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Abstract 
We present results from 2.5-dimensional Particle-in-Cell simulations of the interaction of 
nonlinear Alfven waves with thin current sheets in relativistic plasmas.   We find that the Alfven 
waves cause the current sheet to bend and kink and increase its dissipation.  The electrons are 
eventually heated to form a double Maxwellian, with the hotter Maxwellian caused by the 
current sheet dissipation and cooler Maxwellian caused by the Alfven turbulence cascade.  These 
results may have important implications for the kinetic dissipation of MHD turbulence in which 
both nonlinear Alfven waves and current sheets are present, such as turbulence in accretion flows 
driven by the saturated magnetorotational instability (MRI). 
 

1. Introduction 
A fundamental problem in astrophysical plasmas is the dissipation of MHD turbulence and the 
resultant heating and nonthermal energization of electrons. MHD turbulence is ubiquitous in the 
universe, from accretion disks to the interstellar medium.  As the turbulence cascades down to 
the kinetic level, it dissipates much of its energy via anomalous (collisionless) heating of the 
electrons and ions (Boyd and Sanderson 1969).  Most recent works have focused on 
nonrelativistic plasmas.  Also current sheets are a prevalent feature of MHD turbulence and their 
role in the turbulence dissipation has been a major unsolved problem.  In this paper we present 
new results on the dissipation of nonlinear shear Alfven turbulence cascade in relativistic 
plasmas.  We focus on the interaction of nonlinear Alfven waves with transverse current sheets.  
Using the 2.5 D (2-D space, 3-momenta) Particle-in-Cell (PIC Birdsall and Langdon 1991) code 
Zohar (Langdon and Lasinski 1976) we obtain interesting new results which are absent when 
only Alfven waves are present without strong current sheets.   We find that the electrons are 
heated to form a double Maxwellian, with the hot component arising from current sheet 
dissipation and the cooler component arising from wave turbulence cascade. 
 
Our work is partially motivated by recent observations that the MHD turbulence of saturated 
MRI-driven accretion flows is dominated by large numbers of folded thin current sheets formed 
by the differential rotational stretching of the azimuthal field Bφ (Obergaulinger 2008, Gammie 
et al 2004).  At the same time, nonlinear Alfven modes are generated in Br and Bz by the MRI 
(Balbus and Hawley 1991, 1992).  The interaction of the vertical and radial Alfven modes with 
the azimuthal current sheets causes the current sheets to warp and kink, enhancing their 
dissipation (Zenitani and Hoshino 2005).  Here we present the preliminary results for sample 
kinetic simulation results of such a scenario.  However, at this point the (explicit) kinetic 
simulations can only be performed on small scales, while the MHD turbulence structure so far 
has only been observed on much larger (MHD) scales >> kinetic scales.  Provided that the 
turbulence is truly self-similar (Goldreich and Sridhar 1995), the turbulence and current sheet 
structure we see on MHD scales should persist all the way down to the kinetic scale.  Hence it is 
still interesting to see what happens to dissipations at the kinetic level, even though the boundary 
and driving conditions may be somewhat hypothetical. 
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2. PIC simulations 

Fig.1 shows a sample problem setup of our 2.5 D PIC simulations.  Typically we use a 1024 x 
1024 grid (106 cells) with 16-64 superparticles (numerical representation of a particle) per cell 
per species, and ion to electron mass ratio mi/me =100. The cell size Δx=Δy=0.5c/ωe where ωe is 
the electron plasma frequency.  Hence the physical grid has the dimension 512 x 512 c/ωe, or 51 
x 51 c/ωi where ωi is the ion plasma frequency.  Here we show two examples in which the initial 
eletron temperature kTe = 0.25 mec2 (nonrelativistic) or 1.5 mec2 (relativistic), while the ion 
temperature kTi = 0.25 mec2 in both cases.  Fig.1 depicts an initial geometry setup.  Two opposite 
current sheets (Jx only) are set up in the top and bottom half of the grid respectively.  We have 
varied the initial configuration of the current sheets in different runs.  Their effects are discussed 
in Sec.4.  Counter-propagating nonlinear Alfven waves with δB/Bo=1 and narrow bandwidth 
centered around λ=256c/ωe (=half grid size) are injected in both the x and y directions.  Due to 
the periodic conditions (in both x and y) the counter-propagating waves form a standing wave 
pattern. 
 
