
Structural Object Programming Model:
Enabling Efficient Development on Massively Parallel Architectures

Laurent Bonetto, Brad Budlong, Michael Butts, Paul Wasson
Ambric, Inc., Beaverton, Oregon

laurent@ambric.com

Introduction
High-performance embedded computing (HPEC) systems
run compute-intensive applications such as video
compression, image processing, networking and software-
defined radio. Familiar CPU, DSP, ASIC and FPGA
architectures, which once delivered increasing performance
at a Moore’s Law rate, have reached several fundamental
scaling limits. A new platform for HPEC is required.

A number of parallel processing devices have appeared,
seeking to overcome these limits. Those adapted from
general-purpose or scientific computing may not be long-
term scalable, reliable, or appropriate to HPEC applications.
A new architecture, the Massively Parallel Processor Array
(MPPA) has been expressly developed as a powerful,
scalable and easy to use HPEC platform.

Ambric chose a parallel programming model first, for
development, performance and scalability. This model is
realized in the Am2045, which contains 168 32-bit DSPs,
168 32-bit RISC CPUs and 336 memory banks. It executes
over one trillion operations per second, fifty 16-bit GMACS
and over 125 thousand 32-bit MIPS [1,2]. This paper
discusses development of a representative application
(JPEG image compression) on the Am2045 to illustrate the
methodology and effort involved in programming MPPAs.

SMP and SIMD Architectures
General-purpose microprocessors, microcontrollers and
DSPs use a single CPU with a single memory space.
Performance increases from processor architecture reached
their limits by about 2003, so speedup fell from 52% to
about 20% per year, roughly the silicon technology alone. If
CPUs and DSPs had maintained the earlier rate, today they
would routinely have 15 GHz performance. ASICs and
FPGAs have their own scaling limits. ASIC fabrication
expense is going up exponentially with the cost to build a
foundry. ASIC and FPGA hardware design and verification
productivity grows much slower than Moore’s Law, so
development cost has become the major project expense,
also rising exponentially.

A number of single-chip parallel processing architectures
are entering mainstream use in HPEC systems. Symmetric
MultiProcessors (SMP), now common in general-purpose
multicore CPUs, are appearing in embedded systems.
Multiple processors are connected to cached shared
memory, also used for inter-processor communication.

SMP’s compelling property is its ability to run large,
existing single-processor applications without modification.
This is required for general-purpose computing, but it
brings a heavy cost. The relative ease of adoption of
multicore SMPs in general-purpose computing is
misleading in the long run.

SMP interprocessor communication is a side-effect of cache
coherency, which is slow and inefficient. Massively parallel
SMPs require many-to-many cache coherency, which scales
poorly. Achieving correct interprocessor synchronization is
left up to the programmer. Debugging massively parallel
applications promises to be difficult at best. SMPs are
seriously non-deterministic, and get more so as they get
larger [3], not a good property for time-critical and mission-
critical embedded systems. Single-chip massively parallel
SMP platforms are unlikely to be well-suited to the
development, reliability, cost and power constraints of
HPECs in the long run.

SIMD (single-instruction, multiple data) architectures have
dominated the scientific high-performance computing
(HPC) world since the time of the Cray-1. Workloads such
as computational geoscience, chemistry and biology,
structural analysis, and medical image processing are
massively data-parallel, feed-forward, regular and floating-
point intensive. SIMD parallel processors harness this
regularity with tens to hundreds or more deeply pipelined
datapaths, all under the control of one instruction stream.

Serial dependencies, feedback loops or short vectors put
SIMD’s long pipelines at a disadvantage. Data-dependent
branching is expensive and deep pipelining makes branches
cost many cycles. Some embedded application kernels in
image and video processing resemble HPC workloads
enough to run well on SIMDs. But as video, radio and
networking algorithms get more sophisticated and complex,
shorter vectors, irregular structure and data-dependency are
common, putting SIMD at a severe disadvantage [4].

SIMD scalability is also limited by vector length. As
graphics processing units evolve into HPC processors [5],
they are adopting SMP/SIMD hybrid architectures, with the
disadvantages of each in HPEC applications.

MPPA Architecture
The Massively Parallel Processor Array is a purpose-built
platform for HPEC. Its objective is to optimize performance
and performance per watt for HPEC applications, with
reasonable and reliable application development, and long-
term hardware and development scalability.

By starting with a good programming model, the Structural
Object Programming Model, and developing silicon and
tools to realize that model, Ambric’s MPPA architecture is
very well suited to HPEC applications, reliable, and has
long-term hardware and software development scalability.

MPPA Programming Model and Tools
In Ambric’s Structural Object Programming Model, objects
consist of one or more software programs running
concurrently on an asynchronous array of Ambric

processors and memories. A leaf object runs on a single
processor or memory, while a composite object is a
hierarchical composition of objects. Objects run
independently at their own rates. They are strictly
encapsulated, execute with no side effects on one other, and
have no implicitly shared memory.

