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Abstract

Two major goals in machine learning are the discovery of complex multidimensional solutions and con-
tinual improvement of existing solutions. In this paper, we argue that complexification, i.e. the incremental
elaboration of solutions through adding new structure, achieves both these goals. We demonstrate the power
of complexification through the NeuroEvolution of Augmenting Topologies (NEAT) method, which evolves
increasingly complex neural network architectures. NEAT is applied to an open-ended coevolutionary robot
duel domain where robot controllers compete head to head. Because the robot duel domain supports a wide
range of sophisticated strategies, and because coevolution benefits from an escalating arms race, it serves
as a suitable testbed for observing the effect of evolving increasingly complex controllers. The result is an
arms race of increasingly sophisticated strategies. When compared to the evolution of networks with fixed
structure, complexifying networks discover significantly more sophisticated strategies. The results suggest
that in order to realize the full potential of evolution, and search in general, solutions must be allowed to
complexify as well as optimize.

1 Introduction

Evolutionary algorithms are a class of algorithms that can be applied to open-ended learning problems in
Artificial Intelligence. Traditionally, such algorithms evolve fixed-length genomes under the assumption
that the space of the genome is sufficient to encode the solution. A genome containing � genes encodes
a single point in an � -dimensional search space. In many cases, a solution is known to exist somewhere
in that space. For example, the global maximum of a function of three arguments must exist in the three
dimensional space defined by those arguments. Thus, a genome of three genes can encode the location of
the maximum.

However, many common structures are defined by an arbitrary number of parameters. In particular,
those solution types that can contain a variable number of parts can be represented by any number of genes.
For example, the number of parts in neural networks, cellular automata, and electronic circuits can vary
(Miller et al. 200a; Mitchell et al. 1996; Stanley and Miikkulainen 2002d). In fact, two neural networks with
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different numbers of connections and nodes can approximate the same function (Cybenko 1989). Thus, it is
not clear what number of genes is appropriate for solving a particular problem. Because of this ambiguity,
researchers evolving fixed-length genotypes must use heuristics, such as smaller neural networks general-
izing better than larger ones, in order to estimate a priori the appropriate number of genes to encode such
structures.

A major obstacle to using fixed-length encodings is that heuristically determining the appropriate num-
ber of genes becomes impossible for very complex problems. For example, how many nodes and connec-
tions are necessary for a neural network that controls a ping-pong playing robot? Or, how many bits are
needed in the neighborhood function of a cellular automata that performs information compression? The
answers to these questions can hardly be based on empirical experience or analytic methods, since little is
known about the solutions. One possible approach is to simply make the genome extremely large, so that
the space it encodes is extremely large and a solution is likely to lie somewhere within. Yet the larger the
genome, the higher dimensional the space that evolution needs to search. Even if a ping-pong playing robot
lies somewhere in the 10,000 dimensional space of a 10,000 gene genome, searching such a space may take
prohibitively long.

Even more problematic are open-ended problems where phenotypes are meant to improve indefinitely
and there is no known final solution. For example, in competitive games, estimating the complexity of the
“best” possible player is difficult because making such an estimate implicitly assumes that no better player
can exist. How could we ever know that? Moreover, many artificial life domains are aimed at evolving
increasingly complex artificial creatures for as long as possible (Maley 1999). Fixing the size of the genome
in such domains also fixes the maximum complexity of evolved creatures, defeating the purpose of the
experiment.

In this paper, we argue that the right way to evolve arbitrarily structured phenotypes is to start evolution
with a population of small, simple genomes and systematically complexify solutions over generations by
adding new genes. That way, evolution begins searching in a small easily-optimized space, and adds new
dimensions as necessary. This approach is more likely to discover highly complex phenotypes than an
approach that begins searching directly in the intractably large space of complete solutions. In fact, natural
evolution has itself utilized this strategy, occasionally adding new genes that lead to increased phenotypic
complexity (Martin 1999; Section 2). In biology, this process is called complexification, which is why we
use this term to describe our approach as well.

When a good strategy is found in a fixed-length genome, the entire representational space of the genome
is used to encode it. Thus, the only way to improve it is to alter the strategy, thereby sacrificing some of
the functionality learned over previous generations. In contrast, complexification elaborates on the existing
strategy by adding new structure without changing the existing representation. Thus the strategy does not
only become different, but the number of possible responses to situations it may face increases (figure 1).

This idea is implemented in a method for evolving increasingly complex neural networks, called Neu-
roEvolution of Augmenting Topologies (NEAT; Stanley and Miikkulainen 2002b,c,d). NEAT begins by
evolving networks without any hidden nodes. Over many generations, new hidden nodes and connections
are added, resulting in the complexification of the solution space. This way, more complex strategies elabo-
rate on simpler strategies, focusing search on solutions that are likely to maintain existing capabilities. We
use NEAT to demonstrate the power of complexification.

NEAT was tested in a competitive robot control domain with and without complexification. Coevolu-
tion was used to evolve robot controllers against each other to find better strategies. We chose this domain
because it is open-ended; there is no known optimal strategy but it is possible to come up with increasingly
more sophisticated strategies indefinitely. The main results were that (1) evolution did complexify when
possible, (2) complexification led to elaboration, and (3) significantly more sophisticated and successful
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Figure 1: Alteration vs. elaboration example. A robot (depicted as a circle) evolves to avoid an obstacle. In
the alteration scenario (top), the robot first evolves a strategy to go around the left side of the obstacle. However, the
strategy fails in a future generation when the obstacle begins moving to the left. Thus, the robot alters its strategy by
evolving the tendency to move right instead of left. However, when the obstacle later moves right, the new, altered,
strategy fails because the robot did not retain its old ability to move left. In the elaboration scenario (bottom), the
original strategy of moving left also fails. However, instead of altering the strategy, it is elaborated by adding a new
ability to move right as well. Thus, when the obstacle later moves right, the robot still has the ability to avoid it by
using its original strategy. Elaboration is necessary for a coevolutionary arms race to emerge and it can be achieved
through complexification.

strategies were evolved with complexification than without. These results imply that complexification al-
lows coevolution to continually elaborate on successful strategies, resulting in an arms race that achieves a
significantly higher level of sophistication than is otherwise possible.

We begin by reviewing biological support for complexification, as well as past work in coevolution,
followed by a description of the NEAT method, and experimental results.

2 Background

2.1 Complexification in Nature

Mutation in nature not only results in optimizing existing structures: New genes are occasionally added to
the genome, allowing evolution to perform a complexifying function over and above optimization. In addi-
tion, complexification is protected in nature in that interspecific mating is prohibited. Such speciation creates
important dynamics differing from standard GAs. In this section, we discuss these important characteristics
of natural evolution as a basis for our approach to utilize them computationally in genetic algorithms.

Gene duplication is a special kind of mutation in which one or more parental genes are copied into an
offspring’s genome more than once. The offspring then has redundant genes expressing the same proteins.
Gene duplication has been responsible for key innovations in overall body morphology over the course of
natural evolution (Amores et al. 1998; Carroll 1995; Force et al. 1999; Martin 1999).
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A major gene duplication event occurred around the time that vertebrates separated from invertebrates.
The evidence for this duplication centers around HOX genes, which determine the fate of cells along the
anterior-posterior axis of embryos. HOX genes are crucial in shaping the overall pattern of developmental in
embryos. In fact, differences in HOX gene regulation explain a great deal of arthropod and tetrapod diversity
(Carroll 1995). Amores et al. (1998) explain that since invertebrates have a single HOX cluster while
vertebrates have four, cluster duplication must have significantly contributed to elaborations in vertebrate
body-plans. The additional HOX genes took on new roles in regulating how vertebrate anterior-posterior axis
develops, considerably increasing body-plan complexity. Although Martin (1999) argues that the additional
clusters can be explained by many single gene duplications accumulating over generations, as opposed to
massive whole-genome duplications, researchers agree that gene duplication contributed significantly to
important body-plan elaboration.

