FACTORISATIONS OF DISTRIBUTIVE LAWS

ULRICH KRAHMER AND PAUL SLEVIN

ABSTRACT. Recently, Bohm and Stefan constructed duplicial (paracyclic) ob-
jects from distributive laws between (co)monads. Here we define the category
of factorisations of a distributive law, show that it acts on this construction,
and give some explicit examples.
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1. INTRODUCTION

Distributive laws between monads were originally defined by Beck in [Bec69
and correspond to monad structures on the composite of the two monads. They
have found many applications in mathematics as well as computer science; see
e.g. [Bur09, Lod08| [Tur96, VW06].

Recently, distributive laws have been used by Bohm and Stefan to con-
struct new examples of duplicial objects [DK85], and hence cyclic homology theo-
ries. The paradigmatic example of such a theory is the cyclic homology HC(A) of
an associative algebra A [Con85) [T'sy83]. It was observed by Kustermans, Murphy,
and Tuset [KMT03] that the functor HC can be twisted by automorphisms of A.
The aim of the present paper is to extend this procedure to any duplicial object
defined by a distributive law.
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Given a distributive law y we define in Section the category F(x) of its
factorisations. The main technical results are the definition of a monoidal structure
on F(x) (Lemma and Proposition [3.3), a characterisation of the comonoids in
F(x) (Proposition, and the definition of actions of F(x) on the category of
admissible data (septuples in [BS08]) which turns the latter into an F(x)-bimodule
category (Theorem and Corollary .

The remainder of the paper is devoted to examples. We begin by considering
factorisations of distributive laws on Eilenberg-Moore categories, interpreting these
as flat connections (Section . In particular, we present the twisting of cyclic
homology in this framework (Section [4.2)). We then describe examples arising from
Hopf algebras (Section. The final examples are concerned with BD-laws, braid-
ings (Section , and quantum doubles of Hopf algebras (Section .

Throughout this paper, A, B,C ... are categories, A, B,C, ... are functors, and
greek letters are used to denote natural transformations. We use o to denote com-
position of morphisms and vertical composition of natural transformations. The
composition of functors and the horizontal composition of natural transformations
will be denoted simply by concatenation. The identity morphism, functor and natu-
ral transformation is denoted by id. However, we denote the horizontal composition
aidy S by aAB.

Acknowledgements. UK is supported by the EPSRC First Grant “Hopf Alge-
broids and Operads” and the Polish Government Grant 2012/06/M/ST1/00169.
PS is supported by an EPSRC Doctoral Training Award.

2. PRELIMINARIES
In this section, we recall basic definitions and results that are needed later.
2.1. (Co)monads. Let A be a category.

Definition 2.1. A comonad on A is a triple C = (C, A, e) where C is an endo-
functor on A, and A: ¢ — CC and ¢: C' —> id4 are natural transformations
such that

CAoA=ACoA, eCoA=idg=CecoA,

that is, the two diagrams

c—2.cc c—2-cc
Al \LCA Al \ le
CC——CCC CC—=C

commute.

In other words, a comonad is a comonoid (or coalgebra) in the monoidal category
[A, A] of endofunctors on A (with composition as tensor product). Dually, a monad
on a category C is a monoid (algebra) in [C,C].

2.2. Module categories. Next, we recall the notion of a module category (also
known as an M-category) over a monoidal category (M,®,1). For the purpose of
this paper, all monoidal categories and their module categories are strict, and by
abuse of notation we will write M to refer to the whole triple (M, ®, 1).

Definition 2.2. A left module category for M is a pair (C,>) where C is a category
and >: M x C — C is a functor such that we have functorial identities

1>P=P and X (Y>P)=(XQY)>P.
for all objects X,Y in M and P in C. We call > the left action of M on C.
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Dually, one defines a right module category (D,<1). A bimodule category is a
triple (C, >, <) where (C,>) and (C, <) are right respectively left module categories
and the actions commute, i.e. for all objects X, Y in M and P in C we have

X>(P<Y)=(X1>P)QY,
again functorially in X,Y and P. We immediately have the following.

Lemma 2.3. Let (C,r>) and (D,<) be left respectively right module categories.
Then C x D is a bimodule category with actions given by

X>(PQ) <Y =(X>PQY)
for all objects X, Y in M, P inC and Q in D.

