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ABSTRACT

Networks are a shared resource connecting critical IT in-
frastructure, and the general practice is to always leave
them on. Yet, meaningful energy savings can result from
improving a network’s ability to scale up and down, as
traffic demands ebb and flow. We present Elastic Tree, a
network-wide power! manager, which dynamically ad-
justs the set of active network elements — links and
switches — to satisfy changing data center traffic loads.

We first compare multiple strategies for finding
minimum-power network subsets across a range of traf-
fic patterns. We implement and analyze ElasticTree
on a prototype testbed built with production OpenFlow
switches from three network vendors. Further, we ex-
amine the trade-offs between energy efficiency, perfor-
mance and robustness, with real traces from a produc-
tion e-commerce website. Our results demonstrate that
for data center workloads, ElasticTree can save up to
50% of network energy, while maintaining the ability to
handle traffic surges. Our fast heuristic for computing
network subsets enables ElasticTree to scale to data cen-
ters containing thousands of nodes. We finish by show-
ing how a network admin might configure ElasticTree to
satisfy their needs for performance and fault tolerance,
while minimizing their network power bill.

1. INTRODUCTION

Data centers aim to provide reliable and scalable
computing infrastructure for massive Internet ser-
vices. To achieve these properties, they consume
huge amounts of energy, and the resulting opera-
tional costs have spurred interest in improving their
efficiency. Most efforts have focused on servers and
cooling, which account for about 70% of a data cen-
ter’s total power budget. Improvements include bet-
ter components (low-power CPUs [12], more effi-
cient power supplies and water-cooling) as well as
better software (tickless kernel, virtualization, and
smart cooling [30]).

With energy management schemes for the largest
power consumers well in place, we turn to a part of
the data center that consumes 10-20% of its total

"We use power and energy interchangeably in this paper.

power: the network [9]. The total power consumed
by networking elements in data centers in 2006 in
the U.S. alone was 3 billion kWh and rising [7]; our
goal is to significantly reduce this rapidly growing
energy cost.

1.1 Data Center Networks

As services scale beyond ten thousand servers,
inflexibility and insufficient bisection bandwidth
have prompted researchers to explore alternatives
to the traditional 2N tree topology (shown in Fig-
ure 1(a)) [1] with designs such as VL2 [10], Port-
Land [24], DCell [16], and BCube [15]. The re-
sulting networks look more like a mesh than a tree.
One such example, the fat tree [1]2, seen in Figure
1(b), is built from a large number of richly connected
switches, and can support any communication pat-
tern (i.e. full bisection bandwidth). Traffic from
lower layers is spread across the core, using multi-
path routing, valiant load balancing, or a number of
other techniques.

In a 2N tree, one failure can cut the effective bi-
section bandwidth in half, while two failures can dis-
connect servers. Richer, mesh-like topologies handle
failures more gracefully; with more components and
more paths, the effect of any individual component
failure becomes manageable. This property can also
help improve energy efficiency. In fact, dynamically
varying the number of active (powered on) network
elements provides a control knob to tune between
energy efficiency, performance, and fault tolerance,
which we explore in the rest of this paper.

1.2 Inside a Data Center

Data centers are typically provisioned for peak
workload, and run well below capacity most of the
time. Traffic varies daily (e.g., email checking during
the day), weekly (e.g., enterprise database queries
on weekdays), monthly (e.g., photo sharing on holi-
days), and yearly (e.g., more shopping in December).
Rare events like cable cuts or celebrity news may hit
the peak capacity, but most of the time traffic can
be satisfied by a subset of the network links and

2Essentially a buffered Clos topology.
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Figure 2: E-commerce website: 292 produc-
tion web servers over 5 days. Traffic varies
by day/weekend, power doesn’t.

switches. These observations are based on traces
collected from two production data centers.