A detailed account of how duplicate genes can take on novel roles was given by Force et al. (1999): Base
pair mutations in the generations following duplication partition the initially redundant regulatory roles of
genes into separate classes. Thus, the embryo develops in the same way, but the genes that determine
overall body-plan are confined to more specific roles, since there are more of them. The partitioning phase
completes when redundant clusters of genes are separated enough that they no longer produce identical
proteins at the same time. After partitioning, mutations within the duplicated cluster of genes alter different
steps in development than mutations within the original cluster. In other words, duplication creates more
points at which mutations can occur. In this way, developmental processes complexify.

In order to implement this idea in artificial evolutionary systems we are faced with two major challenges.
First, such systems evolve variable-length genomes, which can be difficult to cross over without losing in-
formation. For example, depending on when duplications occurred in the ancestral histories of two different
genomes, the same gene may exist at different positions. Conversely, different genes may exist at the same
position. Thus, artificial crossover may lose essential genes through misalignment. Second, it may be dif-
ficult for a variable-length genome GA to find innovative solutions; Optimizing many genes takes longer
than optimizing only a few, meaning that more complex genotypes may be eliminated from the population
before they have a sufficient opportunity to be optimized.

How has nature solved these problems? First, nature has a mechanism for aligning genes with their
proper counterparts during crossover, so that data is not lost nor obscured. This alignment process has been
most clearly observed in E. coli (Radding 1982; Sigal and Alberts 1972). A special protein called RecA
takes a single strand of DNA and aligns it with another strand by attaching the strands at genes that express
the same traits, which are called homologous genes. The process by which RecA protein aligns homologous
genes is called synapsis. In experiments in vitro, researchers have found that RecA protein does not complete
the process of synapsis on fragments of DNA that are not homologous (Radding 1982).

Second, innovations in nature are protected through speciation. Organisms with significantly divergent
genomes never mate because they are in different species. Thus, organisms with larger genomes compete
for mates among their own species, instead of with the population at large. That way, organisms that may
initially have lower fitness than the general population still have a chance to reproduce, giving novel concepts
a chance to realize their potential without being prematurely eliminated.

It turns out complexification is also possible in evolutionary computation if abstractions of synapsis and
speciation are made part of the genetic algorithm. The NEAT method (section 3) is an implementation of this
idea: the genome is complexified by adding new genes which in turn encode new structure in the phenotype,
as in biological evolution.

Complexification is especially powerful in open-ended domains where the goal is to continually generate
more sophisticated strategies. Competitive coevolution is a particularly important such domain, as will be
reviewed in the next section.
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2.2 Competitive Coevolution

In competitive coevolution, individual fitness is evaluated through direct competition with other individuals
in the population, rather than through an objective fitness measure. In other words, fitness signifies only the
relative strengths of solutions; an increased fitness in one solution leads to a decreased fitness for another.
Ideally, competing solutions will continually outdo one another, leading to an ”arms race” of increasingly
better solutions (Dawkins and Krebs 1979; Rosin 1997; Van Valin 1973).

In practice, it is difficult to establish an arms race. Evolution tends to find the simplest solutions that
can win, meaning that strategies can switch back and forth between different idiosyncratic yet uninteresting
variations (Darwen 1996; Floreano and Nolfi 1997; Rosin and Belew 1997). Several methods have been
developed to encourage the arms race (Angeline and Pollack 1993; Ficici and Pollack 2001; Noble and
Watson 2001; Rosin and Belew 1997). For example, a ”hall of fame” can be used to ensure that current
strategies remain competitive against strategies from the past. Recently, Ficici and Pollack (2001) and
Noble and Watson (2001) introduced a promising method called Pareto coevolution, which finds the best
learners and the best teachers in two populations by casting coevolution as a multiobjective optimization
problem.

Although such techniques improve the performance of competitive coevolution, they do not directly en-
courage continual coevolution, i.e. creating new solutions that maintain existing capabilities. For example,
no matter how well selection is performed, or how well competitors are chosen, if no better solution exists
in the fixed solution space, elaboration is impossible since the global optimum has already been reached.
Moreover, it may occasionally be easier to escape a local optimum by adding a new dimension of freedom
to the search space than by jumping back out into the same space that led to the optimum in the first place.

Complexification is an appropriate technique for establishing a coevolutionary arms race. Complexifi-
cation naturally elaborates strategies by adding new dimensions to the search space. Thus, progress can be
made indefinitely long: even if a global optimum is reached in the search space of solutions, new dimensions
can be added, opening up a higher-dimensional space in which even higher optima may exist.

To test this idea experimentally, we chose a robot duel domain that combines predator/prey interaction
and food foraging in a novel head-to-head competition (Section 4). We use this domain to demonstrate how
NEAT uses complexification to continually elaborate on strategies. The next section describes the NEAT
neuroevolution method, followed by a description of the robot duel domain and a discussion of the results.

3 NeuroEvolution of Augmenting Topologies (NEAT)

The NEAT method of evolving artificial neural networks combines the usual search for appropriate network
weights with complexification of the network structure. This approach is highly effective: NEAT outper-
forms other neuroevolution (NE) methods, e.g. on the benchmark double pole balancing task by a factor of
five (Stanley and Miikkulainen 2002b,c,d). The NEAT method consists of solutions to three fundamental
challenges in evolving neural network topology: (1) What kind of genetic representation would allow dis-
parate topologies to crossover in a meaningful way? Our solution is to use historical markings to line up
genes with the same origin. (2) How can topological innovation that needs a few generations to optimize
be protected so that it does not disappear from the population prematurely? Our solution is to separate each
innovation into a different species. (3) How can topologies be minimized throughout evolution so the most
efficient solutions will be discovered? Our solution is to start from a minimal structure and grow only when
necessary. In this section, we explain how NEAT addresses each challenge.
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Figure 2: A NEAT genotype to phenotype mapping example. A genotype is depicted that produces the shown
phenotype. There are 3 input nodes, one hidden, and one output node, and seven connection definitions, one of which
is recurrent. The second gene is disabled, so the connection that it specifies (between nodes 2 and 4) is not expressed
in the phenotype. In order to allow complexification, genome length is unbounded.

3.1 Genetic Encoding

Evolving structure requires a flexible genetic encoding. In order to allow structures to complexify, their
representations must be dynamic and expandable. Each genome in NEAT includes a list of connection
genes, each of which refers to two node genes being connected. (figure 2). Each connection gene specifies
the in-node, the out-node, the weight of the connection, whether or not the connection gene is expressed (an
enable bit), and an innovation number, which allows finding corresponding genes during crossover.