2.3. Eilenberg-Moore categories. The comonads we are mostly interested in
arise as restrictions of monads to their Eilenberg-Moore categories.

Definition 2.4. Let (C,1>) be a left module category for a monoidal category M,
and let B = (B,u,n) be a monoid in M. The Eilenberg-Moore category of B,
denoted by CB, is the category whose objects are pairs (X, ), where X is an object
of C and a: B> X — X is a morphism in C such that the diagrams

idp>a n>idx

(B®B)»>X—=B>(B>rX)—=Br> X 1> X —=Bp> X
« [e%
k\ i \l
BDXﬁX X

commute, and whose morphisms f: (X,a) — (X', a’) are morphisms f: X — X’
in C such that the diagram

id
B X2 pr x

al l

X—X

commutes.

Now observe that the monoid B defines a comonad B = (B,A,&) on A = CP
where B is defined on objects and morphisms by

B(X,a) = (B> X, pur>idx), B(f) =idp > f,
and A, £ are defined on objects (X, a) by

idBD(’ODidx)
- 5

BrX=Bp> (1> X) B> (B> X) BpX—2sX

respectively.

In particular, every category C is in an obvious way a module category over
[C,C]. In this case, our definition of Eilenberg-Moore category of a monad B on C
is the same as the usual definition [ML9g| p. 139].

2.4. Distributive laws. Next we define distributive laws. Note that we consider
them between (co)monads and arbitrary endofunctors as is common in the computer
science literature, see e.g. [Tur90].
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Definition 2.5. Let T = (T, A, ¢) be a comonad on A and let C' be an endofunctor
on A. A distributive law between the comonad T and the endofunctor C is a
transformation y: T'C' — C'T such that the two diagrams

TC — X5 T A oTT TC X~ CT
Aci TxT \ \LCE
eC
TTC TCT C
Tx

commute. We denote this by x: T — C. Analogously, we define a distributive
law y: T —> C between an endofunctor 7' and a comonad C. A comonad dis-
tributive law x: T — C is a transformation x which is a distributive law between
endofunctors and comonads in both ways.

Dually, we can define distributive laws involving monads; distributive laws from
a monad to a comonad are usually called mixed distributive laws.

One application of distributive laws is to lift endofunctors to Eilenberg-Moore
categories: let B be a monad on a category C and : B — D be a distributive law.
We define a functor D: C® — C® as follows. On objects we define

D(X,a) = (DX, Daofx)
and we define Df = Df on morphisms. The distributive law ¢ lifts to give one
f: B — D where B is the comonad described in Section If D is part of a
comonad D = (D, Aj¢), and 6 is a mixed distributive law B — D), then D is part
of a comonad ~ }
D= (D,A¢)
and 6 lifts to a comonad distributive law : B — D.
See [Bec69, [Bur73] for more details on distributive laws.

2.5. The categories of y-coalgebras. Let T = (T, AT, 5T) and C = (C’, A, EC)
be comonads on A, and let x: T — C be a distributive law.

Definition 2.6. A right x-coalgebra is a triple (M, X, p) where X is a category,

M: X — Ais a functor and p: TM — CM is a natural transformation such
that the diagrams

M AT M Tp

TTM TCM TM
l l >
P XM P
CcM cCM CTM M~—CM
ACM Cp e“M

commute. A morphism of right x-coalgebras between (M, X, p) and (M', X', p') is
a pair (o, F), where F': X — X’ is a functor and ¢: M — M'F is a natural
transformation such that the diagram

™ —2~ TM'F

CM ——CM'F
Ceo
commutes. We define composition of morphisms by
(@', F)o(p, F)=(¢Fop F'F)

and we define identity morphisms by id(as x») = (idas, idx). We denote the category
of right x-coalgebras by R(x).
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Dually, we define the category L(x) of left x-coalgebras (N, Y, \).

2.6. The construction of B6hm and Stefan. Finally, we recall the construction
of duplicial functors from a comonad distributive law x: T — C on a category A
due to Bohm and Stefan.

Definition 2.7. The category of admissible data over x is the product category

SO0 = R(x) x L(x)-
Admissible data are called admissible septuples in [BS08].

