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Abstract  Gears are one of the most critical components in industrial rotating machinery. There is a vast amount of 
literature on gear modelling. The objectives in dynamic modelling of gears has varied from vibration analysis and 
noise control, to transmissions errors and stability analysis over at least the past five decades. The ultimate goal of 
this paper is to perform planetary gear train modeling as in [1] to study the effect deflection and stresses on surface 
pitting and scoring. This paper is an extension of the work performed by the authors as in [1], in which the 
experimental work was carried out to study the effect of planet phasing on noise and subsequent resulting vibrations 
of Nylon-6 planetary gear drive. 
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1. Introduction 
Planetary gears are essential parts of many precision 

power transmitting elements such as an automobile, 
tractors, wind turbines, helicopters, and aircraft engines, 
where high torque to weight ratios, large speed reductions 
in compact volumes, co-axial shaft arrangements, high 
reliability and superior efficiency are required. Gear 
stresses & vibrations are primary concerns in most 
planetary gear transmission applications, where the 
manifest problem may be noise or dynamic forces. 
Despite infinite advantages, the dynamics & noise induced 
by the vibration of planetary gear systems remains a key 
concern. Planetary gears have received considerably less 
research attention than single mesh gear pairs. There is a 
particular scarcity of analysis of two planetary gear 
systems & their dynamic response. Planet phasing 
provides an effective means to reduce planetary gear 
vibration [1]. A significant advantage is its cost-
effectiveness as no additional manufacturing processes & 
measuring instruments are needed. This paper focus on the 
study of two PGTs with different phasing (angular 
positions) while keeping every individual set unchanged. 
This paper focus on the study of dynamics of planetary 
gear set by using Analytical & Finite Element Methods. 
Large dynamic forces increase the risk of gear tooth or 
bearing failure. Kahraman and Blankenship [2,3] 
performed experiments on a spur gear pair and observed 
various nonlinear phenomena including gear tooth contact 
loss, period-doubling and chaos. Tooth separations at 
large vibrations, which are common in spur–gear pairs, 
occur even in planetary gears as evident from the 
experiments by Botman [4]. Planetary gear researchers 
have developed lumped-parameter models and deformable 

gear models to analyze gear dynamics [1]. The literature 
mainly addresses static analysis, natural frequencies and 
vibration modes, modeling to estimate dynamic forces and 
responses, and cancellation of mesh forces using the 
planetary gear symmetry through mesh phasing. Studies 
by Cunliffe et al. [5], Botman [6], Hidaka and Terauchi 
[7], Hidaka et al. [8], and Kahraman [9–11] involve 
planetary gear models to estimate natural frequencies, 
vibration modes and dynamic forces. Lin and Parker [12, 
13] present a 2D rotational–translational degree of 
freedom spur gear model and mathematically show the 
unique modal properties of equally spaced and 
diametrically opposed planet systems. All modes can be 
classified as one of rotational, translational, or planet 
modes. The sensitivity of natural frequencies and modes 
to operating speeds and various design parameters are 
studied by Lin and Parker [14], who also examine natural 
frequency veering phenomena [15]. Mesh stiffness-
induced parametric instability is studied by Lin and Parker 
[16]. A helical planetary gear model is formulated and the 
effect of mesh phasing on the dynamics of equally spaced 
planet systems is investigated by Kahraman [10] and 
Kahraman and Blankenship [17]. In recent years, some 
researchers have used deformable gear body dynamic 
models. A unique finite element contact analysis program 
is used by Parker et al. [18] to model nonlinear spur gear 
dynamics. The finite element results compare favorably 
with experiments. Parker et al. [19] used the same finite 
element method to examine planetary gear dynamics. 
Kahraman and Vijayakar [20] studied the effect of ring 
gear flexibility on the static response of planetary gears 
using the finite element method. A recent study by 
Kahraman et al. [21] dynamically analyzes a planetary 
gear with thin rim using the same finite element method. 
Kahraman et al. [22] employed this finite element model 
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to study tooth wear and its impact on the dynamic 
behavior of a planetary gear. These studies use the same 
commercial finite element tool [23], which is also adopted 
in this study. 