Mutation in NEAT can change both connection weights and network structures. Connection weights
mutate as in any NE system, with each connection either perturbed or not. Structural mutations, which form
the basis of complexification, occur in two ways (figure 3). Each mutation expands the size of the genome
by adding gene(s). In the add connection mutation, a single new connection gene is added connecting two
previously unconnected nodes. In the add node mutation an existing connection is split and the new node
placed where the old connection used to be. The old connection is disabled and two new connections are
added to the genome. The new nonlinearity in the connection changes the function slightly, but new nodes
can be immediately integrated into the network, as opposed to adding extraneous structure that would have
to be evolved into the network later.

Through mutation, the genomes in NEAT will gradually get larger. Genomes of varying sizes will
result, sometimes with different connections at the same positions. A difficult problem for crossover, with
numerous differing topologies and weight combinations, is an inevitable result of allowing genomes to grow
unbounded. Yet such growth is necessary if complexification is to occur. How can NE cross over differently
sized genomes in a sensible way? The next section explains how NEAT addresses this problem.
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Figure 3: The two types of structural mutation in NEAT. Both types, adding a connection and adding a node,
are illustrated with the genes above their phenotypes. The top number in each genome is the innovation number of
that gene. The bottom two numbers denote the two nodes connected by that gene. The weight of the connection, also
encoded in the gene, is not shown. The symbol DIS means that the gene is disabled, and therefore not expressed in
the network. The figure shows how connection genes are appended to the genome when a new connection is added to
the network and when a new node is added. Assuming the depicted mutations occurred one after the other, the genes
would be assigned increasing innovation numbers as the figure illustrates, thereby allowing NEAT to keep an implicit
history of the origin of every gene in the population.

3.2 Tracking Genes through Historical Markings

It turns out that there is unexploited information in evolution that tells us exactly which genes match up
between any individuals in the population. That information is the historical origin of each gene in the
population. Two genes with the same historical origin represent the same structure (although possibly with
different weights), since they were both derived from the same ancestral gene from some point in the past.
Thus, all a system needs to do to know which genes line up with which is to keep track of the historical
origin of every gene in the system.

Tracking the historical origins requires very little computation. Whenever a new gene appears (through
structural mutation), a global innovation number is incremented and assigned to that gene. The innovation
numbers thus represent a chronology of every gene in the system. As an example, let us say the two
mutations in figure 3 occurred one after another in the system. The new connection gene created in the
first mutation is assigned the number � , and the two new connection genes added during the new node
mutation are assigned the numbers � and � . In the future, whenever these genomes crossover, the offspring
will inherit the same innovation numbers on each gene; innovation numbers are never changed. Thus, the
historical origin of every gene in the system is known throughout evolution.

A possible problem is that the same structural innovation will receive different innovation numbers in
the same generation if it occurs by chance more than once. However, by keeping a list of the innovations
that occurred in the current generation, it is possible to ensure that when the same structure arises more than
once through independent mutations in the same generation, each identical mutation is assigned the same
innovation number. Thus, there is no resultant explosion of innovation numbers.

Through innovation numbers, the system now knows exactly which genes match up with which. (figure
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Figure 4: Matching up genomes for different network topologies using innovation numbers. Although Parent 1
and Parent 2 look different, their innovation numbers (shown at the top of each gene) tell us which genes match up with
which without the need for topological analysis. Even without any topological analysis, a new structure that combines
the overlapping parts of the two parents as well as their different parts can be created. In this case, equal fitnesses are
assumed, so the disjoint and excess genes from both parents are inherited randomly. The disabled genes may become
enabled again in future generations: there’s a preset chance that an inherited gene is disabled if it is disabled in either
parent.

4). Genes that do not match are either disjoint or excess, depending on whether they occur within or outside
the range of the other parent’s innovation numbers. When crossing over, the genes in both genomes with the
same innovation numbers are lined up. Genes that do not match are inherited from the more fit parent, or if
they are equally fit, from both parents randomly.

Historical markings allow NEAT to perform crossover without the need for expensive topological anal-
ysis. Genomes of different organizations and sizes stay compatible throughout evolution, and the problem
of comparing different topologies (Radcliffe 1993) is essentially avoided. Such compatibility is essential in
order to complexify structure. However, it turns out that a population of varying complexities cannot main-
tain topological innovations on its own. Because smaller structures optimize faster than larger structures,
and adding nodes and connections usually initially decreases the fitness of the network, recently augmented
structures have little hope of surviving more than one generation even though the innovations they represent
might be crucial towards solving the task in the long run. The solution is to protect innovation by speciating
the population, as explained in the next section.
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3.3 Protecting Innovation through Speciation

NEAT speciates the population so that individuals compete primarily within their own niches instead of
with the population at large. This way, topological innovations are protected and have time to optimize their
structure before they have to compete with other niches in the population. Protecting innovation through
speciation follows the philosophy that new ideas must be given time to reach their potential before they are
prematurely eliminated.

Historical markings make it possible for the system to divide the population into species based on topo-
logical similarity. We can measure the distance � between two network encodings as a simple linear com-
bination of the number of excess ( � ) and disjoint ( � ) genes, as well as the average weight differences of
matching genes ( � ):

���
��� �	 


��� �	 
 ��
�� ��� (1)

The coefficients ��� , ��� , and ��
 adjust the importance of the three factors, and the factor
	

, the number of
genes in the larger genome, normalizes for genome size (

	
can be set to 1 if both genomes are small, i.e.,

consist of fewer than 20 genes). Genomes are tested one at a time; if a genome’s distance to a randomly
chosen member of the species is less than ��� , a compatibility threshold, it is placed into this species. Each
genome is placed into the first species from the previous generation where this condition is satisfied, so that
no genome is in more than one species. If a genome is not compatible with any existing species, a new
species is created.

As the reproduction mechanism for NEAT, we use explicit fitness sharing (Goldberg and Richardson
1987), where organisms in the same species must share the fitness of their niche. Thus, a species cannot
afford to become too big even if many of its organisms perform well. Therefore, any one species is unlikely
to take over the entire population, which is crucial for speciated evolution to work. The adjusted fitness ����
for organism � is calculated according to its distance � from every other organism � in the population:

� �� � � ������ �"!$#&% � % �$'(�*)+) � (2)

The sharing function !$# is set to , when distance � % �$'(�*) is above the threshold �-� ; otherwise, !$#&% � % �$'(�*)+)
is set to 1 (Spears 1995). Thus,

� ��. � !$#/% � % �+'(�0)+) reduces to the number of organisms in the same species as
organism � . This reduction is natural since species are already clustered by compatibility using the threshold
��� . Every species is assigned a potentially different number of offspring in proportion to the sum of adjusted
fitnesses �1�� of its member organisms. Species then reproduce by first eliminating the lowest performing
members from the population. The entire population is then replaced by the offspring of the remaining
organisms in each species.

The net effect of speciating the population is that structural innovation is protected. The final goal of the
system, then, is to perform the search for a solution as efficiently as possible. This goal is achieved through
complexification from a simple starting structure, as detailed in the next section.