To every admissible datum (M, X, p, N,Y, ) there is an associated duplicial
functor X — ) defined by

D.(M, X, p,N,Y,)) = NT**' M

which is given objectwise by taking the bar resolution of M with respect to the
comonad T, and then applying the functor N. If ) is an abelian category, we can
apply the duplicial functor to an object X in X resulting in a duplicial object in )
of which we can take the cyclic homology.

This construction, which unifies and generalises the definition of the cyclic homol-
ogy of an associative algebra as well as Hopf-cyclic homology, is detailed in [BS0§]
for the case that X = {*} is the terminal category.

3. THEORY

3.1. The category of factorisations F(x). Throughout this section, let T =
(T, AT, &:T) and C = (C, AC, sc) be comonads on a category A, and let xy: T — C
be a distributive law. The main definition of the present paper is the following:

Definition 3.1. A factorisation of x is a triple (X, 0,~) where ¥ is an endofunctor
on A, and 0: T — ¥ and ~: ¥ — C are distributive laws satisfying the Yang-
Baxter condition; that is, the hexagon

z
o STC 30T . p

— T~
T3C —~ - cxT

commutes. A morphism «: (X,0,7) — (X',0’,7") of factorisations is a natural
transformation a: ¥ — ¥’ which is compatible with 7' and C in the sense that
the diagrams

T Loy pyy YO 2 yo
O’l lo’l "/\L i’)’/
ST —> 3T CY——=C¥

commute. There are identity morphisms id(s ;) = ids, and composition of mor-
phisms is given by the vertical composite. This defines the category of factorisations
which we denote by F(x).

Similarly, we may also define factorisations of a monad or mixed distributive
law.
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3.2. The monoidal structure. We define a functor
®: F(x) x F(x) — F(x)
as follows. On objects we define
(X, 0,7 ® (X, 0" ,v) = (2X, 30" oo, 4% 0 Bv)
and for two morphisms «, 8 we define  ® 8 to be af3, the horizontal composite of
the natural transformations.
Lemma 3.2. The assignment ® is a well-defined functor.

Proof. Firstly, ® is well-defined on objects if Yo’ o 0¥’ and vY o ¥/ satisfy the
Yang-Baxter condition. Consider the following diagram

e SETC EXSNCT
o \
ST C SOST o
2

oX'C /: \

TS/ C T oy 3Ty =Co CuS/T
X \ /
TYy TR0 ocCX% T2 OSTSY CYo
Ty%! Coy’

TCYY —— CTEY!
PO

The left square commutes by naturality of ¢ and the right square commutes by
naturality of 7. The inner hexagons commute by the Yang-Baxter conditions.
Therefore, the outer hexagon commutes, so the required condition is satisfied.
Secondly, let
a: (8,0,v) — (T, k,v) and B: (¥, 0,9 — (I, k', V)

be morphisms in F(x). Consider the diagram

ey L2 pprsy 5 ppp

UZ'\L inzl \Lnl—"

7Y ——TTY ——TTT

aTs! rrp
ZU'\L il"a' \LFH'

YT ——TYT ——TT'T
aX'T rgT

The bottom-left square commutes by naturality of «, the top-right square commutes
by naturality of k, and the two remaining inner squares commute since « and 3 are
compatible with T'. Therefore, the outer square commutes and a® S is compatible
with T. A similar argument shows that a ® 8 is compatible with C'. It is clear
that ® respects composition of morphisms and identity morphisms. Therefore, ®
is well-defined on morphisms. O

Let 1 denote the trivial factorisation (id 4, idr,id¢).
Proposition 3.3. The triple (F(x),®,1) is a strict monoidal category.

Proof. 1t is clear that T ® 1 = 1 ® T = T for all factorisations 7. Consider the
products of factorisations

((Z,0,7)® (X, 0",7) @ (X", 0", ")
— (ZZ/, EO'/ o 0_2/772/ o 27/) ® (2//, O’”,’Y”)
= (DY, 550" 0 $o'S 0 g8 4N'S" 0 TS 0 £¥/")
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and

(Z,0,7) @ (X, 0,7) @ (X", 0",7"))
— (E, o_, ,y) ® (E/E”, 2/0_// o 0,/2//7,_}/2// o E/,y//)
— (22/2//, EE/U” o ZO'/E” o O_Z/E//7 72/2// o nylz// o 22/’}/”).

