in terms of both quality and speed.

In addition, we accelerate computation of dictionary learning by applying a recent block proximal-gradient method, which

not only has a lower per-iteration complexity but also takes fewer iterations to converge, compared to the current state-of-

the-art. We also establish that our algorithm globally converges to a stationary point. Numerical results on synthetic data

demonstrate that our algorithm can recover a more faithful dictionary than two state-of-the-art methods.

Combining our whole-image recovery and dictionary-learning methods, we numerically simulate image inpainting, compres-

sive sensing recovery, and deblurring. Our recovery is more faithful than those out of a total variation method and a method

based on overlapping patches. Our matlab code is competitive in terms of both speed and quality.
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1. Introduction. Our general problem is to restore an image M from its corrupted linear measurements

in the form of b = A(M) + ξ, where A is a linear operator and ξ is some noise. Examples of such

recovery include image denoising (A equals the identity operator I), super-resolution (A is a downsampling

operator), image deblurring (A is a blurring operator), compressive imaging recovery (A is a compressed

sensing operator), as well as medical imaging recovery (A can be downsampled Fourier or Radon operators,

for example).

This paper restores the image M by computing its sparse representation under a learned dictionary.

Following the approach pioneered in [7], we numerically form a dictionary that sparsely represents each and

all the overlapping patches of M. Given such a dictionary D, we reconstruct the image patches by finding

their sparse coefficients and then recover the image from the patches.

We address an open issue regarding whole–image recovery: the large number of overlapping patches

lead to a large number of free coefficients in the recovery, which can cause overfitting and slow computation.

This issue has limited most of the patch-based methods (with a few exceptions we shall review below) to

the “local” or “nearly local” kinds of image processing tasks such as denoising, inpainting, deblurring, and

super-resolution. For these tasks, one or a few patches can be processed at a time, independently of the

majority of the remaining patches, thus avoiding the overfitting issue. We, however, consider the more

difficult “global” kind of task such as compressive sensing recovery, where each piece of the measurements

encodes the whole image and thus it is either impossible or very ineffective to process one or a few patches

at a time.

Bearing this issue in mind, we do not process either one patch at a time or all the overlapping patches

at once, but instead we process one subset of non-overlapping, covering patches at a time. (Covering means

that the subset of patches covers all the pixels of the image.) Each time, we process this subset of patches and
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obtain a recovery of the whole image. After we process multiple different subsets of non-overlapping, covering

patches, we obtain multiple whole-image recoveries, whose average is taken to eliminate the grid artifact

that might exist in the individual ones. This simple strategy is surprisingly effective. Computationally, the

different subsets of patches can be processed in parallel, and we found using merely five different subsets is

enough to remove the grid artifact. For each subset, the corresponding `1 minimization problem is rather

small: if 8 × 8 patches are used, it only has roughly 1/64 of the free variables that one would have if all the

overlapping patches are processed at once. Qualitatively, the averaged recovery has a higher PSNR than

other state-of-the-art approaches that address the overfitting issue by applying either online optimization or

incorporating additional image structures.

We also introduce a fast algorithm for learning the dictionary D, which plays a vital role in both our

proposed recovery method and others. Here, D can be pre-learned from a set of similar images, and then

either fixed during the recovery or iteratively updated in adaptive to the image under recovery. Following [7],

after recovering an image, we update the dictionary to fit the recovered image by solving an `1-regularized

model. We introduce an algorithm to update dictionary D and sparse coefficient Y alternatively. Unlike

existing algorithms, it does not exactly minimize over either D or Y, yet it decreases the energy very fast

and provably converges to a stationary solution. Our code and several demos can be downloaded from our

websites. Before giving more details of our approach and its numerical results, we first review the related

literature.

1.1. Image recovery and dictionary. Various methods have been developed to restore an image from

its corrupted and/or incomplete measurements. One popular class of recovery methods are based on sparse

coding and dictionary such as those in [2,7,16]. We say a signal x ∈ Rn is sparse (or approximately sparse)

under a dictionary D ∈ Rn×K if x = Dy (or x ≈ Dy) and y ∈ RK has only a few nonzeros. Many types

of signals can be sparsely represented by some dictionary. For example, natural images are approximately

sparse under dictionaries based on various wavelet, curvelet, shearlet, and other transforms. Suppose x has

a sparse representation under a dictionary D. Then given D and linear measurements b = A(x) + ξ, one

can recover x through sparsely coding x via solving

min
y

‖y‖0, s.t. ‖A(Dy) − b‖2
2 ≤ ε, (1.1)

where ‖ ∙ ‖0 counts the nonzero number of its argument and is often approximated by ‖ ∙ ‖1 for tractable

computation, and ε ≥ 0 is a parameter corresponding to ξ. Once a solution y of (1.1) is obtained, the

original signal x can be estimated by Dy. The dictionary D can be either predetermined or learned from

a set of training data. Predetermined dictionaries, such as orthogonal or overcomplete wavelets, curvelets,

and discrete cosine transforms (DCT), have better analytical and numerical properties than a learned one.

Assuming easy availability of training datasets, however, it has been demonstrated (e.g., in [7]) that a learned

dictionary can better adapt to natural signals and improve the recovery quality.