In the absence of current sheets, these nonlinear Alfven standing waves cascade into higher and 
higher order (shorter wavelength) modes over time, generating wave turbulence (Fig.11).   
Longitudinal electrostatic modes (Langmuir turbulence Dieckmann et al 2006) are also generated 
by the colliding Alfven waves via parametric processes.  Electrons are heated to temperatures of 
several mec2 by the wave turbulence cascade, and ions are also heated at late times to a 
comparable temperature (see below).  The electron distributions are consistent with a single 
temperature Maxwellian. 
 
When the Jx current sheets are added, the results become much more complex and interesting.  
Below we show the detailed results of the relativistic case with kTe=1.5mec2, |Bz|=10Bo, 
Ωe(electron gyrofrequency) = 0.71ωe.  Such parameters mimic some of the conditions we find in 
MRI MHD runs (Hilburn et al 2009).  First the current sheets start to warp and kink, driven by 
the magnetic perturbations of the nonlinear Alfven waves.   The folding and warping of the 
current sheet greatly increases the current sheet surface area (Fig.2).  Magnetic dissipation rate is 
enhanced.  Since our 2D geometry forbids x-type reconnection of Bz field (similar to Zenitani 
and Hoshino 2005), cross field instabilities such as the relativistic drift kink instability (RDKI, 
Zenitani and Hoshino 2003) are likely important electron heating mechanisms.  However, since 
ours is an e-ion plasma, the lower hybrid drift (LHDI Krall 1971, Gary et al 2008) and other 
instabilities absent in e+e- plasmas (Zenitani and Hoshino 2005) may also operate here.  The 
relative roles of different instabilities will be studied in future follow-ups papers.   
 
Fig.2 shows the evolution of Bz while Figs.3 and 4 show the evolution of By and Bx.  Initially Bx 
and By form island patterns. Note that unlike Bz, Bx and By fields can evolve via x-type 
reconnections. In particular, Fig.4 shows that Jz current sheets must be present and reconnection 
leads to the formation of continuous Bx domains at late times. Figs.5,6,7 show the evolution of Jx, 
Jz and Jy respectively. Jz and Jz are both induced by the Alfven waves.  Note that Jz evolves into a 
fragmented “atoll” structure at late times. Fig.8 shows the evolution of the charge separation (ni-
ne)/no, which is a measure of the induced Langmuir turbulence amplitude. Comparing Fig.8 with 
Fig.6 shows that charge separation traces the Jz pattern. Figs.9 and 10 show the evolution of 
electric fields.  In Fig.11 we plot the cross-sectional profiles of the Alfven wave amplitudes,  
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showing the cascade towards shorter modes.  Fig.12 is a plot of the time evolution of the 
different energy components. We see that by tωe =4000, approximately 20% of the magnetic 
energy (mainly Bz field) has been converted into particle energy, mostly hot electrons.  Ions also 
gain energy, but only a fraction of the electron energy. In Fig.13 we show similar plots for the 
cold electron case (kTe=0.25mec2) for comparison. In both cases we see that the Alfven waves 
(Bx, By) at first gains energy at the expense of the Bz field, but eventually lose them back to the 
particles (Fig.13 right panel).  Electrostatic energy remains small at all times.   
 
We have examined the evolutions of particle distributions.  Fig.14 shows the evolution of the 
electron distribution for the kTe=1.5mec2 case.  At late times we see the formation of a double 
Maxwellian (plus possibly a steep power law tail, cf. the log-log plot), with the hot component 
about 5 times hotter than the cooler component.  Fig.15 shows the evolution of the ion 
distribution.  Comparing Fig.15 with Fig.14 we see that ion heating proceeds slower than 
electron heating, due to the ion inertia. 
 
In Fig.16 we compare the electron distribution for 4 different runs, with and without current 
sheets, and kTe = 0.25 mec2 vs. kTe=1.5mec2 (discussed above).  We see that without current 
sheets, only a single Maxwellian emerges.  But the temperature of this Maxwellian is still lower 
than the cooler Maxwellian of the current sheet cases.  In other words, current sheet dissipation 
heats electrons much more efficiently than pure Alfvenic wave cascade.  This is not surprising, 
since current sheets imply large amount of magnetic free energy.  Once it becomes unstable, it is 
capable of generating large amplitude electric fields for particle acceleration (Zenitani and 
Hoshino 2005), whereas pure Alfvenic turbulence accelerates mainly via resonant scattering, 
(although in the nonlinear limit, the Alfven modes also decay parametrically and transfer some 
of its energy into electrostatic modes).  Details of all these results will be published elsewhere.    
 