These are equal so ® is an associative tensor product (observe that all equalities
are functorial). O

Remark 3.4. If we ignore set theoretic issues, we can define a 2-category

dist := Cmd(Cmd(CAT®?)°P)

where CAT is the 2-category of categories, functors and natural transformations,
Cmd denotes taking the 2-category of comonads, and op denotes reversal of 1-cells.
The 0-cells of this 2-category are comonad distributive laws y and we have

F(x) = dist(x, x)

which is a strict monoidal category. This gives another proof of Proposition [3.3]
See [Str72, BLS1I] for the definition of Cmd.

3.3. (Co)monads as (co)monoids in F(x). By definition, a pair of morphisms
A:(8,0,7) — (£,0,7)®(5,0,7), &:(8,09) —1

is a pair of natural transformations A: ¥ — XX and e: ¥ — 1 that are compat-
ible with the distributive laws ¢ and ~. This gives us the following characterisation
of comonoids in F(x).

Proposition 3.5. A factorisation (X, 0,7) is a comonoid in F(x) if and only if &
is part of a comonad and o, are distributive laws of comonads.

Dually, a factorisation (X, o,~) is a monoid in F(x) if and only if ¥ is part of a
monad and o,y are mixed distributive laws between monads and comonads.

Corollary 3.6. Let x:idg — idy be the trivial distributive law given by the
identity. Then (T, A,¢) is a comonad on A if and only if (T, idr,idr) is a comonoid
in F(x), and (B, p,n) is a monad on A if and only if (B,idp,idg) is a monoid in
F(x)-

3.4. Module categories for F (). We define a functor >: F(x) xR (x) — R(x)
as follows. On objects we define

(E,0.7) > (M, X, p) = (EM,X,yM o EpooM)
and on morphisms we define a > (¢, F') to be the pair (ayp, F).

Proposition 3.7. The assignment > is a well-defined functor.
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Proof. Consider the diagram

TyM A3 prsivg TM sy 2 psom M resiv
oM J(UT]\J ocCM XXM

STM — STTM —> STCM CTSM

SxM C

S sorm M oxTMm
£Cp csp

SCM —— SCOM — o= CXCM
~CM CyM

CxM —— COSM

The top-left and bottom rectangles commute by the distributive law axioms, the
middle-left rectangle commutes because (M, X, p) is a right x-coalgebra, the top-
right diagram commutes by the Yang-Baxter condition, and the remaining squares
commute by naturality of o,~. Therefore, the outer rectangle commutes.

Consider the triangle

oM Zp

STM som M oswv

seTM M
eTsM e“sM

XM

TSM

The middle triangle commutes because (M, X, p) is a right y-coalgebra, and the
other two inner triangles commute by the distributive law axioms. Therefore, the
outer triangle commutes. This shows that > is well-defined on objects.

Let (90’ F) (Ma Xap) - (M/7 X/vp/) and a: (Za a, 7) - (2/70/77/) be mor-
phisms of right x-coalgebras and factorisations, respectively. Consider the diagram
oM LM pyi ZEE sy p
G'Ml oM’ \LU/MIF

STM 2T sy 2 sy p

Epl lz'p \L "o F

YCM ——Y'CM ——= YX'CM'F
aCM S'Cyp

The top-left square commutes since « is compatible with 7', the top-right square
commutes by naturality of o, the bottom-left square commutes by naturality of «,
and the bottom-right square commutes since (¢, F') is a right x-coalgebra morphism.
Thus the outer square commutes, which shows that a> (¢, F) is a right x-coalgebra
morphism.

It is clear that > respects identities and composition of morphisms (because the
vertical and horizontal compositions of natural transformations are compatible with
each other), so > is well-defined on morphisms. (]

Dually, we also define a functor

< L(x) x F(x) — L(x).
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Theorem 3.8. The category R(x) is a strict left module category for F(x), with
left action given by the functor . Furthermore, the category L(x) is a strict right
module category for F(x), with right action given by the functor <.