Trace 1 (Figure 2) shows aggregate traffic col-
lected from 292 servers hosting an e-commerce ap-
plication over a 5 day period in April 2008 [22]. A
clear diurnal pattern emerges; traffic peaks during
the day and falls at night. Even though the traffic
varies significantly with time, the rack and aggre-
gation switches associated with these servers draw
constant power (secondary axis in Figure 2).

Trace 2 (Figure 3) shows input and output traffic
at a router port in a production Google data center
in September 2009. The Y axis is in Mbps. The 8-
day trace shows diurnal and weekend /weekday vari-
ation, along with a constant amount of background
traffic. The 1-day trace highlights more short-term
bursts. Here, as in the previous case, the power
consumed by the router is fixed, irrespective of the
traffic through it.

1.3 Energy Proportionality

An earlier power measurement study [22] had pre-
sented power consumption numbers for several data
center switches for a variety of traffic patterns and
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Figure 3: Google Production Data Center

switch configurations. We use switch power mea-
surements from this study and summarize relevant
results in Table 1. In all cases, turning the switch on
consumes most of the power; going from zero to full
traffic increases power by less than 8%. Turning off a
switch yields the most power benefits, while turning
off an unused port saves only 1-2 Watts. Ideally, an
unused switch would consume no power, and energy
usage would grow with increasing traffic load. Con-
suming energy in proportion to the load is a highly
desirable behavior [4, 22].

Unfortunately, today’s network elements are not
energy proportional: fixed overheads such as fans,
switch chips, and transceivers waste power at low
loads. The situation is improving, as competition
encourages more efficient products, such as closer-
to-energy-proportional links and switches [19, 18,
26, 14]. However, maximum efficiency comes from a



Ports Port Model A Model B Model C

Enabled Traffic power (W) power (W) power (W)
None None 151 133 76
All None 184 170 97
All 1 Gbps 195 175 102

Table 1: Power consumption of various 48-
port switches for different configurations

combination of improved components and improved
component management.

Our choice — as presented in this paper — is to
manage today’s non energy-proportional network
components more intelligently. By zooming out to
a whole-data-center view, a network of on-or-off,
non-proportional components can act as an energy-
proportional ensemble, and adapt to varying traffic
loads. The strategy is simple: turn off the links and
switches that we don’t need, right now, to keep avail-
able only as much networking capacity as required.

1.4 Our Approach

ElasticTree is a network-wide energy optimizer
that continuously monitors data center traffic con-
ditions. It chooses the set of network elements that
must stay active to meet performance and fault tol-
erance goals; then it powers down as many unneeded
links and switches as possible. We use a variety of
methods to decide which subset of links and switches
to use, including a formal model, greedy bin-packer,
topology-aware heuristic, and prediction methods.
We evaluate ElasticTree by using it to control the
network of a purpose-built cluster of computers and
switches designed to represent a data center. Note
that our approach applies to currently-deployed net-
work devices, as well as newer, more energy-efficient
ones. It applies to single forwarding boxes in a net-
work, as well as individual switch chips within a
large chassis-based router.

While the energy savings from powering off an
individual switch might seem insignificant, a large
data center hosting hundreds of thousands of servers
will have tens of thousands of switches deployed.
The energy savings depend on the traffic patterns,
the level of desired system redundancy, and the size
of the data center itself. Our experiments show that,
on average, savings of 25-40% of the network en-
ergy in data centers is feasible. Extrapolating to all
data centers in the U.S., we estimate the savings to
be about 1 billion KWhr annually (based on 3 bil-
lion kWh used by networking devices in U.S. data
centers [7]). Additionally, reducing the energy con-
sumed by networking devices also results in a pro-
portional reduction in cooling costs.
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Figure 4: System Diagram

The remainder of the paper is organized as fol-
lows: §2 describes in more detail the ElasticTree
approach, plus the modules used to build the pro-
totype. §3 computes the power savings possible for
different communication patterns to understand best
and worse-case scenarios. We also explore power
savings using real data center traffic traces. In §4,
we measure the potential impact on bandwidth and
latency due to ElasticTree. In §5, we explore deploy-
ment aspects of ElasticTree in a real data center.
We present related work in §6 and discuss lessons
learned in §7.