3.4 Minimizing Dimensionality through Complexification

Unlike other systems that evolve network topologies and weights (Angeline et al. 1993; Gruau et al. 1996;
Yao 1999; Zhang and Muhlenbein 1993), NEAT begins with a uniform population of simple networks
with no hidden nodes. Speciation protects new innovations, allowing topological diversity to be gradually
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Figure 5: The Robot Duel Domain. The robots begin on opposite sides of the board facing away from each other as
shown by the lines pointing away from their centers. The concentric circles around each robot represent the separate
rings of opponent sensors and food sensors available to each robot. Each ring contains five sensors, which appear
larger or smaller depending on their activations. The robots lose energy when they move around, and gain energy
by consuming food (shown as small sandwiches). The food is placed in a horizontally symmetrical pattern around
the middle of the board. The objective is to attain a higher level of energy than the opponent, and then collide
with it. Because of the complex interaction between foraging, pursuit, and evasion behaviors, the domain allows for
a broad range of strategies of varying sophistication. Animated demos of such evolved strategies are available at
www.cs.utexas.edu/users/kstanley/demos.html.

introduced over evolution. Thus, because NEAT protects innovation using speciation, it can start this way,
minimally, and grow new structure only as necessary.

New structure is introduced incrementally as structural mutations occur, and only those structures sur-
vive that are found to be useful through fitness evaluations. This way, NEAT searches through a minimal
number of weight dimensions, significantly reducing the number of generations necessary to find a solu-
tion, and ensuring that networks become no more complex than necessary. This gradual production of in-
creasingly complex structures constitutes complexification. In other words, NEAT searches for the optimal
topology by complexifying when necessary.

4 The Robot Duel Domain

Our hypothesis is that complexification allows discovering more sophisticated strategies, i.e. strategies that
are more effective, flexible, and general, and include more components and variations than do simple strate-
gies. To demonstrate this effect, we need a domain where it is possible to develop increasingly sophisticated
strategies, and where sophistication can be readily measured. A coevolution domain is particularly appro-
priate because a sustained arms race should lead to increasing sophistication.

In choosing the domain, it is difficult to strike a balance between being able to evolve complex strategies
and being able to analyze and understand them. Pursuit and evasion tasks have been utilized for this purpose
in the past (Gomez and Miikkulainen 1997; Jim and Giles 2000; Miller and Cliff 1994; Reggia et al. 2001),
and can serve as a benchmark domain for competitive coevolution as well. While past experiments evolved
either a predator or a prey, an interesting coevolution task can be established if the agents are instead equal
and engaged in a duel. To win, an agent must develop a strategy that outwits that of its opponent, utilizing
structure in the environment.

In the robot duel domain, two simulated robots try to overpower each other (figure 5). The two robots
begin on opposite sides of a rectangular room facing away from each other. As the robots move, they lose
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Figure 6: Robot Neural Networks. Five food sensors and five robot sensors detect the presence of objects around
the robot. A single wall sensor indicates proximity to walls, and the energy difference sensors tells the robot how its
energy level differs from that of its opponent. This difference is important because the robot with lower energy loses
if the robots collide. The three motor outputs are mapped to forces that control the left and the right wheel.

energy in proportion to the amount of force they apply to their wheels. Although the robots never run out of
energy (they are given enough to survive the entire competition), the robot with higher energy wins when it
collides with its competitor. In addition, each robot has a sensor indicating the difference in energy between
itself and the other robot. To keep their energies high, the robots can consume food items, arranged in a
symmetrical pattern in the room.

The robot duel task supports a broad range of sophisticated strategies that are easy to observe and
interpret. The competitors must become proficient at foraging, prey capture, and escaping predators. In
addition, they must be able to quickly switch from one behavior to another. The task is well-suited to
competitive coevolution because naive strategies such as forage-then-attack can be complexified into more
sophisticated strategies such as luring the opponent to waste its energy before attacking.

The simulated robots are similar to Kheperas (Mondada et al. 1993; figure 6). Each has two wheels
controlled by separate motors. Five rangefinder sensors can sense food and another five can sense the other
robot. Finally, each robot has an energy-difference sensor, and a single wall sensor.

The robots are controlled with neural networks evolved with NEAT. The networks receive all of the
robot sensors as inputs, as well as a constant bias that NEAT can use to change the activation thresholds
of neurons. They produce three motor outputs: Two to encode rotation either right or left, and a third to
indicate forward motion power. These three values are then translated into forces to be applied to the left
and right wheels of the robot.

This complex robot-control domain allows competitive coevolution to evolve increasingly sophisticated
and complex strategies, and can be used to understand complexification.

5 Experiments

In order to demonstrate how complexification enhances performance, we ran 23 500-generation runs of
coevolution in the robot duel domain. The full NEAT method was enabled in 13 runs, and complexification
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was turned off in the remaining ten, in order to see how complexified networks compared to those with
fixed topologies throughout evolution. The competitive coevolution setup is described first, followed by an
overview of the dominance tournament method for monitoring progress.

5.1 Competitive Coevolution Setup

The evolution in the robot duel domain is open-ended in that it never reaches a final solution. Thus, the
question in such a domain is whether continual coevolution will take place, i.e. whether increasingly so-
phisticated strategies will appear throughout the run or eventually stop being produced. Complexification
should allow continual coevolution. The experiment has to be set up carefully for this process to emerge,
and to be able to identify it when it does.

In competitive coevolution, every network should play a suitable number of games to establish a good
measure of fitness. To encourage interesting and sophisticated strategies, networks should play a diverse
and high quality sample of possible opponents. One way to accomplish this goal is to evolve two separate
populations. In each generation, each population is evaluated against an intelligently chosen sample of
networks from the other population. The population currently being evaluated is called the host population,
and the population from which opponents are chosen is called the parasite population (Rosin and Belew
1997). The parasites are chosen for their quality and diversity, making host/parasite evolution more efficient
and more reliable than one based on random or round robin tournament.

A single fitness evaluation included two competitions, one for the east and one for the west starting
position. That way, networks needed to implement general strategies for winning, independent of their
starting positions. Host networks received a single fitness point for each win, and no points for losing. If a
competition lasted 750 time steps with no winner, the host received 0 points.

In selecting the parasites for fitness evaluation, good use can be made of the speciation and fitness shar-
ing that already occur in NEAT. Each host was evaluated against the champions of four species with the
highest fitness. They are good opponents because they are the best of the best species, and they are guaran-
teed to be diverse because their compatibility must be outside the threshold �-� (section 3.3). Another eight
opponents were chosen randomly from a Hall of Fame (Rosin and Belew 1997) that contained population
champions from all generations. Together, speciation, fitness sharing, and Hall of Fame comprise a compe-
tent competitive coevolution methodology. Appendix A contains the NEAT system parameter values used
in the experiments.

It should be noted that complexification does not depend on the particular coevolution methodology.
For example Pareto coevolution (Ficici and Pollack 2001; Noble and Watson 2001) could have been used
as well, and the advantages of complexification would be the same. However, Pareto coevolution requires
every member of one population to play every member of the other, and the running time in this domain
would have been prohibitively long.

In order to interpret experimental results, a method is needed for analyzing progress in competitive
coevolution. The next section describes such a method.

5.2 Monitoring Progress in Competitive Coevolution

A competitive coevolution run returns a record of every generation champion from both populations. The
question is how can a sequence of increasingly sophisticated strategies be identified in this data, if one
exists? This section describes the dominance tournament method for monitoring progress in competitive
coevolution (Stanley and Miikkulainen 2002a) that allows us to do that.
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Figure 7: Master tournament ambiguity. Champions of generations one through six are depicted. An arrow
pointing from champion � to champion � denotes that � is superior to � in a direct 288-way comparison. The master
tournament reports that champion 5 defeats four other champions, while champion 6 only defeats three others. These
results imply that 5 is superior to 6. However, when 5 and 6 are compared directly against each other, 6 actually
wins. This way, master tournament results can be misleading. A method that captures the order of dominance among
different strategies avoids such a confusion.