Proof. We will prove only the first statement, as the second follows by a similar
argument. It is clear that 1 acts as the identity. Let (¥, 0,7),(X',0’,7") be two
factorisations and let (M, X, p) be a right x-coalgebra. We have

(Z,0,7) @ (X, 0",7)) > (M, X, p)
= (XX, %0 oo¥ Y oY) > (M, X, p)
= (XXM, X, AY'M o ¥y M o X% po Yo' M o a¥' M)

and
(Z,0,7) > (X, 0",9) > (M, X, p))
=(2,0,7)> (EM,X,yM oXpooM)
= (XM, X, AY'M o ¥y Mo XY po Yo' Moo M)
These are functorially equal, so > is a left action of F(x). (]

Corollary 3.9. The category S(x) is a strict bimodule category for F(x).
Proof. This follows immediately by applying Lemma to Theorem 3.8 (]

4. EXAMPLES

4.1. Flat connections. Let B = (B, u,n) be a monad on a category C. The
forgetful functor U: C® — C has a left adjoint F' defined by

F(X,a) = (BX.ux),  F(f) = BY.

The unit of this adjunction is given by 1 and the counit is £(x o) = . Let B denote

the functor FU and let A denote the natural transformation FnU. The adjunction
gives rise to a comonad B= (B , A, £), which is the same as the comonad discussed
in Section 2.3

Let ¥: C® — C® be an endofunctor. For every object (X,a) in C® there are
natural isomorphisms

CB(BY(X,a),2B(X,a)) = C(UL(X,a),USB(X, a))

given by the adjunction, so there is a one-to-one correspondence between natural
transformations o: BY, — ¥ B and natural transformations V: U¥X — UXB. In
fact, o is a distributive law if and only if the diagrams

Uy —Y S USB Uy —~Y - USRB
vl lvé \ lUEé
UYB ——=UYBB Us

UXA

commute.

Definition 4.1. We say that the natural transformation o is a connection if € is
compatible with o, i.e. the second diagram above commutes for the corresponding
natural transformation V. We say that a connection o is flat if A is compatible
with o, i.e. ¢ is a distributive law, or equivalently, both diagrams above commute.

The terminology is motivated by the special case discussed in detail in the fol-
lowing section.
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4.2. (A, A)-bimodules. Let k be a commutative ring and let A be a unital asso-
ciative algebra over k. Let C = A-Mod be the category of left A-modules. The

functor B = — ®y A: C —> C, together with the natural transformations
pa: M@ AQr A — M Qi A v: M — M, A
ma@R@br— mab m—me1

defines a monad B on C which lifts to a comonad B on CB. The latter is isomorphic
to the category of (A, A)-bimodules (with symmetric action of k).
The functor D = A®; —: C — C, together with the natural transformations
AM:A®kM—>A®kA®kM EMZA®kM—>M
a@®mr—a®1Rm a®m — am
defines a comonad D on C. There is a mixed distributive law : B — D given by
rebracketing on components
Or: (AQr M) @k A — AQp (M @y A)

so this lifts to a comonad distributive law 6: B — D.

Let N be an (A, A)-bimodule and 3: C® — C® be the functor defined by
Y(M) = M ®a N. We have that ¥D = DY so the identity idgp: ¥ — D is
a distributive law. R

In this case, the components of a natural transformation V: UY — UXB are
given by a left A-linear map

VM: M@AN—>(M®kA)®AN;M®kN
The corresponding natural transformation o: B— Y is given by

om: MAN)QrA— Mk A) @4 N=ME,N
(M®an)®b— Vi(m®4 n)b.
The natural transformation V defines a connection if and only if each V; splits the
quotient map M ®; N — M ®4 N. Taking M = A yields an A-linear splitting of
the action AQr N —> N, so N is k-relative projective. Conversely, given a splitting
n — n_1) ® n( of the action, we obtain Vs as Var(m ®4 n) = mn_yy @ n)-
Thus we have:

Proposition 4.2. The functor ¥ admits a connection o if and only if N is k-
relative projective as a left A-module.

Composing V 4 with the noncommutative De Rham differential
d: A— QY a—1Qa-a®l

gives the notion of connection in noncommutative geometry [Con94) I11.3.5].

If NV is not just k-relative projective but k-relative free, i.e. N = ARV as left A-
modules, for some k-module V', then the assignment V ps (m®4 (a®v)) = ma®(1&v)
defines a flat connection. Thus we have:

Proposition 4.3. The triple (¥, 0,idy,p) is a factorisation of 6.