2. ELASTICTREE

ElasticTree is a system for dynamically adapting
the energy consumption of a data center network.
ElasticTree consists of three logical modules - opti-
mizer, routing, and power control - as shown in Fig-
ure 4. The optimizer’s role is to find the minimum-
power network subset which satisfies current traffic
conditions. Its inputs are the topology, traffic ma-
trix, a power model for each switch, and the desired
fault tolerance properties (spare switches and spare
capacity). The optimizer outputs a set of active
components to both the power control and routing
modules. Power control toggles the power states of
ports, linecards, and entire switches, while routing
chooses paths for all flows, then pushes routes into
the network.

We now show an example of the system in action.

2.1 Example

Figure 1(c) shows a worst-case pattern for network
locality, where each host sends one data flow halfway
across the data center. In this example, 0.2 Gbps
of traffic per host must traverse the network core.
When the optimizer sees this traffic pattern, it finds
which subset of the network is sufficient to satisfy
the traffic matrix. In fact, a minimum spanning tree
(MST) is sufficient, and leaves 0.2 Gbps of extra
capacity along each core link. The optimizer then



informs the routing module to compress traffic along
the new sub-topology, and finally informs the power
control module to turn off unneeded switches and
links. We assume a 3:1 idle:active ratio for modeling
switch power consumption; that is, 3W of power to
have a switch port, and 1W extra to turn it on, based
on the 48-port switch measurements shown in Table
1. In this example, 13/20 switches and 28/48 links
stay active, and ElasticTree reduces network power
by 38%.

As traffic conditions change, the optimizer con-
tinuously recomputes the optimal network subset.
As traffic increases, more capacity is brought online,
until the full network capacity is reached. As traffic
decreases, switches and links are turned off. Note
that when traffic is increasing, the system must wait
for capacity to come online before routing through
that capacity. In the other direction, when traffic
is decreasing, the system must change the routing
- by moving flows off of soon-to-be-down links and
switches - before power control can shut anything
down.

Of course, this example goes too far in the direc-
tion of power efficiency. The MST solution leaves the
network prone to disconnection from a single failed
link or switch, and provides little extra capacity to
absorb additional traffic. Furthermore, a network
operated close to its capacity will increase the chance
of dropped and/or delayed packets. Later sections
explore the tradeoffs between power, fault tolerance,
and performance. Simple modifications can dramat-
ically improve fault tolerance and performance at
low power, especially for larger networks. We now
describe each of ElasticTree modules in detail.

2.2 Optimizers

We have developed a range of methods to com-
pute a minimum-power network subset in Elastic-
Tree, as summarized in Table 2. The first method is
a formal model, mainly used to evaluate the solution
quality of other optimizers, due to heavy computa-
tional requirements. The second method is greedy
bin-packing, useful for understanding power savings
for larger topologies. The third method is a simple
heuristic to quickly find subsets in networks with
regular structure. Each method achieves different
tradeoffs between scalability and optimality. All
methods can be improved by considering a data cen-
ter’s past traffic history (details in §5.4).

2.2.1 Formal Model

We desire the optimal-power solution (subset and
flow assignment) that satisfies the traffic constraints,

3Bounded percentage from optimal, configured to 10%.

Type Quality Scalability Input Topo
Formal Optimal 3 Low Traffic Matrix  Any
Greedy Good Medium Traffic Matrix  Any
Topo- OK High Port Counters Fat
aware Tree

Table 2: Optimizer Comparison

but finding the optimal flow assignment alone is an
NP-complete problem for integer flows. Despite this
computational complexity, the formal model pro-
vides a valuable tool for understanding the solution
quality of other optimizers. It is flexible enough to
support arbitrary topologies, but can only scale up
to networks with less than 1000 nodes.