For natural images, existing methods such as MOD [8] and KSVD [1] learn a dictionary D to sparsely

represent the patches of an image, rather than the whole image itself. In other words, the size of dictionary

atoms is the same as that of the image patches, for example, 6 × 6 or 8 × 8. To denoise an image M with

a patch-size dictionary, the pioneering work [7] denoises each of the overlapping patches of M via sparse

coding and then estimates M as the average of all the denoised patches together with the observed noisy

image. This patch-based method was then extended to compressed sensing MRI – a whole-image recovery

problem – in [16], which starts from a rough estimate of M, then simultaneously updates dictionary D

and sparse coefficients of all overlapping patches, and finally averages all the recovered patches to estimate

M. Dong et al. in [6] use local dictionaries to sparsely represent local patches and incorporate additional

local auto-regression (AR) and non-local similarity (NLS) terms to reduce overfitting and improve recovery
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results. Their model was demonstrated effective on image debluring and super-resolution. These and their

follow-up works (e.g., [9, 22]) use overlapping patches since tiling non-overlapping patches can cause visible

grid artifact along the patch boundaries, which is avoided by using overlapping patches.

1.2. Learn a dictionary. Due to a lack of analytic structures, it can be numerically demanding to

learn a dictionary. One of the most popular algorithms for dictionary learning is KSVD [1]:

min
D,Y

‖DY − X‖2
F , s.t. ‖di‖2 = 1, i = 1, . . . ,K ; ‖yj‖0 ≤ s, j = 1, . . . , p, (1.2)

where X ∈ Rn×p is the training dataset, ‖ ∙ ‖2 denotes the Euclidean norm, s is a parameter to control

sparsity, and di is the ith column of D. KSVD attempts to solve (1.2) by alternatively updating Y and D in

a certain way. The objective is monotonically non-increasing and the denoising and inpainting performances

are very good, but the convergence to a stationary point is not guaranteed. Furthermore, it is slow as it

performs SVD to update D and exact minimization to update every yj in each iteration.

Another popular method is the online dictionary learning (OLM) [13], which, via an online update

approach, attempts to solve

min
D,Y

1
2
‖DY − X‖2

F + λ‖Y‖1, s.t. ‖di‖2 ≤ 1, i = 1, . . . ,K, (1.3)

where ‖Y‖1 =
∑

i,j |yij | is a convex relaxation of ‖ ∙ ‖0, and λ is a tuning parameter to balance data fitting

and sparsity level. OLM alternatively updates Y and D as follows. When D is fixed, it randomly picks

a batch of columns of X and applies sparse coding to each selected column. Letting S be the index set

of all previously selected samples and YS contain their sparse coefficients, the method then updates D

to the solution of minD{‖DYS − XS‖2
F , ‖di‖2 ≤ 1, ∀i}, where XS denotes the submatrix consisting of all

columns of X indexed by S. The above two steps are then repeated until convergence. The algorithm

often runs faster than KSVD, and its efficiency relies on the assumption that all training samples have the

same distribution. Assuming that the training data admits bounded probability with a compact support

and YSY>
S is uniformly positive definite, it is shown that the iterate sequence asymptotically satisfies the

first-order optimality condition of (1.3). The global convergence of the iterate sequence is still open.

We refer the interested readers to the review paper [18] for other dictionary learning methods. In

addition, more complicated models have been proposed to learn dictionaries for specific tasks; see [12,14] for

example. We do not intend to consider those models and will keep our focus on (1.3) in this paper.

1.3. Contributions. This paper makes the following contributions:

• We propose a simple, novel method that recovers a whole image by applying sparse coding to its

patches. In addition to the traditional denoising, inpainting, and deblurring tasks, the method can

be applied to recovering an image from its whole-image linear measurements, which arise in the

applications of compressive sensing and medical imaging. The method is simple and can include

additional energy terms and constraints, as well as to be embedded in more complicated imaging

applications.

• Along with the method, we introduce a numerical algorithm for dictionary learning that is fast and

has provable convergence to a stationary point. The algorithm is based on our recent work on block

proximal gradient update in [20]. Compared to the existing algorithms, the proposed algorithm has

a low per-iteration cost and converges fast.

• We provide Matlab codes for three different imaging tasks that are (i) inpainting: fill in image

missing pixels; (ii) compressive sensing recovery: recover an image from its undersampled linear

measurements; (iii) image deblurring: restore a clean image from its blurs. On these tasks, our codes
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compare favorably to total variation (TV) methods, as well as those from [6, 13] using overlapping

patches and learned dictionaries.

1.4. Organization. The rest of the paper is organized as follows. In section 2, we give a new model

for recovering an image from its linear measurements, and also discuss how to improve recovery results.

Section 3 applies a block proximal gradient method to (1.3) and makes a new dictionary learning algorithm.

Numerical results are reported in section 4, and finally section 5 concludes the paper.

2. Problem formulation. Given a patch-size dictionary D, we aim at recovering an image M from

its corrupted linear measurements b = A(M) + ξ, where A is a linear operator and ξ is some noise. The

case of A = I has been considered in the pioneering work [7], which alternatively performs sparse coding

to denoise every patch and takes average over all overlapping denoised patches together with the observed

noisy image.

Throughout the discussion in the remaining part of the paper, we assume that a generic image has size

N1 ×N2 and training patches to be n1 × n2. The dictionary D has K atoms, and all of them are vectors in

n1n2 dimensional space. Keep in mind that an m×n matrix is equivalent to an m ∙n vector under Matlab’s

reshape operation. Hence, we will use a matrix and its reshaped vector interchangeably. For example, a

dictionary atom can be regarded as either a vector of length n1n2 or an n1 × n2 patch.