First we need a method for performing individual comparisons, i.e. whether one strategy is better than
another. Because the board configurations can vary during the game, champion networks were compared
on 144 different food configurations from each side of the board, giving 288 total comparisons. The food
configurations included the same 9 symmetrical food positions used during training, plus an additional 2
food items, which were placed in one of 12 different positions on the east and west halves of the board.
Some starting food positions give an initial advantage to one robot or another, depending on how close
they are to the robots’ starting positions. Thus, the one who wins the majority of the 288 total games has
demonstrated its superiority in many different scenarios, including those beginning with a disadvantage.
We say that network � is superior to network � if � wins more comparisons than � out of the 288 total
comparisons.

Given this definition of superiority, progress can be tracked. The obvious way to do it is to compare
each network to others throughout evolution, finding out whether later strategies can beat more opponents
than earlier strategies. For example, Floreano and Nolfi (1997) used a measure called master tournament,
in which the champion of each generation is compared to all other generation champions. Unfortunately,
such methods are impractical in a time-intensive domain such as the robot duel competition. Moreover, the
master tournament only counts how many strategies can be defeated by each generation champion, without
identifying which ones. Thus, it can fail to detect cases where strategies that defeat fewer previous cham-
pions are actually superior (figure 7). In order to track strategic innovation, we need to identify dominant
strategies, i.e. those that defeat all previous dominant strategies. This way, we can make sure that evolution
proceeds by developing a progression of strictly more powerful strategies, instead of e.g. switching between
alternative ones.

The dominance tournament method of tracking progress in competitive coevolution meets this goal
(Stanley and Miikkulainen 2002a). Let a generation champion be the winner of a 288 game comparison
between the two population champions of a single generation. Let � � be the � th dominant strategy to appear
over evolution. Then dominance is defined recursively starting from the first generation and progressing to
the last:1

1Our definition of dominance is similar though not identical to the definition of a transitive chain (Rosin 1997, p.19).
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� The first dominant strategy � � is the generation champion of the first generation;

� dominant strategy � � , where � ��� , is a generation champion such that for all ��� � , � � is superior to
(wins the 288 game comparison with) � � .

This strict definition of dominance prohibits circularities. For example, ��� must be superior to strate-
gies � � through � 
 , � 
 superior to both � � and � � , and � � superior to � � . We call � � the � th dominant
strategy of the run. A network � from a later generation that defeats ��� but loses to � 
 has circular supe-
riority, since it defeats newer strategies but loses to older ones. Since � is circular, it would not be entered
into the dominance hierarchy. The entire process of deriving a dominance hierarchy from a population is
a dominance tournament, where competitors play all previous dominant strategies until they either lose a
288 game comparison, or win every comparison to previous dominant strategies, thereby becoming a new
dominant strategy. Dominance tournament allows us to identify a sequence of increasingly more sophisti-
cated strategies. They also require significantly fewer comparisons than the master tournament (Stanley and
Miikkulainen 2002a).

Armed with the appropriate coevolution methodology and a measure of success, we can now ask the
question: Does the complexification result in more successful competitive coevolution?

6 Results

Each of the 23 evolution runs lasted 500 generations, and took between 5 and 10 days on a 1GHz Pentium III
processor, depending on the progress of evolution and sizes of the networks involved. The NEAT algorithm
itself used less than 1% of this computation: most of the time was spent in evaluating networks in the robot
duel task. Evolution of fully-connected topologies took about 90% longer than structure-growing NEAT
because larger networks take longer to evaluate.

We define complexity as the number of nodes and connections in a network: The more nodes and con-
nections there are in the network, the more complex behavior it can potentially implement. The results were
analyzed to answer three questions: (1) As evolution progresses does it also continually complexify? (2)
How is complexification utilized to create more sophisticated strategies? (3) Does complexification allow
better strategies to be discovered than does evolving fixed-topology networks?

6.1 Evolution of Complexity

NEAT was run thirteen times, each time from a different seed, to verify that the results were consistent. The
highest levels of dominance achieved were 17, 14, 17, 16, 16, 18, 19, 15, 17, 12, 12, 11, and 13, averaging
at 15.15 (sd = 2.54).

At each generation where the dominance level increased in at least one of the thirteen runs, we averaged
the number of connections and number of nodes in the current dominant strategy across all runs (figure 8).
Thus, the graphs represent a total of 197 dominance transitions spread over 500 generations. The rise in
complexity is dramatic, with the average number of connections tripling and the average number of hidden
nodes rising from 0 to almost six. In a smooth trend over the first 200 generations, the number of connections
in the dominant strategy grows by 50%. During this early period, dominance transitions occur frequently
(fewer prior strategies need to be beaten to achieve dominance). Over the next 300 generations, dominance
transitions become more sparse, although they continue to occur.

Between the 200th and 500th generations a staircase pattern emerges, where complexity first rises dra-
matically, then settles, then abruptly increases again. The reason for this pattern is speciation. While one
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Figure 8: Complexification of connections and nodes over generations. The graphs depict the average number of
connections and the average number of hidden nodes in the highest dominant network in each generation. Averages are
taken over 13 complexifying runs. A hash mark appears every generation in which a new dominant strategy emerged
in at least one of the 13 runs. The graphs show that as dominance increases, so does complexity level on average. The
differences in complexity between the average final dominant and first dominant strategies are statistically significant
for both connections and nodes (�����������
	 ).
species is adding a large amount of structure, other species are optimizing the weights of less complex net-
works. While it is initially faster to grow structure until something works, such ad hoc constructions are
eventually supplanted by older species that have been steadily optimizing for a long period of time. Thus,
spikes in complexity occur when structural elaboration leads to a better strategy, and complexity slowly
settles when older structures optimize their weights and overtake more recent structural innovations. Even-
tually, even more elaborate structures will emerge and again outperform the older structures.

Thus, there are two underlying forces of progress: the building of new structures, and the continual
optimization of prior structures in the background. The product of these two trends is a gradual stepped
progression towards increasing complexity.

Importantly, the dominant strategies did not have to complexify; Even though NEAT adds new structure
to networks over generations, because of speciation many species remain simple even as some species
become more complex. Thus, the results show more than just that the champions of each generation tend to
become complex: The dominant strategies, i.e. the networks that have a strictly superior strategy to every
previous dominant strategy, tend to be more complex the higher the dominance level. Thus, the results verify
that continual progress in evolution is paired with increasing complexity.

6.2 Sophistication through Complexification

To see how complexification contributes to evolution, let us observe how a sample dominant strategy de-
velops over time. While many complex networks evolved in the experiments, we follow the species that
produced the winning network � ��� in the third run because its progress is rather typical and easy to under-
stand. Let us use 
�� for the best network in 
 at generation � , and ��� for the � th hidden node to arise from
a structural mutation over the course of evolution. We will track both strategic and structural innovations in
order to see how they correlate. Let us begin with 
 ����� (figure 9a), when 
 had a mature zero-hidden-node
strategy:

� 
 ����� ’s main strategy was to follow the opponent, putting it in a position where it might by chance
collide with its opponent when its energy is up. However, 
 ����� followed the opponent even when
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Figure 9: Complexification of a Winning Species. The best networks in the same species are depicted at landmark
generations. Nodes are depicted as squares beside their node numbers, and line thickness represents the strength of
connections. Over time, the networks became more complex and gained skills. (a) The champion from generation 10
had no hidden nodes. (b) The addition of ����� and its respective connections gave new abilities. (c) The appearance of
������� refined existing behaviors.

the opponent had more energy, leaving �
	��
� vulnerable to attack. ��	��
� did not clearly switch roles
between foraging and chasing the enemy, causing it to miss opportunities to gather food.