The model starts with a standard multi-
commodity flow (MCF) problem. For the precise
MCF formulation, see Appendix A. The constraints
include link capacity, flow conservation, and demand
satisfaction. The variables are the flows along each
link. The inputs include the topology, switch power
model, and traffic matrix. To optimize for power, we
add binary variables for every link and switch, and
constrain traffic to only active (powered on) links
and switches. The model also ensures that the full
power cost for an Ethernet link is incurred when ei-
ther side is transmitting; there is no such thing as a
half-on Ethernet link.

The optimization goal is to minimize the total net-
work power, while satisfying all constraints. Split-
ting a single flow across multiple links in the topol-
ogy might reduce power by improving link utilization
overall, but reordered packets at the destination (re-
sulting from varying path delays) will negatively im-
pact TCP performance. Therefore, we include con-
straints in our formulation to (optionally) prevent
flows from getting split.

The model outputs a subset of the original topol-
ogy, plus the routes taken by each flow to satisfy
the traffic matrix. Our model shares similar goals to
Chabarek et al. [6], which also looked at power-aware
routing. However, our model (1) focuses on data
centers, not wide-area networks, (2) chooses a sub-
set of a fixed topology, not the component (switch)
configurations in a topology, and (3) considers indi-
vidual flows, rather than aggregate traffic.

We implement our formal method using both
MathProg and General Algebraic Modeling System
(GAMS), which are high-level languages for opti-
mization modeling. We use both the GNU Linear
Programming Kit (GLPK) and CPLEX to solve the
formulation.



2.2.2  Greedy Bin-Packing

For even simple traffic patterns, the formal
model’s solution time scales to the 3.5" power as a
function of the number of hosts (details in §5). The
greedy bin-packing heuristic improves on the formal
model’s scalability. Solutions within a bound of opti-
mal are not guaranteed, but in practice, high-quality
subsets result. For each flow, the greedy bin-packer
evaluates possible paths and chooses the leftmost
one with sufficient capacity. By leftmost, we mean
in reference to a single layer in a structured topol-
ogy, such as a fat tree. Within a layer, paths are
chosen in a deterministic left-to-right order, as op-
posed to a random order, which would evenly spread
flows. When all flows have been assigned (which is
not guaranteed), the algorithm returns the active
network subset (set of switches and links traversed
by some flow) plus each flow path.

For some traffic matrices, the greedy approach will
not find a satisfying assignment for all flows; this
is an inherent problem with any greedy flow assign-
ment strategy, even when the network is provisioned
for full bisection bandwidth. In this case, the greedy
search will have enumerated all possible paths, and
the flow will be assigned to the path with the lowest
load. Like the model, this approach requires knowl-
edge of the traffic matrix, but the solution can be
computed incrementally, possibly to support on-line
usage.

2.2.3 Topology-aware Heuristic

The last method leverages the regularity of the fat
tree topology to quickly find network subsets. Unlike
the other methods, it does not compute the set of
flow routes, and assumes perfectly divisible flows. Of
course, by splitting flows, it will pack every link to
full utilization and reduce TCP bandwidth — not
exactly practical.

However, simple additions to this “starter sub-
set” lead to solutions of comparable quality to other
methods, but computed with less information, and
in a fraction of the time. In addition, by decoupling
power optimization from routing, our method can
be applied alongside any fat tree routing algorithm,
including OSPF-ECMP, valiant load balancing [10],
flow classification [1] [2], and end-host path selec-
tion [23]. Computing this subset requires only port
counters, not a full traffic matrix.

The intuition behind our heuristic is that to satisfy
traffic demands, an edge switch doesn’t care which
aggregation switches are active, but instead, how
many are active. The “view” of every edge switch in
a given pod is identical; all see the same number of
aggregation switches above. The number of required

switches in the aggregation layer is then equal to the
number of links required to support the traffic of
the most active source above or below (whichever is
higher), assuming flows are perfectly divisible. For
example, if the most active source sends 2 Gbps of
traffic up to the aggregation layer and each link is
1 Gbps, then two aggregation layer switches must
stay on to satisfy that demand. A similar observa-
tion holds between each pod and the core, and the
exact subset computation is described in more detail
in §5. One can think of the topology-aware heuristic
as a cron job for that network, providing periodic
input to any fat tree routing algorithm.