2.1. Our model. Motivated by [7], we exactly represent an image by

M =
(
TP

)−1( ∑

(i,j)∈P

R>
ijRij(M)

)
, TP :=

∑

(i,j)∈P

R>
ijRij

where Rij is an operator taking the (i, j)-th patch, R>
ij is the adjoint of Rij , and P contains a subset

of patches covering all the pixels of M, ensuring that TP is invertible. Note that TP is diagonal, and

thus its inverse can be implemented in a pixel-by-pixel manner. If every patch Rij(M) in P has a sparse

representation under D, i.e., Rij(M) = Dyij for a sparse vector yij , then the above representation can be

written as

M =
(
TP

)−1( ∑

(i,j)∈P

R>
ij(Dyij)

)
. (2.1)

Using this representation, we make the following weighted `1 model:

min
y

∑

(i,j)∈P

‖wij � yij‖1, s.t.
∥
∥AT −1

P

( ∑

(i,j)∈P

R>
ij(Dyij)

)
− b

∥
∥

2
≤ σ, (2.2)

where wij ≥ 0 is a weight vector for (i, j) ∈ P , σ is the noise level determined by ξ, and “�” denotes

component-wise product. Equivalently, one can consider the unconstrained model:

min
y

∑

(i,j)∈P

‖wij � yij‖1 +
1
2ν

∥
∥AT −1

P

( ∑

(i,j)∈P

R>
ij(Dyij)

)
− b

∥
∥2

2
, (2.3)

where ν is a parameter corresponding to σ. Upon solving (2.2) or (2.3), one can use T −1
P

∑
(i,j)∈P R>

ij(Dyij)

to estimate M.

Choice of P . One question is how to choose P , the subset of covering patches, such that (2.2) or

(2.3) work well for recovering M. Using all the overlapping patches never works even for A = I since the

patches introduce too many unknowns to decide. The `1 minimization typically needs O(s log(n/s)) or more

measurements to recover an s-sparse signal of length n. Suppose that the yij corresponding to each patch

has at least r nonzeros and all the (N1 − n1 + 1)(N2 − n2 + 1) overlapping patches are used. Then vector
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Fig. 2.1. Image denosing comparison of two methods: (left image) solving (2.3) with all patches used at once, (right

image) solving (2.3) with one subset of non-overlapping, covering patches. In (2.3), ν = 0.05, and D was learned according to

section 4.2.

PSNR = 26.98 PSNR = 30.57

All patches used at once One subset of non-overlapping

covering patches

y has n = K(N1 − n1 + 1)(N2 − n2 + 1) entries out of which at least s = r(N1 − n1 + 1)(N2 − n2 + 1)

are nonzeros. On the other hand, we have at most N1N2 measurements, not sufficiently many to reach

O(s log(n/s)) = O(rN1N2 log(K/r)). Therefore, unless more constraints or regularization on y is introduced

to help, we cannot use all the patches.

We next let P be a subset of non-overlapping, covering patches and focus on the unconstrained model

(2.3). Figure 2.1 compares the two approaches. In this test, we set A = I and b = M + 0.05ξ with

ξ ∼ N (0, I), and we compared (2.3) with two different P ’s. In Figure 2.1, the left image uses all overlapping

patches, and the right image uses one subset of non-overlapping, covering patches. We see that (2.3) with

all patches produces much worse result than that with non-overlapping P .

Remark 2.1. Our models are similar to that in [6]:

min
y

∑

(i,j)∈S

‖yij‖1 +
1
2ν

∥
∥
∥
∥
∥
∥
A




( ∑

(i,j)∈S

R>
ijRij

)−1( ∑

(i,j)∈S

R>
ij(Dkijyij)

)


− b

∥
∥
∥
∥
∥
∥

2

2

+ AR(y) + NLS(y), (2.4)

where S denotes the set of all overlapping patches, ν is a parameter balancing sparsity and data fitting, Dkij

is a given local dictionary used to represent the (i, j)-th patch, and AR(∙) and NLS(∙) are two regulariza-

tion terms corresponding to local auto-regression and non-local similarity. The local dictionaries are often

incomplete (i.e., fewer columns than rows). Similar to non-overlapping patches, non-completeness of local

dictionaries and AR and NLS terms can reduce variable freedom and increase recoverability of (2.4). How-

ever, the use of more dictionaries and complicated regularization terms makes (2.4) more difficult to solve

than our models.

Since the image may not be evenly divided and the selected patches need to cover all the pixels of the

image, we allow them to have different sizes. Slightly abusing the notation, we still use P to denote the

set of selected patches, but P can also contain some smaller patches near the boundary. Although we can

partition the image arbitrarily with blocks no greater than n1 × n2, for simplicity we make the following

assumptions.

Assumption 1 (Image partition by patches).

• Interior patches (e.g., patch “A” in Figure 2.2) have size n1 × n2;
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Fig. 2.2. Three different ways of partitioning a 100 × 100 image into non-overlapping patches, where each patch is no

greater than 8 × 8 and all interior patches have size 8 × 8.

partition 1 partition 2 partition 3

• Left and right boundary patches have n1 rows, and lower and upper boundary patches have n2

columns; patch “B” in Figure 2.2 is an example;

• Corner patches (e.g., patch “C” in Figure 2.2) can have fewer than n1 rows and n2 columns;

• All patches are vertically and horizontally aligned.

Remark 2.2. Under Assumption 1, the way an image is partitioned into patches is uniquely determined

by the size of the upper-left corner patch.

Figure 2.2 illustrates how we partition a 100× 100 image into non-overlapping patches in three different

ways. Every patch is no greater than 8 × 8, and all interior patches are 8 × 8. However, since the image

cannot be evenly partitioned, the patches near the boundary of the image may be smaller than 8 × 8. For

example, in partition 1, all the right boundary patches are 8 × 4, and the upper-right corner patch is 4 × 4;

in partition 3, all the left and right boundary patches are 8 × 2, and the lower-left and lower-right corner

patches are 4 × 2.