3. Astrophysical Applications 
Low luminosity black holes (LLBH) such as the one in our Galactic center Sgr A* emit x-rays 
and radio (Balantyne et al 2007, Melia et al 2001, Melia 2006) which can only be produced by 
relativistic electrons with temperatures ≥ few MeV (Liu et al 2004, 2006, Yuan 2006).  Since the 
density in the accretion flow is extremely low, coulomb heating via virial ions is negligible (Liu 
2005).  Currently the favorite heating mechanism is direct collisionless heating of the electrons 
by the saturated MRI turbulence (Liu 2005).  As we see above, pure Alfvenic wave turbulence 
cascade may not be sufficient to heat the electrons to such high temperatures.  But Alfvenic 
waves plus thin current sheets seem to produce an additional hot component with temperature 
exceeding 10 MeV.  This holds out the hope that thin current sheet dissipation in MRI disks may 
be the key in producing the ultrahot electrons needed to explain the observed radio to x-ray 
broadband spectra of Sgr A* and other LLBH’s.  Moreover, the currently popular synchrotron 
self-Compton (SSC) model of Sgr A* (Yuan et al 2003, 2004) seems to have difficulty fitting the 
radio and x-ray spectra (Ohsuga et al 2005) using a single electron temperature.  The presence of 
a 2-Maxwellian electron distribution will make the spectral modeling much more 
accommodating and flexible (Hilburn et al 2009).   
 

4. Discussions 
We have also studied the effects of different initial current sheet configurations by varying the 
width of the initial current sheet.  We have also examined both Harris equilibrium and 
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nonequilibrium (Curl B = 4πJ but uniform density) initial configurations.  While such different 
initial current conditions make some differences in the initial growth rate, the asymptotic state of 
the plasma and heated electron temperature appear to be rather insensitive to the initial current 
sheet configurations.  Details will be discussed elsewhere.  
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Figure Captions: 
Fig.1 Initial set up of our runs with 1024x1024 doubly periodic grid.  In all figures of this paper, 
x and y coordinates are in units of c/ωe.  A pair of Jx current sheets and Bz fields (in and out of 
the plane) are set up at t=0.  Aflven waves of δB/Bo=1 and λ=half grid size are injected from all 
four boundaries, forming a standing wave pattern.  Bz=10Bo in these runs.  Figs.2 – 12, 14, 15 all 
refer to the hot electron case kTe=1.5mec2.  
Fig.2 Snapshots of Bz contours at three different times showing the field evolution. 
Fig.3 Snapshots of By contours at two different times showing the field evolution. 
Fig.4 Snapshots of Bx contours at three different times showing the field evolution.  Note the 
sharp field reversals at early times suggesting thin Jz current sheets as seen in Fig.6. 
Fig.5 Snapshots of Jx contours at two different times showing the current evolution.  The current 
sheets bend and kink due to pushing by the Alfven modes.  
Fig.6 Snapshots of Jz contours at two different times showing the current evolution.  At late times 
Jz exhibits an “atoll” structure.  
Fig.7 Snapshots of Jy contours at two different times showing the current evolution. 
Fig8 Snapshots of net charge (ni-ne)/no contours at two different times showing the charge 
fluctuation evolution.    Fig.8 roughly traces the patterns of Fig.6 
Fig.9 Snapshot of E field contours at early time. 
Fig.10 Snapshot of E field contours at late time. 
Fig.11 Cross-sectional profiles of the Alfven waves at tωe=4000, showing the higher frequency 
modes superposed on the initially smooth profile. 
Fig.12 Time evolution of different energy components. Eem is total electromagnetic energy. 
Fig.13 Time evolution of different energy components for the cool electron case kTe = 0.25 mec2.  
Left panel: top to bottom, EBz, Ee, Ei, EBxy, EE.  Righ panel is a blow up of the bottom curves of 
the left panel: top to bottom, EBxy, EEx, EEy, EEz. 
Fig.14  Evolution of the electron distribution in the hot electron case.  Left panel: logf(γ) vs. log 
γ.  Right panel: log f(γ) vs. linear γ, showing the double Maxwellian.  There is a slight hint of a 
power-law tail but the statistics cannot justify such claims. 
Fig.15 Evolution of the ion distribution in the hot electron case.  It shows that ions are heated 
much more slowly than electrons. 
Fig.16 Comparison of the electron distribution evolution for four different runs. Left: no current 
sheet or Bz field, only Alfven waves.  Right: with double current sheets and |Bz|=10Bo.  Top 
panels are for the cool electron case and bottom panels are for the hot electron case.
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