For simplicity, our computations assume a homo-
geneous fat tree with one link between every con-
nected pair of switches. However, this technique
applies to full-bisection-bandwidth topologies with
any number of layers (we show only 3 stages), bun-
dled links (parallel links connecting two switches),
or varying speeds. Extra “switches at a given layer”
computations must be added for topologies with
more layers. Bundled links can be considered sin-
gle faster links. The same computation works for
other topologies, such as the aggregated Clos used
by VL2 [10], which has 10G links above the edge
layer and 1G links to each host.

We have implemented all three optimizers; each
outputs a network topology subset, which is then
used by the control software.

2.3 Control Software

ElasticTree requires two network capabilities:
traffic data (current network utilization) and control
over flow paths. NetFlow [27], SNMP and sampling
can provide traffic data, while policy-based rout-
ing can provide path control, to some extent. In
our ElasticTree prototype, we use OpenFlow [29] to
achieve the above tasks.

OpenFlow: OpenFlow is an open API added
to commercial switches and routers that provides a
flow table abstraction. We first use OpenFlow to
validate optimizer solutions by directly pushing the
computed set of application-level flow routes to each
switch, then generating traffic as described later in
this section. In the live prototype, OpenFlow also
provides the traffic matrix (flow-specific counters),
port counters, and port power control. OpenFlow
enables us to evaluate ElasticTree on switches from
different vendors, with no source code changes.

NOX: NOX is a centralized platform that pro-
vides network visibility and control atop a network
of OpenFlow switches [13]. The logical modules
in ElasticTree are implemented as a NOX applica-
tion. The application pulls flow and port counters,



Figure 5: Hardware Testbed (HP switch for
k =6 fat tree)

Vendor Model k  Virtual Switches Ports Hosts
HP 5400 6 45 270 54
Quanta LB4G 4 20 80 16
NEC 1P8800 4 20 80 16

Table 3: Fat Tree Configurations

directs these to an optimizer, and then adjusts flow
routes and port status based on the computed sub-
set. In our current setup, we do not power off in-
active switches, due to the fact that our switches
are virtual switches. However, in a real data cen-
ter deployment, we can leverage any of the existing
mechanisms such as command line interface, SNMP
or newer control mechanisms such as power-control
over OpenFlow in order to support the power control
features.

2.4 Prototype Testbed

We build multiple testbeds to verify and evaluate
ElasticTree, summarized in Table 3, with an exam-
ple shown in Figure 5. Each configuration multi-
plexes many smaller virtual switches (with 4 or 6
ports) onto one or more large physical switches. All
communication between virtual switches is done over
direct links (not through any switch backplane or in-
termediate switch).

The smaller configuration is a complete £ = 4
three-layer homogeneous fat tree?, split into 20 in-
dependent four-port virtual switches, supporting 16
nodes at 1 Gbps apiece. One instantiation com-
prised 2 NEC IP8800 24-port switches and 1 48-
port switch, running OpenFlow v0.8.9 firmware pro-
vided by NEC Labs. Another comprised two Quanta
LB4G 48-port switches, running the OpenFlow Ref-
erence Broadcom firmware.

“Refer [1] for details on fat trees and definition of k
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Figure 6: Measurement Setup

The larger configuration is a complete & = 6
three-layer fat tree, split into 45 independent six-
port virtual switches, supporting 54 hosts at 1 Gbps
apiece. This configuration runs on one 288-port HP
ProCurve 5412 chassis switch or two 144-port 5406
chassis switches, running OpenFlow v0.8.9 firmware
provided by HP Labs.

2.5 Measurement Setup

Evaluating ElasticTree requires infrastructure to
generate a small data center’s worth of traffic, plus
the ability to concurrently measure packet drops and
delays. To this end, we have implemented a NetF-
PGA based traffic generator and a dedicated latency
monitor. The measurement architecture is shown in
Figure 6.