Definition of operators. As P consists of non-overlapping covering patches, then every pixel must be

contained by exactly one patch, and it is not difficult to verify TP = I. If (i, j) ∈ P is one interior patch,

then Rij(M) means to take the (i, j)-th patch of M, and R>
ij(x) is to first generate an N1 ×N2 zero matrix,

and then add x to its (i, j)-th patch. However, as (i, j) ∈ P is a boundary or corner patch and its size is

smaller than n1 × n2, the corresponding operators need to act accordingly. For example, let (i, j) be patch

“C” in Figure 2.2. Then we define

• Rij(M): first generate an 8× 8 zero matrix, and then replace its upper-right 4× 4 corner submatrix

with the upper-right 4 × 4 corner patch of M;

• R>
ij(x): first generate a 100 × 100 zero matrix, and then replace the upper-right 4 × 4 corner patch

corresponding to “C” with the upper-right 4 × 4 corner submatrix of x.

Averaging scheme. As shown in [7], tiling non-overlapping patches to perform image denoising would

yield visible artifacts on block boundaries, and it was also observed when we solved (2.3) once with non-

overlapping patches. Though using all patches in (2.3) at once does not give good recovery, we still want

to use them in some way. Note that we have the freedom to choose P in (2.3), so we can solve it for

different P ’s. For example, if M ∈ R100×100 and dictionary atoms are 8 × 8, we can partition the image

into non-overlapping patches in the three different ways in Figure 2.2, and solve (2.3) for each partition. It

turns out that averaging the recovered images from different P ’s can remove the artifacts occuring on block
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boundaries and improve PSNR value; see the numerical results in section 4. Algorithm 1 summarizes our

method. Note that (2.3) can be solved for different P ’s in parallel.

Algorithm 1:
Data: Dictionary D, patch size (n1, n2), image size (N1, N2), measurements b, linear operator A, and

parameter ν.

Choose t different ways to partition the image into non-overlapping patches; denote them as P1, . . . , Pt.

Solve (2.3) for Pk and let the recovered image be Mk, for k = 1, . . . , t.

Average all the recovered images by M̃ = 1
t

∑t
k=1 Mk and output M̃.

2.2. Adaptive dictionary update. After obtaining an estimated image M̃ by Algorithm 1, we can

update the dictionary D using patches extracted from M̃. Since M̃ is close to the original image M, the

updated dictionary D from M̃ should better represent the patches of M. Hence, it is possible to further

improve the result using the adaptively updated dictionary, and this process can be repeated several times.

Algorithm 2 summarizes our adaptive method.

We observe that only the first adaptive update gives significant improvement, and subsequent ones make

only minor changes to the dictionary and thus little improvement to the recovered image. For this reason,

in the numerical experiments, we will update the dictionary only once.

Algorithm 2:
Data: Dictionary D, patch size (n1, n2), image size (N1, N2), measurements b, linear operator A, and

parameter ν.

repeat

Run Algorithm 1 and let the recovered image be M̃.

Update dictionary D from patches extracted from M̃.

until convergence

3. Block proximal gradient method for dictionary learning. Both Algorithms 1 and 2 require

an initial dictionary D, which can be an analytic dictionary such as orthogonal or overcomplete wavelets,

curvelets or DCT, or a learned one. For our purpose, a learned dictionary is preferable since it can be more

adaptive to natural images. To learn a dictionary, one can apply any available solver such as MOD, KSVD

and OLM. We choose to use a new dictionary learning method, which applies the BPG method proposed

in [20] to (1.3). Compared to some state-of-the-art methods, the new algorithm is often faster and produces

more faithful dictionaries. Though (1.3) is non-convex jointly with respect to D and Y, it is convex with

respect to each of them while the other one is fixed. With this bi-convexity property, the BPG method is

shown to generate a sequence globally converging to a stationary point of (1.3).

3.1. Block proximal gradient method. Recently, [20] characterized a class of multi-convex problems

and proposed a BPG method for solving these problems. For simplicity and our purpose, we review the

method only for bi-convex problems like (1.3). Consider

min
x,y

f(x,y) + rx(x) + ry(y), (3.1)
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where f is differentiable and convex with respect to either x or y by fixing the other one, and rx, ry are

extended-valued convex functions. At the k-th iteration of BPG, x and y are updated alternatively by

xk =argmin
x

〈∇xf(x̂k,yk−1),x − x̂k〉 +
Lk

x

2
‖x − x̂k‖2

2 + rx(x), (3.2a)

yk =argmin
y

〈∇yf(xk, ŷk),y − ŷk〉 +
Lk

y

2
‖y − ŷk‖2

2 + ry(y), (3.2b)

where Lk
x is a Lipschitz constant of ∇xf(x,yk−1) with respect to x, x̂k = xk−1 + ωk

x(xk−1 − xk−2) denotes

an extrapolated point with weight ωk
x ≥ 0, and Lk

y and ŷk have the same meanings for y.

BPG is a variant of the block coordinate minimization (BCM) method (see [19] and the references

therein), which updates x,y cyclically by minimizing the objective with respect to one block of variables

at a time while the other is fixed at its most recent value. Though BCM decreases the objective faster,

subproblems for BCM are usually much more difficult than those in (3.2). For simple rx and ry, the updates

in (3.2) have closed form solutions.

Under some boundedness assumptions, [20] establishes subsequence convergence of the APG method.