� ���
�
� . During the next 100 generations, � evolved a resting strategy, which it used when it had signif-
icantly lower energy than its opponent. In such a situation, the robot stopped moving, while the other
robot wasted energy running around. By the time the opponent got close, its energy was often low
enough to be attacked. The resting strategy is an example of improvement that can take place with-
out complexification: it involved increasing the inhibition from the energy difference sensor, thereby
slightly modifying intensity of an existing behavior.

� In ���
��� (figure 9b), a new hidden node, ���
� , appeared. This node arrived through an interspecies
mating, and had been optimized for several generations already. Node ���
� gave the robot the ability
to change its behavior at once into a consistent all-out attack. Because of this new skill, ���
��� no longer
needed to follow the enemy closely at all times, allowing it to collect more food. By implementing
this new strategy through a new node, it was possible not to interfere with the already existing resting
strategy, so that � now switched roles between resting when in danger to attacking when high on
energy. This way, the new structure resulted in strategic elaboration.

� In ����	�� (figure 9c), another new hidden node, ��	���� , split a link between an input sensor and ���
� .
Replacing a direct connection with a sigmoid function greatly improved � ��	�� ’s ability to attack at
appropriate times, leading to very accurate role switching between attacking and foraging. ����	�� would
try to follow the opponent from afar focusing on resting and foraging, and only zoom in for attack
when victory was certain. This final structural addition shows how new structure can greatly improve
the accuracy and timing of existing behaviors.

The analysis above shows that in some cases, weight optimization alone can produce improved strate-
gies. However, when those strategies need to be extended, adding new structure allows the new behaviors
to coexist with old strategies. Also, in some cases it is necessary to add complexity to make the timing
or execution of the behavior more accurate. These results show how complexification can be utilized to
produce increasing sophistication.

In order to illustrate the level of sophistication displayed during competition, we conclude this section
with a description of an observed competition between two sophisticated strategies, ����	�� and ����	�� , from
another run of evolution. At the beginning of the competition, �
��	�� and ����	�� collected most of the available
food until their energy levels were about equal. Two pieces of food remained on the board in locations distant
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Figure 10: Sophisticated Endgame. Robot ������� dashes for the last piece of food while �����	� is still collecting
the second-to-last piece. Although it appeared that ������� would lose because �
����� got the second-to-last piece, (gray
arrow), it turns out that � ����� ends with a disadvantage. It has no chance to get to the last piece of food before � ���	� ,
and � ���	� has been saving energy while � ���	� wasted energy traveling long distances. This way, sophisticated strategies
evolve through complexification, combining multiple objectives, and utilizing weaknesses in the opponent’s strategy.

from both 
 � ��� and 
 
 � 
 (figure 10). Because of the danger of colliding with similar energy levels, the naive
strategy would be to rush for the last two pieces of food. In fact, 
 � ��� did exactly that. However, 
 
 � 

cleverly forfeit this race for the second-to-last piece, opting to sit still, even though its energy temporarily
dropped below 
 � ��� ’s. After 
 � ��� consumed the second-to-last piece, it headed towards the last piece, which
was now far away. Even though 
 
 � 
 had less energy, it was closer and got there first. It received a boost
of energy while 
 � ��� wasted its energy running the long distance from its current position. Thus, 
 
 � 
 ’s
strategy ensured that it had more energy when they finally met. Robot 
 
 � 
 ’s behavior was surprisingly
deceptive, showing that a high level of strategic sophistication had evolved.

This analysis of individual evolved behaviors shows that complexification indeed elaborates on exist-
ing strategies, and allows highly sophisticated behaviors to develop that balance multiple goals and utilize
weaknesses in the opponent. The last question is whether complexification indeed is necessary to achieve
these behaviors.

6.3 Complexification vs. Fixed-topology Evolution

To see whether complexifying coevolution is more powerful than standard coevolution in a fixed search
space, we compared the two methods. Note that it is not possible to compare them using the standard
crossvalidation methodology because no external performance measure exists in this domain. However,
the evolved neural networks can be compared directly by playing a duel. Thus, a run of fixed-topology
coevolution can be compared to a run of complexifying coevolution by playing the highest dominant strategy
from the fixed-topology run against the entire dominance ranking of the complexifying run. The highest
level strategy in the ranking that the fixed-topology strategy can defeat is a measure of its quality against
complexifying coevolution.

By playing every fixed-topology champion against the dominance ranking from every complexifying
run, we can measure the performance of non-complexifying evolution. In addition, we established a base-
line for comparison by also playing the champions of the complexifying runs against the entire dominance
ranking of every other complexifying run. The average levels reached by complexifying and fixed-topology
coevolution can then be compared.

Accordingly, the performance of a particular run is the average highest dominance level of the strategies
it can defeat among all complexifying runs, normalized by the total number of dominance levels for that
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Figure 11: The Best Complexifying Network. The highest performing network from complexifying coevolution is
depicted. The network has 11 hidden units and 202 connections, plotted as in figure 9. This network makes significant
use of structure. While it still has basic direct connections, its strategy has been elaborated through the addition of
new nodes and connections. Lateral and recurrent connections are used to make more refined decisions based on past
experiences. While complexification makes good use of this high-dimensional space, it is difficult for fixed-topology
evolution to take advantage of similarly complex structures.

run. For example, if a strategy can defeat up to and including the 13th dominant strategy out of 15, then its
performance against that run is

� 
��� � � � � ��� . The performance against all complexifying runs can then be
averaged to obtain the overall performance of that run.

First, we establish the baseline performance by playing complexifying coevolution runs against them-
selves. We will then compare it with fixed-topology coevolution of both small and large networks.

6.3.1 Complexifying Coevolution

The highest dominant strategy from each of the 13 complexifying runs played the entire dominance ranking
from every other run. Their average performances were � � � ��� , ��� � ��� , � � � ��� , � � ���	� , � � � ��� , � � � � � ,

� � ���	� , � � ��
�� , � � � ��� , � � ����� , � ,*� � � , � � � ��� , and � � ����� . The fifth, sixth, and seventh runs thus were able
to defeat almost the entire dominance ranking of every other run, indicating that these were the best of the
complexifying runs. The highest dominant network from the best run ( � � � � � ) is shown in figure 11. The
average performance over all complexifying runs was � � ���	� (sd=12.8%).

This result makes sense because it indicates that complexifying runs produce consistently good strate-
gies. On average, the highest dominant strategies qualify for the top � ,
� of the other complexifying runs.
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Figure 12: Comparing Typical Runs of Complexifying Coevolution and 10-hidden-unit Fixed-Topology Coevo-
lution. Dominance levels are charted on the y-axis and generations on the x-axis. A line appears at every generation
where a new dominant strategy arose in each run. The height of the line represents the level of dominance. The arrow
shows that the highest dominant strategy found in 10-hidden-unit fixed-topology evolution only performs as well as the
8th dominant strategy in the complexifying run, which was found in the 19th generation! (Average = 24, sd = 8.8) In
other words, only a few generations of complexifying coevolution are as effective as several hundred of fixed-topology
evolution.