Accurate analytical modeling, including proper mesh 
phasing relations and detailed characterization of the 
nonlinear dynamics of planetary gears, is needed to 
estimate relative gear noise and predict dynamic forces in 
industrial applications. Little work has been done to 
characterize the nonlinear effects of tooth separation on 
planetary gear dynamics. The scarcity of experimental 
studies [1] to understand the complex dynamics of 
planetary gears and the availability of finite element 
software specialized for gear dynamics motivated the 
present study. The objectives of this study are to: (a) 
characterize the complex, nonlinear dynamics of spur 
planetary gear systems using a unique finite element 
model as demonstrated in [1] and (b) propose a lumped-
parameter analytical model that is validated by 
comparisons with the finite element results across the 
range of complicated nonlinear dynamics occurring in the 
system. 

2. Experimental Set up 
The main objective of this paper is to perform dynamic 

analysis of planetary gear train to study the effect of 
deflection and stresses to check the feasibility of 
developed PGT in earlier work as in Ref.[1]. This 
objective was achieved with the help extensive analytical 
work and simulation work (finite element analysis) by 
using Ansys14.5. As per the requirement to accomplish 
the objectives of research as in Ref. [1], it was necessary 
to develop the method to reduce PGT noise and vibrations 
by gear itself without requiring the additional energy, 
actuators, and advanced signal processing techniques. 
Viewing this need the method of noise reduction in 
planetary gears by phasing is introduced in [1]. In order to 
study the effect of phasing on noise and vibrations of 
planetary gear set the required experimental set up was 
developed as shown in Figure 1. Figure 1 shows the test 
set up developed for the measurement of noise level of 
planetary gear set by phasing. Figure 1 also shows the 
position of various components like motor, planetary gear 
set 1 & 2, coupling and speed regulator. The experimental 
work was carried out to study the effect of meshing 
phasing on noise level and vibrations of Nylon-6 planetary 
gear set. Rectangular plate is placed between planetary 
gear set 1 & 2 to provide meshing phase difference 
between ring gear of gear set 1 & 2. Noise level is 
measured for two different arrangements as with phasing 

and without phasing. Experimental set up shown in Figure 1 
consists of different components such as, PMDC motor, 
love joy coupling, planetary gear set, and speed selector 
are explained in this section.  

This paper is an extension of the work performed by the 
authors as in [1] with the objectives to perform dynamic 
analysis of gear train as shown in Figure 2 as in phase-I & 
phase-II of Figure 1 to study the effect deflection and 
stresses on surface pitting and scoring. 

 

Figure 1. Experimental test rig 

 

Figure 2. PGT in phase-I & phase-II 

2.1. Selection of PGT 
Nylon-6 Planetary gear Train as shown in Figure 2 

[with material properties shown in Table 2.1] is selected 
based on mechanical properties, wear resistance, lubrication 
and material availability, torque & other parameters. 

Table 2.1. Mechanical properties of Nylon-6 gear box 
Mechanical Properties ASTM Test Method Units Nylon 6/6 Nylon 6/6 GF30 

Tensile Strength 73°F D638 Psi 12,400 27,000 

Elongation 73° F D638 % 90 3 

Flexural Strength, 73° F D790 Psi 17,000 39,100 

Flexural Modulus, 73°F D790 Psi 4.1 X 105 12 X 105 

Izod Impact Strength, Notched, 73°F D256 ---- R120 - M79 M101 

Rockwell Hardness D785 ft-lbs/in. 1.2 2.1 
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2.1.1. Gear Pair-1(Phase I): Table 2.2 and Table 2.3 
show the planet gear and internal gear ring specifications. 

Table 2.2. Planet Gear Specification 
Material  Nylon 6 

Module 1.375 mm 

No. of Teeth 16 

Addendum Diameter 24.75 mm 

Pitch Circle Diameter 22 mm 

Table 2.3. Internal Gear ring Specification 
Material  Nylon 6 

Module 1.375 mm 

No. of Teeth 48 

Addendum Diameter 68.75 mm 

Pitch Circle Diameter 66 mm 

2.1.2 Gear Pair-2(Phase I): Table 2.2 and Table 2.4 
show the planet gear and sun gear specification. 
2.1.3. Gear Pair – 3 (Phase II): Table 2.5 and Table 2.6 
show the specification of planet gear and internal gear ring. 