Further assuming the so-called Kurdyka- Lojasiewicz (KL) property (see [5, 11] for example), it shows that

the sequence {(xk,yk)} generated by (3.2) globally converges to a stationary point of (3.1) .

3.2. Dictionary learning. We learn a dictionary from training dataset X via solving (1.3). Let

`(D,Y) =
1
2
‖DY − X‖2

F

be the fidelity term in (1.3). Applying (3.2) to (1.3), we alternatively update D and Y by

Dk =argmin
D∈D

〈∇D`(D̂k,Yk−1),D − D̂k〉 +
Lk

d

2
‖D − D̂k‖2

F , (3.3a)

Yk =argmin
Y

〈∇Y`(Dk, Ŷk),Y − Ŷk〉 +
Lk

y

2
‖Y − Ŷk‖2

F + λ‖Y‖1, (3.3b)

where

D = {D : ‖di‖2 ≤ 1, i = 1, . . . ,K}

is the constraint set of D, D̂k = Dk−1 + ωk
d(Dk−1 − Dk−2) and Ŷk = Yk−1 + ωk

y (Yk−1 − Yk−2) denote

extrapolated points with ωk
d , ωk

y ≤ 1, and Lk
d and Lk

y are taken as Lipschitz constants of ∇D`(D,Yk−1) and

∇Y`(Dk,Y) about D and Y respectively.

The updates in (3.3) can be explicitly written as

Dk =PD

(

D̂k −
1

Lk
d

∇D`(D̂k,Yk−1)

)

, (3.4a)

Yk =Sλ/Lk
y

(

Ŷk −
1

Lk
y

∇Y`(Dk, Ŷk)

)

, (3.4b)

where in (3.4a), PD(∙) denotes the Euclidean projection to D defined for any D as

(
PD(D)

)
i
=

di

max(1, ‖di‖2)
, i = 1, . . . ,K,

and in (3.4b), Sτ (∙) denotes soft-thresholding operator defined for any Y by

(
Sτ (Y)

)
ij

= sign(yij) ∙ max(|yij | − τ, 0), ∀ i, j.
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Note that ∇D`(D,Y) = (DY − X)Y> and

‖∇D`(D,Y) −∇D`(D̃,Y)‖F = ‖(D − D̃)YY>‖F ≤ ‖YY>‖‖D − D̃‖F , ∀ D, D̃,

where ‖A‖ denotes matrix operator norm of A. Hence, ‖YY>‖ is a Lipschitz constant of ∇D`(D,Y) about

D. Throughout our numerical tests, we take

Lk
d = ‖Yk−1(Yk−1)>‖, Lk

y = ‖(Dk)>Dk‖. (3.5)

The extrapolation weights are taken as

ωk
d = 0.9999min



ωk,

√
Lk−1

d

Lk
d



 , ωk
y = 0.9999min

(

ωk,

√
Lk−1

y

Lk
y

)

, (3.6)

where ωk = tk−1−1
tk

with t0 = 1 and tk = 1
2

(
1 +

√
1 + 4t2k−1

)
. The weight ωk has been used in FISTA [3],

showing that this kind of extrapolation significantly accelerates the proximal gradient method for convex

composite problems. We observe that the extrapolation with weights in (3.6) can also greatly speed up the

BPG method for solving (1.3).

To make the whole objective non-increasing, we redo the k-th iteration by setting ωk
d = ωk

y = 0 (i.e., no

extrapolation) if F (Dk,Yk) > F (Dk−1,Yk−1), where

F (D,Y) =
1
2
‖DY − X‖2

F + λ‖Y‖1

is the objective of (1.3). As shown in [20], the setting of ωk
d = ωk

y = 0 guarantees F (Dk,Yk) no greater than

F (Dk−1,Yk−1). The non-increasing property is not only required by global convergence, but also important

to make the algorithm perform stably and converge rapidly. The pseudocode of our method is shown in

Algorithm 3.

Algorithm 3: Block proximal gradient for dictionary learning

Data: training samples X, parameter λ > 0, and initial points (D−1,Y−1) = (D0,Y0)

for k = 1, 2, ∙ ∙ ∙ do

Set Lk
d and ωk

d by (3.5) and (3.6), respectively.

Let D̂k = Dk−1 + ωk
d(Dk−1 − Dk−2) and get Dk by (3.4a).

Set Lk
y and ωk

y by (3.5) and (3.6), respectively.

Let Ŷk = Yk−1 + ωk
y (Yk−1 − Yk−2) and get Yk by (3.4b).

if F (Dk,Yk) > F (Dk−1,Yk−1) then

ReDo Re-update Dk and Yk by (3.4a) and (3.4b) with D̂k = Dk−1 and Ŷk = Yk−1, respectively.

if Some stopping conditions are satisfied then

Output (Dk,Yk) and stop.

Remark 3.1. Our algorithm uses proximal update for both D and Y. It differs from other methods

such as KSVD and OLM which perform exact minimization to update D and/or Y. Maintaining closed form

solutions for both D and Y-subproblems ensures the algorithm to have a lower per-iteration complexity, and

the extrapolation technique lets it take a small number of iterations to achieve a faithful solution.