6.3.2 10-Hidden-Unit Fixed-Topology Coevolution

Fixed-topology coevolution uses fully-connected networks with a single hidden layer, and the number of
hidden units must be chosen by the experimenter. Thus, in order to make the comparison between fixed-
topology and complexifying coevolution fair, a reasonable size must be chosen for networks in the fixed-
topology runs. One sensible approach is to choose a complexity that approximates the complexity of the
highest dominant strategy from the highest performing complexifying run (figure 11). This strategy utilized
11 hidden units and 202 connections including both recurrent connections and direct connections from input
to output. In order to approximate this complexity, we chose to use 10 hidden unit fully recurrent networks
with direct connections from inputs to outputs, with a total of 263 connections. A network of this type
should be able to approximate the functionality of the most effective complexifying strategy.

Three runs of fixed-topology coevolution were performed with these networks, and their highest domi-
nant strategies were compared to the entire dominance ranking of every complexifying run. Their average
performances were � � � � � , � �0���	� , and 
 � � ��� , for an overall average of � ,*���	� . Compared to the � � ���	�
performance of complexifying coevolution, it is clear that fixed-topology coevolution produced consistently
much inferior solutions. As a matter of fact, no fixed-topology run could defeat any of the 13 highest
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Figure 13: Comparing Typical Runs of Complexifying Coevolution and 5-hidden-unit Fixed-Topology Coevo-
lution. As in figure 12 dominance levels are charted on the y-axis and generations on the x-axis, a line appears
every generation where a new dominant strategy arose in each run, and the height of the line represents the level of
dominance. The arrow shows that the highest dominant strategy found in 5-hidden-unit fixed-topology evolution only
performs as well as the 12th dominant in the complexifying run, which was found in the 140th generation. (Average
159, sd = 72.0) Thus, even in the best configuration, fixed-topology evolution takes about twice as long to achieve the
same level of performance.

dominant strategies from complexifying coevolution.

This difference in performance can be illustrated by computing the average generation of complexifying
coevolution with the same performance as fixed-topology coevolution. This generation turns out to be 24
(sd = 8.8). In other words, 500 generations of fixed-topology coevolution reach on average the same level
of dominance as only 24 generations of complexifying coevolution! In effect, the progress of the entire
fixed-topology coevolution run is compressed into the first few generations of complexifying coevolution
(figure 12).

6.3.3 5-Hidden-Unit Fixed-Topology Coevolution

One of the arguments for using complexifying coevolution is that starting the search directly in the space of
the final solution may be intractable. This may explain why the attempt to evolve fixed-topology solutions at
a high level of complexity failed. Thus, in the next experiment we chose instead to evolve fully-connected,
fully-recurrent networks with five hidden nodes. After considerable experimentation, we found out that
this level of complexity was the most productive for fixed-topology evolution, allowing it to find the best
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Coevolution Type Ave. Highest Ave. Highest Average Equivalent
Dom. Level Generation Performance Generation

(out of 500)

Complexifying 15.2 353.6 91.4% 343
Fixed-Topology 12.0 172 40.4% 24
10 Hidden Node
Fixed-Topoogy 13.0 291.4 80.3% 159
5 Hidden Node

Table 1: A comparison of fixed-topology coevolution with complexifying coevolution. The second col-
umn shows how many levels of dominance were achieved in each type of coevolution on average. The
third shows the average last generation where dominant strategies appeared, indicating how long innovation
generally continues. The fourth column gives the highest dominance level in complexifying runs that the
dominant strategy from the fixed-topology run could defeat and the fifth column shows its average genera-
tion. The differences in dominance level (� � ,*� ,�
 ), performance (� � ,*� ,-, � ) , and equivalent generation
(� ��,*� ,-, � ) are all significant. The main result is that the level of sophistication reached by complexifying
coevolution is significantly higher than that reached by fixed-topology coevolution.

solutions it can. These networks utilized 144 connections, constituting a significantly lower-dimensional
search space than the 10-hidden-unit networks. It also is about the average number of hidden nodes used in
the highest dominant strategy of complexifying runs.

A total of seven runs were performed with the 5-hidden-node networks, with average performances of
� ,*� ��� , ��
 ��
�� ,

��� � � � , � � ����� , � ,*� ��� , � � � ��� , and ��� � � � . The overall average was � ,*����� (sd=18.4%),
which is significantly below the � � ���	� performance of complexifying coevolution (� � ,*� ,-, � ).

The results with 5-hidden-unit fixed-topology coevolution are significantly better than with 10 hidden
units, confirming the hypothesis that search is more difficult in higher-dimensional space. However, the
solutions found this way were still inferior to the complexified solutions. The two most effective complex-
ifying runs were never defeated by any of the fixed-topology runs. Also, because each dominance level is
more difficult to achieve than the last, on average the fixed-topology evolution only reached the performance
of the 159th complexifying generation (sd=72.0). Thus, even in the best case, fixed-topology coevolution
on average only finds the level of sophistication that complexifying coevolution finds halfway through a run
(figure 13).

6.3.4 Comparing Fixed-Topology vs. Complexifying Coevolution

Table 1 shows how the different methods of coevolution differ on the number of dominance levels, the
generation of the highest dominance level, overall performance, and equivalent generation. The conclusion
is that complexifying coevolution innovates longer and finds a higher level of sophistication both on average
and absolutely.

It is important to ask whether standard non-complexifying coevolution could in principle reach the same
level of sophistication as the most effective complexifying runs. As the results show, if fixed-topology
coevolution is forced to search directly in the space of the most effective solutions, it cannot reach even
50% of the performance of complexifying coevolution. On the other hand, if it is allowed to optimize less
complex networks, the most sophisticated solutions may not exist in that space. Thus, it is unclear which,
if any, choice of topology is correct with fixed-topology evolution. In contrast, complexifying coevolution
finds the appropriate level of complexity for the task, allowing it to discover more sophisticated strategies.
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7 Discussion and Future Work

The results confirm that complexification makes it possible to find more sophisticated strategies. Com-
plexification encourages continual elaboration, whereas evolution of fixed-structures proceeds primarily by
alteration. When a fixed genome is used to represent a strategy, that strategy can be optimized, but it is not
possible to add functionality without sacrificing some of the knowledge that is already present. In contrast,
if new genetic material can be added, sophisticated elaborations can be layered above existing structure.
Indeed, dominant strategies are usually more complex than their predecessors, showing that evolution capi-
talizes on the capacity to complexify.

Adding new genes to the genome does more than expand the dimensionality of the search space. Be-
fore the addition, the values of the existing genes have already been optimized over preceding generations.
Thus, after a new gene is added, the genome is already in a promising part of the new, higher-dimensional
space. Thus, the search in the higher-dimensional space is not starting blindly as it would if evolution began
searching in that space. It is for this reason that complexification can find high-dimensional solutions that
would otherwise be difficult to discover.

Complexification can find solutions that would be difficult to obtain through evolving fixed structure:
No fixed-sized network was able to defeat the best strategies from complexifying coevolution. In fixed evo-
lution, the complexity must be guessed just right. Too little structure will make it impossible to solve the
problem and too much will make the search space too large to search efficiently. Moreover, even if com-
plexity is guessed right, searching in the the high-dimensional space of the final solution may be intractable
because search begins in a random part of the space. A complexifying system saves the user from such
concerns.