Table 2.4. Sun Gear Specification 
Module 1.375 mm 

No of Teeth 16 

Addendum Diameter 24.75 mm 

Pitch Circle Diameter M 

Table 2.5. Planet Gear Specification 
Material  Nylon 6 

Module 1.375 mm 

No. of Teeth 16 

Addendum Diameter 24.75 mm 

Pitch Circle Diameter 22 mm 

Table 2.6. Internal Gear Specification 
Material  Nylon 6 

Module 1.375 

No. of Teeth 48 

Addendum Diameter 68.75 

Pitch Circle Diameter 66 

2.1.4. Gear Pair –4 (Phase II): Table 2.7 and Table 2.8 
show the planet gear and internal gear ring specification. 

Table 2.7. Planet Gear Specification 
Material  Nylon 6 

Module 1.375 mm 

No. of Teeth 16 

Addendum Diameter 24.75 mm 

Pitch Circle Diameter 22 mm 

Table 2.8. Planet Gear Specification 
Material  Nylon 6 
Module 1.375 mm 

No. of Teeth 16 
Addendum Diameter 24.75 mm 

Pitch Circle Diameter 22 mm 

3. Modeling of Planetary Gear Dynamics 

3.1. Lumped-parameter Analytical Model 
To understand stress distribution and vibration control 

in PGT, it is necessary not only to have knowledge about 
the gears, but also about the dynamic behavior of the 
system consisting of gears, shafts, bearings and gear train 
casing. While designing the gear train the noise 
characteristics of a gear train can be controlled at the 
drawing board, because all the components have an 
important effect on the acoustical output [24]. For 
relatively simple gear systems it is possible to use lumped 
parameter dynamic models with springs, masses and 
viscous damping. For more complex models, which 
include for example the gear train casing, finite element 
modeling and analysis is often used. The first dynamic 
models were used to determine dynamic loads on gear 
teeth, were developed in the 1920; the first mass–spring 
models were introduced in the 1950 [25]. 

 

Figure 3. Planetary gear (a) lumped-parameter analytical and (b) finite 
element models 

The 2D planetary gear model developed by Lin and 
Parker [13], extended to include tooth contact loss, is used. 
This lumped-parameter, discrete model as shown in Figure 3(a) 
is referred to as the analytical model. The gear mesh is 
modeled as a nonlinear spring with periodically varying 
stiffness acting along the line of action. All other 
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supports/bearings are modeled as linear springs. The 
periodically varying mesh stiffness is due to the change in 
the number of teeth in contact as the gears rotate. 
Nonlinear tooth mesh separations occur due to large 
relative vibrations and the presence of backlash between 
the mating gear teeth [2,3,4]. Friction forces due to gear 
teeth contact and other dissipative effects are captured 
using modal damping. 

The equation of motion for a spur planetary system 
with N planets is; 

 ( ) ( ),Mx cx K x t x F t+ + =   (1) 

where, 

, , , , , , , , 1, 1, 1.......... , ,,
T

c c c r r r s s s N N Nx x y u x y u x y u u uζ η ζ η =    
and is the force vector of externally applied torques [13]. 
Also x,y represents translations. u  is the rotational 
deflection (rotation in radians times the gear base radii or 
radius to the planet centre’s for the carrier) , and ,ζ η  are 
planet radial and tangential deflections; , ,c r s  represent 
the carrier, ring and sun, respectively , and the subscript 
from 1,........., N  designate the planet. The total number of 
degrees of freedom is 3 9M N= + . The damping matrix 
C  is obtained from 1(2 )T

i iC U diag Uρ ω− −= , where 
( )1.....i i Mρ =  is modal damping ratios approximating 

the material and bearing damping used in the finite 
element model, and the natural frequencies iω  and 
orthonormalized modal matrix U are from the time-
invariant system with average mesh stiffness. The inertias, 
gear geometry parameters, natural frequencies, and 
damping ratios of the various systems analyzed in this 
paper are taken as per reference [1]. The nonlinearity from 
tooth contact loss is incorporated into the stiffness matrix 
through the sun planet and ring planet mesh stiffness’s as 
shown in Equation (2); 
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where, mk  is the linear, periodically varying mesh 
stiffness, snδ  and rnδ  are the compressive deflections in 
the sun planet and ring planet mesh springs, sα and rα  
are the sun planet and ring planet operating pressure 
angles   nψ  is the circumferential position of planet n 
around the sun ( )1 0 ,ψ =  sn n sψ ψ α= −  and 

rn n rψ ψ α= + . Mesh phase relations are enforced 
according to Parker and Lin [16]. A purely rotational 
model can be reduced from the above rotational 

translational system by removing the translations of the 
components. The rotational model allows mesh model 
verification isolated from the effects of bearing deflections. 
The equation of motion for a rotational model with N 
planets is [15,16]. 