3.3. Convergence results. Note that (1.3) is equivalent to

min
D,Y

1
2
‖DY − X‖2

F + λ‖Y‖1 + δD(D), (3.7)
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where δD(∙) is the indicator function on D. According to [20], the objective of (3.7) is semi-algebraic [4] and

has the KL property. In addition, the sequence {Dk} is in the bounded set D, and positive λ makes {Yk}

bounded because otherwise the objective of (3.7) will blow up. Hence, {(Dk,Yk)} has a finite limit point,

and the Lipschitz constants specified in (3.5) must be upper bounded. On the other hand, as long as {Dk}

and {Yk} are uniformly away from origin, Lk
d and Lk

y are uniformly above zero. Therefore, according to

Theorem 2.8 of [20], we immediately have the following theorem.

Theorem 3.1. Let {(Dk,Yk)} be the sequence generated by Algorithm 3. If both {Dk} and {Yk} are

uniformly away from origin, then (Dk,Yk) converges to a stationary point of (3.7) or equivalently (1.3).

4. Numerical results. In this section, we first test Algorithm 3 for dictionary learning and compare

it with KSVD [1] and OLM [13] on synthetic data. Then we do a set of image recovery tests to show the

effectiveness of model (2.3) and the adaptive method discussed in section 2.2.

4.1. Synthetic test for dictionary recovery. This test compares Algorithm 3 with methods KSVD

and OLM for dictionary learning. We chose KSVD and OLM because they appear to be most popular in the

literature and their codes are both available online. In addition, they have been demonstrated efficient for

many image processing tasks. There are other dictionary learning algorithms such as MOD [8] and recursive

least squares [17]. However, we do not intend to exhaust all of them.

Following [1], we generated the test data as follows. We first generated a dictionary D ∈ Rn×K with

Matlab command randn(n,K) and normalized each column of D to have unit `2-norm. Then we generated

p training samples in the n-dimensional space. Each sample is a linear combination of uniformly randomly

selected r columns of D, and the coefficients were Gaussian randomly generated. On the same data, we ran

KSVD for (1.2), and both Algorithm 3 and OLM for (1.3). In (1.2) we set s = r, i.e., the true sparsity level

was assumed, and in (1.3) we set λ = 0.5/
√

n. Algorithm 3 was terminated as long as

|F (Dk,Yk) − F (Dk+1,Yk+1)|
1 + F (Dk,Yk)

≤ 10−4

was satisfied in three consecutive iterations or it ran over 1000 iterations. KSVD was run to 200 iterations,

and OLM ran to the same time as that of Algorithm 3. All other parameters for KSVD and OML were set

to their default values.

We fixed n = 36 and tested three different pairs of (K, p). For each pair of (K, p), sparsity level r varied

among {4, 6, 8, 10, 12}. The recovery of each atom d of the original dictionary D was regarded successful if

max
1≤i≤K

|d>d̃i|

‖d‖2‖d̃i‖2

≥ 0.99,

where d̃i is the i-th column of an estimated dictionary D̃. The average running time and recovery rates of 50

independent runs are shown in Table 4.1. From the table, we see that our method used much less time than

KSVD with comparable recovery rates. When sparsity level r is big (e.g., r = 12) or the training samples

are not so many (e.g., p = 20n), our method got much higher recovery rates than those by KSVD. For the

first two pairs of (K, p), OLM tends to give lower rates than our method, and it may be because our method

converges fast but OLM does not. However, in the case (K, p) = (4n, 100n), we want to mention that OLM

can give results similar to ours if it is allowed to run a very long time.

4.2. Whole image recovery. This section tests the performance of Algorithms 1 and 2 on image

recovery. Two different dictionaries were compared for Algorithm 1. One was an overcomplete DCT,

generated in the same way as in [1]. Another one was learned from 20,000 8× 8 grayscale patches, that were

100 randomly extracted patches from each of the 200 images in the training set of the Berkeley segmentation
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Table 4.1

Average running time and recovery rates of 50 independent runs by Algorithm 3, KSVD, and online learning method (OLM)

Algorithm 3 OLM KSVD Algorithm 3 OLM KSVD Algorithm 3 OLM KSVD

r time rate(%) rate(%) time rate(%) time rate(%) rate(%) time rate(%) time rate(%) rate(%) time rate(%)

(K, p) = (2n, 20n) (K, p) = (2n, 100n) (K, p) = (4n, 100n)

4 1.335 98.78 94.75 14.06 97.11 3.228 98.97 99.75 54.38 99.44 8.730 98.71 99.54 62.72 98.96

6 1.523 98.00 98.17 18.87 97.11 3.803 99.03 98.47 78.44 99.28 11.76 98.74 99.67 88.90 98.19

8 2.126 96.64 79.78 23.90 6.25 4.603 98.75 91.11 103.0 99.50 15.45 98.42 99.44 116.2 98.21

10 2.975 94.22 52.22 29.06 0.00 5.919 98.11 76.00 128.6 97.25 21.54 96.89 98.72 144.5 0.00

12 4.691 55.61 9.92 34.37 0.00 7.831 98.44 36.58 156.7 0.17 30.18 83.29 70.39 174.4 0.00

dataset [15]. For the learned dictionary, we first subtracted each training patch by its mean, and then

trained a dictionary D̂ using these zero-mean patches via solving (1.3) with K = 256 by Algorithm 3,

where we chose λ = 0.8/
√

n to make the average nonzero number per column of Y about 8. Finally, we let

D = [e, D̂] ∈ R64×257 and used D in our tests, where e is a vector with all one’s. Such an atom with constant

components is called a DC in [1], which shows that the processed dictionary D performs better than D̂ for

real-world image processing tasks. Here, we want to mention that for an image patch x, if x−mean(x) has

a sparse representation under D̂, i.e., x − mean(x) = D̂y with sparse y, then x = mean(x)e + D̂y, which

means x is sparse under D. Therefore, the above processing is reasonable. The used overcomplete DCT is

also 64 × 257, and its first column is a DC. For Algorithm 2, we used the above D as its initial dictionary,

and updated the dictionary only once by learning a new one via Algorithm 3 using patches1 of the first-step

estimated image, which is exactly the output of Algorithm 1 using D. Then we used the updated dictionary

to perform image recovery once more to get the final result.