In principle, if the complexification process is efficient enough, it will generate just enough structure to
solve the task. However, if complexification is too greedy or inaccurate, it may be useful to counterbalance
it with a process of simplification, in which genes are occasionally disabled or deleted from the genome.
Such a process could be useful in principle to keep the evolved structures minimal. However, removing
structure is potentially more disruptive than adding it, since entire modules can be accidentally cut off with
even a small deletion. Moreover, removing a gene may initially improve fitness, even though the gene
may be necessary to construct the final solution. In such a case, evolution may become stuck for several
generations waiting for the gene to become reinstated. As a result, in preliminary experiments we did not
find minimization to improve the performance of complexifying system. Whether these two processes can
implemented so that they leverage each other is an interesting direction of future work.

The advantages of complexification do not imply that fixed-sized genomes cannot sometimes evolve in-
creasingly complex phenotypic behavior. Recall that complexification refers to the addition of new structure
to the solution (Section 2.1). Depending on the mapping between the genotype and the phenotype, it may
be possible for a fixed, finite set of genes to represent solutions (phenotypes) with varying behavioral com-
plexity. For example, such behaviors have been observed in Cellular Automata (CA). A cellular automaton
is a lattice of cells that change their state as a function of their own current state and the state of other cells
in their neighborhood. This neighborhood function can be evolved, in which case the size of the genome
is � ��� � (assuming � neighboring cells with binary state). Mitchell et al. (1996) were able to evolve such
fixed-sized CA neighborhood functions to determine whether black or white cells were in the majority. The
evolved CAs displayed complex global behavior patterns that converged on a single classification, depend-
ing on which cell type was in the majority. Over the course of evolution, the behavioral complexity of the
CA rose even as the genome remained the same size.

In the CA example, the correct neighborhood size was chosen a priori. This choice is difficult to make,
and highly critical in order to succeed. If the desired behavior had not existed within the chosen size, even if
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the behavior would become gradually more complex, the system would never solve the task. Interestingly,
such a dead-end could be avoided if the neighborhood (i.e. the genome) could be expanded during evolution.
It is possible that CA could be more effectively evolved by complexifying (i.e. expanding) the genomes,
and speciating to protect innovation, as in NEAT.

Moreover, not only can the chosen genome be too small to represent the solution, but it can also be
unnecessarily large. Searching in a space of more dimensions than necessary can impede progress. Thus,
for any particular genome size, the question can always be asked: does a solution possibly exist in the space
of a smaller genome? For this reason, it makes sense to start evolution in a minimal space and complexify.
In the example of the CA, if the desired function existed in a smaller neighborhood it could have been found
with significantly fewer evaluations. Indeed, it is even possible that the most efficient neighborhood is not
symmetric, or contains cells that are not directly adjacent to the cell being processed. Moreover, even the
most efficient neighborhood may be too large a space in which to begin searching. Starting search in a small
space and incrementing into a promising part of higher-dimensional space is more likely to find a solution.
For these reasons, complexification can be an advantage, even if behavioral complexity can increase to some
extent within a fixed space.

The preceding example raises the intriguing possibility that any structured phenotype can be evolved
through complexification from a minimal starting point, historical markings, and the protection of innova-
tion through speciation. In addition to neural networks and CA, electrical circuits (Miller et al. 200a,b),
genetic programs (Koza 1992), robot body morphologies (Lipson and Pollack 2000), Bayesian networks
(Mengshoel 1999), finite automata (Brave 1996), and building and vehicle architectures (O’Reilly 2000) are
all structures of varying complexity that can benefit from complexification. By starting search in a minimal
space and adding new dimensions as necessary, highly complex phenotypes can be discovered that would be
difficult to find if search began in the intractable space of the final solution, or if it was prematurely restricted
to too small a space.

Note that not all algorithms that grow structure are complexifying systems. In many cases, the goal of
the growth is to form gradually better approximations. For example, methods like Incremental Grid Grow-
ing (Blackmore and Miikkulainen 1995), and Growing Neural Gas (Fritzke 1995) add neurons to a network
until it approximates the topology of the input space reasonably well. On the other hand, complexifying
systems do not have to be non-deterministic (like NEAT), nor do they need to be based on evolutionary al-
gorithms. For example, Harvey (1993) introduced a deterministic algorithm where the chromosome lengths
of the entire population increase all at the same time in order to expand the search space; Fahlman and
Lebiere (1990) developed a supervised (non-evolutionary) neural network training method called cascade
correlation, where new hidden neurons are added to the network in a predetermined manner in order to
complexify the function it computes.

The conclusion is that complexification is an important general principle in Artificial Intelligence (AI).
One of the primary and most elusive goals of the field is to create systems that scale up. In a sense, complex-
ification is the process of scaling up. It is the general principle of taking a simple idea and elaborating it for
broader application. Much of AI is concerned with search, whether over complex multi-dimensional land-
scapes, or through highly-branching trees of possibilities. However, intelligence is as much about deciding
what space to search as it is about searching once the proper space has already been identified. For many
problems, the hard question is not how to search, but rather, what should we be searching in? Currently,
only humans are able to decide the proper level of abstraction for solving many problems. A program that
can decide what level of abstraction is most appropriate for a given domain would be a highly compelling
demonstration of Artificial Intelligence.
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8 Conclusion

The experiments presented in this paper show that complexification of genomes leads to continual coevolu-
tion of increasingly sophisticated strategies. Three trends were found in the experiments: (1) as evolution
progresses, complexity of solutions increases, (2) evolution uses complexification to elaborate on existing
strategies, and (3) complexifying coevolution is significantly more successful in finding highly sophisticated
strategies than evolution of fixed structures. These results suggest that complexification is a crucial com-
ponent of a successful search for complex solutions. By both complexifying and optimizing, a system can
both discover the appropriate representation for the solution as well as the location of the solution itself.
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A NEAT System Parameters

Each population had 256 NEAT networks, for a total of 512. The coefficients for measuring compatibility
were � � � � � , , � � � � � , , and � 
 � � � , . The initial compatibility distance was � � � � � , . However, because
population dynamics can be unpredictable over hundreds of generations, we assigned a target of 10 species.
If the number of species grew above 10, ��� was increased by ,*��� to reduce the number of species. Conversely,
if the number of species fell below 10, ��� was decreased by ,*��� to increase the number of species. In order
to prevent stagnation, the lowest performing species over 30 generations old was not allowed to reproduce.
The champion of each species with more than five networks was copied into the next generation unchanged.
There was an 80% chance of a genome having its connection weights mutated, in which case each weight
had a 90% chance of being uniformly perturbed and a 10% chance of being assigned a new random value.
(The system is tolerant to frequent mutations because of the protection speciation provides.) There was
a 75% chance that an inherited gene was disabled if it was disabled in either parent. In each generation,
25% of offspring resulted from mutation without crossover. The interspecies mating rate was 0.05. The
probability of adding a new node was 0.01 and the probability of a new link mutation was 0.1. We used a
modified sigmoidal transfer function, � %�� ) �

�� �������
	 ��� , at all nodes. These parameter values were found
experimentally: links need to be added significantly more often than nodes, and an average weight difference
of 0.5 is about as significant as one disjoint or excess gene. Performance is robust to moderate variations in
these values: The dynamic compatibility distance measure caused speciation to remain stable.
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