In particular, let 0: A —> A be an algebra map and N = A,, the (A4, A)-
bimodule which is A as a left A-module with right action of a € A given by right
multiplication by o(a). Then we have (M) = M ®4 A, =~ M,. Since A, is free
as a left A-module we get a factorisation (3, 0,idy,5) by Proposition where
o:B —> ¥ is the flat connection defined on components by

om: Mo @y A— (M Q1 Ay

m®ar— mEo(a).
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Note that we use o to denote both the algebra map and the flat connection.

From the general theory developed in Section [3] we obtain therefore an action
of the group of endomorphisms of A on the category of admissible data for 6. In
particular, we can act on the standard cyclic object associated to A [Con85l [Tsy83],
which corresponds to the following admissible datum.

Consider A as a functor A: {*} —> C® from the one-morphism category to the
category of (A, A)-bimodules. Since BA = DA = A®;, A we have a natural trans-
formation p = idag, 4: BA — DA. The triple (A, {#}, p) is a right #-coalgebra.

Considering (A, A)-bimodules as either left or right A¢ := A®j A°P-modules, we
view the zeroth Hochschild homology as a functor H = — @4 A: C® — k-Mod.
We define a natural transformation \: HD — HB by

A (AQk M) ®@pe A— (M @k A) ®4e A= M
(a®@m) ®ae b —> mba

The pair (H, k-Mod, A) is a left §-coalgebra, and the duplicial k-module associated
to the admissible datum (A, {}, p, H, k-Mod, A) is indeed the cyclic object defining
the cyclic homology HC(A).

The cyclic homology of the duplicial object associated to the admissible datum

(S,0,ids ) > (A, {x}, p, H, k-Mod, \) = (Aq, {}, po o4, H, k-Mod, \)

is HC (A), the o-twisted cyclic homology of A. This was first considered in [KMT03]
and is discussed in Section 5.2 of [KK11] in the context of Hopf algebroids. Thus
the action of the category of factorisations generalises this twisting procedure.

4.3. Mixed factorisations. Let B = (B, i, n) be a monad on a category C and let
Y: C® — C® be a functor. In this section, we consider a special case of Section
when the functor ¥ is a lift of a functor S: C — C, i.e. there is a commutative
diagram

C]B 42> C]B

of o

C——=C
S

Let D be a comonad on C and let §: B — D be a distributive law. Distributive laws
~v: S — D lift to give distributive laws v: ¥ — D, and if v is part of a factorisation
(S,0,7) of §: B —> I then we get a factorisation (%, 0,7) of 6: B —> D.

We consider three special cases of this construction. The distributive laws used
therein are instances of one defined on the category of right U-modules, where U
is a left Hopf algebroid, which is defined and discussed in [KKS].

Example 4.4. Suppose that 0: B — B is a monad morphism which is compatible
with 0; that is 0: B — B is a natural transformation such that the three diagrams

oD

BB —22~ BB ide —> B BD 22~ BD
ui lu \ lo el lg
n

commute. The first two diagrams say that o: B — id¢ is a distributive law.
The triple (idc, o,idsp) is a factorisation of 6: B — I, so we get a factorisation
(3,0,idyp) of : B — D. Explicitly, ©: C® — CB is given by

Y(X,a) = (X,ao00x), () =f.
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Observe that the composition of monad morphisms corresponds under this as-
signment to the monoidal structure in F(6), so when viewing the monad morphisms
as a monoidal category with composition as tensor product and the identity idp as
unit object, we have:

Proposition 4.5. The assignment 0 — (X, 0,idg ) is a monoidal functor.
The factorisation given in Proposition [.3] arises in this way.

Example 4.6. Let k& be a commutative ring and let U be a Hopf algebra over k.
We use Sweedler notation to denote the coproduct

Au) = ug) @u).

See [Swe69, [Mon93] for more information about Hopf algebras.

Consider the category C = k-Mod. The functor B = — ®, U: C — C is
part of a monad B where the multiplication is given by the multiplication of the
algebra U and the unit is given by the unit of the algebra U. Dually, the functor
D =U@®; —:C — C is part of a comonad, whose structure is given by the
comultiplication and counit of the coalgebra U. There is a mixed distributive law
0: B — D given by

Ox: U®r X QU —U®k X @ U
URX TRV +—> S('U(Q))'LL@IE@'U(]_).