Implementation. In (2.3), we took b = A(M) + σξ, where ξ ∼ N (0, I) is Gaussian noise, and

σ = 0.01‖A(M)‖2/‖ξ‖2 throughout our tests. We took ν = σ for the first two kinds of A and ν = 0.1σ for

the third kind of A. The definitions of different A’s are given in the next paragraph. In addition, we set all

elements of wij to one except its first component, which was set to zero. Under this setting, using any DC

as the first atom of D would make no difference for the solution of (2.3). Then, (2.3) was solved via YALL1

(version 1.4) [21], for which we used Gaussian random starting point and 10−4 as its stopping tolerance. All

other parameters of YALL1 were set to their default values. We chose YALL1 due to its high efficiency for

solving (2.3) and easy call by providing operations of A and A>.

Three different kinds of A were tested. The first one did image inpainting and used the sampling op-

erator PΩ, which takes all pixels of its argument in Ω and zeros out all others. The adjoint of PΩ is to fill

in the locations in Ω by its argument and other locations by zero. The second one did compressed image

recovery and took A as the composition of PΩ and two-dimensional complex-valued circulant operator C2,

i.e., A = PΩ ◦ C2. Performing C2 on a matrix M can be realized by one fast Fourier transform (FFT),

one inverse FFT and some component-wise multiplications, and the adjoint of C2 is to do one fast Fourier

transform (FFT), one inverse FFT and some component-wise divisions. The third kind of A was a blurring

operator with a 9 × 9 kernel. We used two different kernels, which were generated by Matlab’s commands

fspecial(’average’,[9,9]) and fspecial(’motion’,10,45) respectively. The implementation of a blur-

ring operator can also be realized by one FFT, one inverse FFT, and some component-wise products. Hence,

all the three kinds of A can be easily realized in algorithms and in hardware.

Results. First, let us see how the averaging scheme in Algorithm 1 improves the recovery performance.

We tested it on the grayscale versions of Castle and Lena images shown in Figure 4.1, and both of the two

1Similarly, we subtracted every patch by its mean, and we augmented the learned dictionary by adding e as one more atom.
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Fig. 4.1. Four tested images. From left to right: Castle, Lena, Plane, Boat

Table 4.2

PSNR values of averaged images for j = 1, . . . , 5. Every measurement vector contains 1% Gaussian noise. For both image

inpainting (A = PΩ) and compressed imaging (A = PΩ ◦ C2), 30% pixels were chosen uniformly at random.

Image Mbest Mav
1 Mav

2 Mav
3 Mav

4 Mav
5 Mbest Mav

1 Mav
2 Mav

3 Mav
4 Mav

5

image inpainting compressed imaging

Castle 25.23 25.05 25.80 26.21 26.36 26.48 34.13 34.04 34.86 35.27 35.44 35.57

Lena 29.96 29.91 31.01 31.49 31.71 31.81 38.84 38.84 39.53 39.81 39.95 40.03

“average” blurring “motion” blurring

Castle 28.82 28.77 29.26 29.56 29.65 29.71 32.60 32.49 33.09 33.36 33.48 33.57

Lena 32.26 32.22 32.79 33.09 33.20 33.29 36.55 36.55 37.17 37.44 37.56 37.63

images are unrelated to the training samples. We chose five different partitions, whose upper-left corner

patches were 8 × 8, 8 × 4, 4 × 8, 8 × 2, and 2 × 8, respectively. (Recall that each partition is uniquely

determined by its upper-left corner patch under Assumption 1.) For each partition, we solved (2.3) to obtain

a recovered image. Let the recovered images be denoted by M1,M2,M3,M4,M5. We compared PSNR

values of the running average Mav
j = 1

j

∑j
i=1 Mi and the Mi that had the greatest PSNR among the five,

denoted Mbest. Table 4.2 lists the average results of five independent runs for four different A’s. For the

first two A’s, we took 30% uniformly random pixels, i.e., SR := |Ω|
N1N2

= 30%. From the results, we see that

the averaging scheme consistently improves the recovery performance. Note that there are at most n1n2

different partitions under Assumption 1. We observed that the more different partitions we used, the better

result could we get by the averaging scheme. However, the rate of improvement drops as the number of

partitions increases, as shown in Table 4.2. For this reason, we only use three different partitions in the

remaining experiments.

Next, we compare Algorithm 1 with two different dictionaries and Algorithm 2 on the four images shown

in Figure 4.1. All of these images were unrelated to the learned dictionary D. To show the effectiveness of

(2.3), we also included a TV-based method for the first two A’s and an overlapping patch-based method for

the third kind of A in the comparison. The TV-based method solves

min
M

‖M‖TV +
γ

2
‖A(M) − b‖2

2, (4.1)

where ‖ ∙ ‖TV denotes TV semi-norm, and the overlapping patch-based method solves (2.4). We employed

TVAL3 (version beta2.4) [10] to solve (4.1), and its default settings were used. The model (2.4) was solved

by the algorithm in [6], and its code was available online from the authors’ webpage. We set its maximum

number of iterations to 104, which was sufficiently large to make the algorithm to solve (2.4) to a high

accuracy. The second group of local dictionaries in their code were used, and all the other parameters were
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Table 4.3

PSNR values of recovered images for image inpainting (A = PΩ). From left to right, the results correspond to Algorithm

1 with learned dictionary, Algorithm 1 with DCT, Algorithm 2, and TV method, respectively. Bold is best.