 ( ) ( ),Mx cx K x t x F t+ + =   (3) 

Where, 
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The inertia matrix, 
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where I  for  , , ,  j c r s pj =  (p represent planet gear) are 

the moments of inertia, r j  is the base radii of the gears or 

radius of the carrier, mp is the mass of planet. The 
damping matrix C is obtained as for a rotational-
translational model. The stiffness matrix, 
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is the torsional bearing stiffness , and the mesh stiffness 
matrix Km from Ref.[27,28] is 
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where , 

 ( ) ( )cos   , cossn sn s rn rn rk k t k k tα α= =  
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Note in prior studies [10,16] the factors of cos sα and 
cos rα ,in their rotational model stiffness matrixes were 
mistakenly omitted. Nonlinearity from tooth contact loss 
is introduced into the sun planet and ring planet mesh 
stiffness’s based upon whether the mesh springs are in 
compression or not. 

 ( ) ( )  ( ), jnjn jnk x t h k tδ=  (5) 

Where, 
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3.2. Finite Element Model 
To perform finite element analysis Ansys-14.5 software 

for gear dynamics is used to model the planetary gears. 
The finite element model does not require any external 
specification of the periodically varying mesh stiffness or 
static transmission error to excite the dynamics. The only 
inputs, in addition to the gear geometry and material 
properties, are the input torque and the speed of the gears. 
Mesh stiffness variation due to the change in the number 
of teeth in contact, corner contact due to the elastic 
deformations of the gear teeth, tooth contact loss, and gear 
body elastic compliance are all intrinsically modeled in the 
finite element model. Transmission error is a computed 
output; there is no need to invoke approximations with 
static transmission error as an excitation. This model 
significantly reduces the assumptions needed to model the 
complex dynamic mesh forces. Reference frames are 
attached to each component, and these rotate according to 
nominal trajectories from the rigid body kinematics of 
planetary gears. The calculated rotational and translational 
component vibrations are the deflections of the bodies 
from these nominal kinematic positions (i.e., dynamic 
transmission error and translational motions on bearings). 
Bearings are modeled with 3×3 stiffness matrices. Viscous 
bearing damping is included by a 3×3 damping matrix 
between the connecting bodies. 

Small values of material damping coefficients α and β 
are introduced in the finite element models to remove 
numerical instabilities in the solution method. The 
Rayleigh damping model used here assumes that the 
damping of a finite element is proportional to the mass 
(Mfe) and stiffness (Kfe) of the element, i.e., Cfe= α Mfe+ β 
Kfe. The viscous bearing damping and the material 
damping coefficients are selected such that the damping 
ratios at the vibration modes of interest are less than 3%. 
These values are comparable to the 1% value that 
Blankenship and Kahraman [2] estimated for their 
experiments on a spur gear pair. The finite element model 
of an example system with three planets is shown in 
Figure 3(b). The carrier (not shown) is modeled as a 
lumped inertia. The gear geometry data is given in Table 2.1 
-Table 2.8. All the planetary gear configurations analyzed 
in this study have the same gears and carrier. The exterior 
circle of the ring gear and the interior bores of the sun and 

planet gears are constrained to remain circular. In some 
applications, the gear bodies, especially the ring gear, may 
deform elastically into non-circular shapes, requiring an 
extension of the present analytical model. The outer ring 
gear circle is rigidly fixed in all systems considered. The 
constant input torque 2kNm is applied at the sun gear as 
shown in Figure 4. The carrier rotational vibration is 
constrained to zero, i.e., the carrier always rotates 
according to its nominal kinematic position, which 
removes the rigid body mode. 