Let P be any right U-module. This defines a functor P ®; —: C — C. The maps
ox PR XU —>PRQi X® U
PRTU— pu1) QT D u(g)
define a distributive law 0: B — P ®; — and the maps

YVx: PRrLUQr X — U, PRr X
PRURT—>UR PR

define a distributive law v: P®g — —> D. The triple (P@—, 0,7) is a factorisation

of #: B —> D, and so this gives a factorisation of #: B —> D in the category
C® ~ Mod-U.

Example 4.7. Let C = k-Mod where k is a commutative ring, and consider the
functor B = U ® —: C —> C. Similarly to Example this is simultaneously
part of a monad B and a comonad ID. There is a mixed distributive law 6: B — D
given by
Ox: U@k Uk X — URr U@ X
UV — vS (@) ®un) T

and a distributive law 7: B — B given by

Tx: U U X — U Ui X
URUVRT— 1R U .
If U is commutative (or even just if the antipode S maps into the centre of U),

then (B, T, 0) is a factorisation of #: B — D and so (B, ,0) is a factorisation of
6: B — B in CB ~ U-Mod.
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4.4. Braided distributive laws. Let xy: T — C be a comonad distributive law
on a category A.
Definition 4.8. A distributive law 7: T — T between the comonad T and the

endofunctor T is braided with respect to x if the hexagon

Tx
O TrC ——=TCT T

— T~
TTC — -~ CTT

commutes. Dually, we say that a distributive law ¢: C — C between the endo-
functor C' and the comonad C is braided with respect to x if a similar hexagon
commutes.

Clearly, 7 is braided if and only if (T, 7, x) is a factorisation of x, since the above
hexagon is just the Yang-Baxter condition in that case. In the dual case, (C, X, ¢)
would be a factorisation of .

Example 4.9. In Example [L.7] the distributive law 7 is braided with respect to 6.

Example 4.10. Let 7: T — T be a BD-law. These are defined in [KLV04] and
are exactly those distributive laws which are braided with respect to themselves.
Thus (T, 7,7) is a factorisation of 7.

Example 4.11. For this example we relax the assumption that monoidal categories
are strict. Let A be a braided monoidal category with tensor product ®, associator
morphisms a and braiding morphisms b. Let U = (U, AV, eY)and V = (V, AV, £V)
be comonoids in A. The comonoids U, V define two comonads U, V with endofunc-
tors U ® —, V ® — respectively, and three distributive laws xy: U — V, 7: U — U
and ¢: V — V defined by

1 .
Ay v, x by, v ®id

UQ(VRX)—=URV)®X

av,u,x

Ve UeX)

O‘zr,IU,X by, u®id au,u,x
U®U®X) 2% Uel)oX 2% Uet)o X 2225 e (U e X)

—1
Ay v, x

VoVeX) X verex 2 vev)ex 2 ve (Ve X)

respectively. The distributive laws 7 and ¢ are both braided with respect to x so
we get two factorisations (U ® —, 7, x) and (V ® —, x, ¢) of x. By Proposition
these are both comonoids in F(x). This example comes from the dual of Example
1.11 in [BS09].

4.5. Quantum doubles. In our final example, we consider the distributive laws
corresponding to quantum doubles: let B and C' be two Hopf algebras over a
commutative ring k and R € C'®y, B be an invertible 2-cycle, meaning that we have

(AY @ idp)(R) = R13Ra3, (ide ®1 AP)(R) = Ri2R13,

(ide ® SP)(R) =R, (SC®kidp)(R) =R™*,
where R~! refers to the multiplicative inverse in the tensor product algebra C ®;, B
and subscripts denote components in C ®; C ®j B respectively C ®; B ®; B. We
refer to [CP95] for more background information.
The coalgebras B and C' define comonads T and C on A = k-Mod given by
B ®; — and C ®; — with structure maps given by the coproducts and the counits.
The 2-cycle R defines a distributive law x: T — C given by
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Xx: B C@r X — CQ®r B X
b®c®x'—>R(C®b)R_1®x.

In this case, every (B, C°P)-bimodule M, that is, a k-module M with two com-
muting left actions of B and C, gives rise to a factorisation of x: let ¥: A — A
be the functor M ®; —. We define distributive laws

ox: BMp X —MBxrX, 1w MQpCQHX — CQp M X,
b Mm@z +— Ri2(mb® x), M c®r— Riz(c®mM® x).

Then a straightforward computation shows that (3,0,7) is a factorisation of x.
When M = k with trivial actions given by the counits, we recover Example
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