Objects exchange data and control through a structure of
self-synchronizing Ambric channels. Each channel is word-
wide, unidirectional, point-to-point, strictly ordered, and
acts like a FIFO-buffer. Objects are mixed and matched
hierarchically to create new objects, snapped together
through channel interfaces. These composite objects can be
as simple as a scaler or as complex as an entire application.
Many pre-tested objects kept in libraries are easily reused,
with excellent reliability thanks to strict encapsulation.

The developer expresses an application’s object-level
parallel structure in a coordination language called aStruct,
which defines how objects are connected to each other. This
language is essentially a simple textual representation of an
implementation block diagram.

Having hundreds of processors available to implement an
application provides rich flexibility to the developer, who
can break down the target application into individual
function objects that map naturally onto separate
processors. Then the task of implementing, testing and
tuning each of these objects becomes simple and self-
contained.

This Structural Object Programming Model makes it
efficient for a team of software developers to work in
parallel and quickly implement any given application, each
programmer being assigned a number of simple, well-
defined functions to run on individual processors. The code
running on each individual object can be written either in
Java or in assembly. Due to the simplicity of the
architecture, the RISC assembly language is relatively
straightforward to use to produce optimal code.

Once an application is developed and compiled in Ambric’s
Eclipse-based IDE, aDesigner, its cycle-accurate simulator
is used for initial testing and debugging. Then automatic
placement and routing tools map the design onto
processors, memories and channels, and download it into
the Am2045 device, in a minute or less. Source-level
parallel debugging and performance analysis on the actual
running system makes application validation and tuning
straightforward. Development is (reportedly) actually fun.

MPPA Hardware
Ambric’s Am2045 device contains 168 32-bit DSPs, 168
32-bit RISC CPUs and 336 memory banks, which all run at
300 MHz. Each processor and memory executes a leaf
object in the programming model. A 32-bit hierarchical
configurable interconnect of Ambric channels implements
the structure. Its dedicated debug network connects to the
host for complete runtime control and visibility.

Am2045 delivers performance of over one trillion
operations per second, fifty 16-bit GMACS and over 125
thousand 32-bit MIPS. It has a 4-lane PCI Express host
interface, two 32-bit SDRAM controllers, and four 32-bit
general-purpose I/O ports for interconnecting multiple

chips, and for interfacing with ADCs, DACs and other
hardware. Am2045 is implemented as a 130nm standard
cell ASIC. Its power dissipation is from 6 to 14 W.

MPPA Application Development
JPEG is at the root of nearly all image and video
compression algorithms, so a JPEG encoder is a realistic
example of a complete HPEC application. A three phase
methodology was used: functional implementation,
optimization and validation.

The first phase is to produce a reference code that will run
correctly in the development environment of that chip, as a
starting point for the fully optimized implementation.
Usually this code developed during this phase is abstracted
from most features of the target architecture, allowing it to
remain simpler, more readable, and more general.

The second phase is to improve speed to meet application
requirements. As with hardware designs, the software
developer has an opportunity to trade area for speed. Time-
consuming blocks can be parallelized onto multiple
processors in many ways. Functional parallelism can be
used to run different parts of an algorithm on successive
processors. Data parallelism can be used to run the same
algorithm on independent blocks of data using different
processors. The developer may also optimize each object’s
code, as with conventional DSPs. Simpler target processors
combined with less stringent requirements on the code
running on each processor makes fully optimized assembly
code simpler and not as often needed. This phase may be
done in simulation with a testbench and/or on real hardware
with live data.

Finally the third phase is to thoroughly validate the
application on hardware in real time. Am2045’s dedicated
debug and visibility facilities are used through aDesigner’s
runtime debugging and performance analysis tools.

The entire JPEG encoder uses less than 5% of the Am2045
device capacity. It achieves 72 frames per second
throughput, vs. the 60 fps target, using a balanced
combination of Java and about 300 lines of assembly code.

The JPEG implementation on the Ambric Am2045 MPPA
architecture illustrates an HPEC platform and development
methodology that can easily be scaled to achieve levels of
performance higher than any high-end DSP and comparable
to those achieved by many FPGAs and even ASICs.

References
[1] M. Butts, A. M. Jones, P. Wasson, A Structural Object

Programming Model, Architecture, Chip and Tools for
Reconfigurable Computing, IEEE FCCM 2007, pp. 55-64.

[2] Michael Butts, Synchronization through Communication in a
Massively Parallel Processor Array, IEEE Micro, Sep. 2007.

[3] Edward A. Lee, The Problem with Threads. IEEE Computer,
39(5):33-42, May 2006.

[4] Wen-mei Hwu, et. al., Performance Insights on Executing
Non-Graphics Applications on CUDA on the NVIDIA
GeForce 8800 GTX, IEEE Hot Chips 19 Symposium, 2007.

[5] John Nickolls, GPU Parallel Computing Architecture and
CUDA Programming Model. IEEE Hot Chips 19
Symposium, August 2007.