 

Figure 4. PGT with boundary conditions 

3.2.1. Set up Finite Element Model 
A 3D entity model is imported into ANSYS Workbench, 

choosing materials for parts, giving material constants 
such as elasticity modulus, Poisson ratio, and density 
parameters, and meshing the entity model with refined 
grids for gear teeth parts, nevertheless relatively larger 
meshing for the rest of the parts aiming at expediting the 
solving effort. After partitioning, there are total 49947 
nodes and 8043 element/units. See the Figure 3(b) for 
developed finite element model. 

3.2.2 Analysis of the Load Sharing Ratio 
Under normal operating conditions, the main source of 

vibration excitation is from the periodic changes in tooth 
stiffness due to non-uniform load distributions from the 
double to single contact zone and then from the single to 
double contact zone in each meshing cycle of the mating 
teeth. This indicates that the variation in mesh stiffness 
can produce considerable vibration and dynamic loading 
of gears with teeth, in mesh. For the spur involute teeth 
gears, the load was transmitted between just one to two 
pairs of teeth gears alternately. The torsional stiffness of 
two spur gears in mesh varied within the θ meshing cycle 
as the number of teeth in mesh changed from two to one 
pair of teeth in contact. Usually the torsional stiffness 
increased as the meshing of the teeth changed from one 
pair to two pairs in contact. If the gears were absolutely 
rigid the tooth load in the zone of the double tooth 
contacts should be half load of the single tooth contact. 
However, in reality the teeth become deformed because of 
the influence of the teeth bending, shear, and contact 
stresses. These factors change the load distribution along 
the path of contact. In addition, every gear contains 
surface finishing and pitching errors. They alter the 
distribution of load. Because the teeth are comparatively 
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stiff, even small errors may have a large influence. The 
elastic deformation of a tooth can result in shock loading, 
which may cause gear failure. In order to prevent shock 
loading as the gear teeth move into and out of mesh, the 
tips of the teeth are often modified so as the tooth passes 
through the mesh zone the load increases more smoothly. 
The static transmission error model of gears in mesh can 
be used to determine the load sharing ratio throughout the 
mesh cycle. 

 

Figure 5. PGT with deformation 

 

Figure 6. PGT with induced equivalent stress 

4. Results and Discussion 
This study has been carried out to evaluate the 

deformation and von-mises stress induced in the planetary 
gear-train by analytical and simulation approach using 
commercial software ANSYS 14.5. From analytical 
analysis it is seen that the total deformation induced in 
considered PGT as shown in Figure 3(b) was obtained to 
be 0.47631mm. Figure 5 shows the simulated deformed 
shape of PGT under consideration. Figure 5 shows the 
simulated maximum value of deformation induced in 
considered PGT to be 0.37631mm. After comparing the 
analytical and simulated values of induced deformation, it 
is found that the results are in good agreement. Again 
finite element analysis is performed to find out the 
minimum and maximum amount of stress in considered 
PGT. Initially, it was carried out for the existing model of 
the planet carrier, sun & planet teeth meshing, planet & 
ring gear teeth meshing of planetary gear train. In the 

considered PGT as shown in Figure 6, the minimum value 
of obtained induced equivalent stress is 1.9449e-015 MPa 
and the maximum value of obtained induced equivalent 
stress is 176.46 MPa. Again it is seen that the simulated 
values of equivalent stresses are in good agreement with 
design stress. 

5. Conclusion 

The primary objective of this work was to perform 
dynamic analysis of planetary gear train to study the effect 
of deflection and stresses to check the feasibility of 
considered PGT in earlier work as in Ref.[1]. This 
objective was achieved with the help extensive analytical 
work and simulation work (finite element analysis) by 
using Ansys14.5. In this paper two independent models: 
one a lumped-parameter mathematical model and the 
other a finite element model, with different formulations 
and different mesh modeling assumptions are used to 
analyze the nonlinear dynamics of planetary gears. The 
main conclusions are: (1) there is strong agreement 
between the analytical and finite element model’s 
responses across a range of complicated nonlinear 
behaviors for planetary gear train; this confirms the 
validity of the lumped-parameter model for predicting 
planetary gear dynamics, (2) the simulated values of 
deflection and stresses are in good agreement with 
analytically calculated values. 
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