Image SR=30% SR=50%

Castle 26.16 24.58 26.37 25.05 29.30 27.41 29.51 27.88

Lena 31.40 28.57 31.70 29.07 35.33 31.98 35.44 32.43

Plane 32.66 29.17 33.46 30.31 37.43 32.62 38.56 33.53

Boat 28.49 25.79 29.14 26.70 31.86 29.05 32.48 30.00

Table 4.4

PSNR values of recovered images for compressed imaging (A = PΩ ◦ C2). From left to right, the results correspond to

Algorithm 1 with learned dictionary, Algorithm 1 with DCT, Algorithm 2, and TV method, respectively. Bold is best.

Image SR=10% SR=20% SR=30%

Castle 27.91 26.00 28.27 23.35 32.00 30.73 33.35 25.10 35.22 35.46 37.76 27.27

Lena 32.19 29.53 32.36 25.75 36.41 33.86 36.76 27.93 39.48 37.64 40.06 28.79

Plane 39.56 36.11 40.72 30.45 42.76 40.88 44.15 31.52 45.60 43.51 46.37 32.70

Boat 28.80 26.08 28.93 24.67 32.48 30.00 32.98 27.21 34.64 33.58 35.66 27.24

set to their default values. For color images, each of RGB channels was recovered independently.

For A = PΩ, we tested SR = 30%, 50%, and for A = PΩ ◦C2, we tested SR = 10%, 20%, 30%. For each

tested image, we chose three different partitions, whose upper-left corner patches were 8 ×8, 8×4, and 4×8,

respectively. The same three partitions were used in both Algorithms 1 and 2. Table 4.3 lists the average

results of five independent trials by the compared methods for A = PΩ, Table 4.4 for A = PΩ ◦ C2 and Table

4.5 for image deblurring. From the results, we see that Algorithm 1 works better with learned D than DCT

except for Castle image when A = PΩ ◦C2 and SR = 30%. Our method with learned D is consistently better

for A = PΩ and much better for A = PΩ ◦ C2 than TV-based model (4.1). For both average and motion

blurring operators, our method is much better than that in [6] for solving (2.4). In addition, Algorithm 2

with adaptively updated dictionary makes improvement over Algorithm 1 in all cases. Except for the Plane

image, the improvement increases as SR increases. It is reasonable since higher SRs give cleaner images,

which further generate better dictionaries.

We provide open source codes on our websites and welcome the interested reader to try it on more

datasets.

5. Conclusions. Dictionary learning has been popularly applied to image denoising, super-resolution,

classification and feature extraction. Various algorithms have been proposed for learning dictionaries to

achieve different goals. In this paper, we focus on whole-image recovery and develop novel methods for

learning dictionaries and then recovering images quickly and faithfully. Our algorithm not only has low per-

iteration complexity and also converges fast. In the algorithm, using non-overlapping patches and averaging

across different subsets of patches greatly reduce the variable freedom and are critical for fast and successful

recovery.
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[11] S.  Lojasiewicz, Sur la géométrie semi-et sous-analytique, Ann. Inst. Fourier (Grenoble), 43 (1993), pp. 1575–1595.

[12] Julien Mairal, Francis Bach, and Jean Ponce, Task-driven dictionary learning, Pattern Analysis and Machine Intel-

ligence, IEEE Transactions on, 34 (2012), pp. 791–804.

[13] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Online dictionary learning for sparse coding, in Proceedings of the 26th

Annual International Conference on Machine Learning, ACM, 2009, pp. 689–696.

[14] Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro, and Andrew Zisserman , Supervised dictionary

learning, arXiv preprint arXiv:0809.3083, (2008).

[15] D. Martin, C. Fowlkes, D. Tal, and J. Malik, A database of human segmented natural images and its application

to evaluating segmentation algorithms and measuring ecological statistics , in Computer Vision, 2001. ICCV 2001.

Proceedings. Eighth IEEE International Conference on, vol. 2, IEEE, 2001, pp. 416–423.

[16] Saiprasad Ravishankar and Yoram Bresler, Mr image reconstruction from highly undersampled k-space data by

dictionary learning, Medical Imaging, IEEE Transactions on, 30 (2011), pp. 1028–1041.

[17] Karl Skretting and Kjersti Engan, Recursive least squares dictionary learning algorithm, Signal Processing, IEEE

Transactions on, 58 (2010), pp. 2121–2130.

[18] Ivana Tosic and Pascal Frossard, Dictionary learning, Signal Processing Magazine, IEEE, 28 (2011), pp. 27–38.

[19] P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization , Journal of Optimization

Theory and Applications, 109 (2001), pp. 475–494.

[20] Y. Xu and W. Yin, A block coordinate descent method for regularized multi-convex optimization with applications to

nonnegative tensor factorization and completion, To appear in SIAM Journal on Imaging Science, (2013).

[21] Y Zhang, J Yang, and Wotao Yin, YALL1: Your algorithms for l1, MATLAB software, http://yall1.blogs.rice.edu/,

(2010).

[22] Yongqiang Zhao, Jinxiang Yang, Qingyong Zhang, Lin Song, Yongmei Cheng, and Quan Pan , Hyperspectral

imagery super-resolution by sparse representation and spectral regularization , EURASIP Journal on Advances in

Signal Processing, 2011 (2011), pp. 1–10.

14