NetFPGA Traffic Generators. The NetFPGA
Packet Generator provides deterministic, line-rate
traffic generation for all packet sizes [28]. Each
NetFPGA emulates four servers with 1GE connec-
tions. Multiple traffic generators combine to emulate
a larger group of independent servers: for the k=6
fat tree, 14 NetFPGAs represent 54 servers, and for
the k=4 fat tree,4 NetFPGAs represent 16 servers.

At the start of each test, the traffic distribu-
tion for each port is packed by a weighted round
robin scheduler into the packet generator SRAM. All
packet generators are synchronized by sending one
packet through an Ethernet control port; these con-
trol packets are sent consecutively to minimize the
start-time variation. After sending traffic, we poll
and store the transmit and receive counters on the
packet generators.

Latency Monitor. The latency monitor PC
sends tracer packets along each packet path. Tracers
enter and exit through a different port on the same
physical switch chip; there is one Ethernet port on
the latency monitor PC per switch chip. Packets are



logged by Pcap on entry and exit to record precise
timestamp deltas. We report median figures that are
averaged over all packet paths. To ensure measure-
ments are taken in steady state, the latency moni-
tor starts up after 100 ms. This technique captures
all but the last-hop egress queuing delays. Since
edge links are never oversubscribed for our traffic

patterns, the last-hop egress queue should incur no
added delay.

3. POWER SAVINGS ANALYSIS

In this section, we analyze ElasticTree’s network
energy savings when compared to an always-on base-
line. Our comparisons assume a homogeneous fat
tree for simplicity, though the evaluation also applies
to full-bisection-bandwidth topologies with aggrega-
tion, such as those with 1G links at the edge and
10G at the core. The primary metric we inspect is
% original network power, computed as:

_ Power consumed by ElasticTree x 100

Power consumed by original fat-tree

This percentage gives an accurate idea of the over-
all power saved by turning off switches and links
(i.e., savings equal 100 - % original power). We
use power numbers from switch model A (§1.3) for
both the baseline and ElasticTree cases, and only
include active (powered-on) switches and links for
ElasticTree cases. Since all three switches in Ta-
ble 1 have an idle:active ratio of 3:1 (explained in
§2.1), using power numbers from switch model B
or C will yield similar network energy savings. Un-
less otherwise noted, optimizer solutions come from
the greedy bin-packing algorithm, with flow splitting
disabled (as explained in Section 2). We validate the
results for all k£ = {4,6} fat tree topologies on mul-
tiple testbeds. For all communication patterns, the
measured bandwidth as reported by receive counters
matches the expected values. We only report energy
saved directly from the network; extra energy will be
required to power on and keep running the servers
hosting ElasticTree modules. There will be addi-
tional energy required for cooling these servers, and
at the same time, powering off unused switches will
result in cooling energy savings. We do not include
these extra costs/savings in this paper.

3.1 Traffic Patterns

Energy, performance and robustness all depend
heavily on the traffic pattern. We now explore the
possible energy savings over a wide range of commu-
nication patterns, leaving performance and robust-
ness for §4.
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Figure 7: Power savings as a function of de-
mand, with varying traffic locality, for a 28K-
node, k=48 fat tree

3.1.1 Uniform Demand, Varying Locality

First, consider two extreme cases: near (highly
localized) traffic matrices, where servers commu-
nicate only with other servers through their edge
switch, and far (non-localized) traffic matrices
where servers communicate only with servers in
other pods, through the network core. In this pat-
tern, all traffic stays within the data center, and
none comes from outside. Understanding these ex-
treme cases helps to quantify the range of network
energy savings. Here, we use the formal method as
the optimizer in ElasticTree.

Near traffic is a best-case — leading to the largest
energy savings — because ElasticTree will reduce
the network to the minimum spanning tree, switch-
ing off all but one core switch and one aggregation
switch per pod. On the other hand, far traffic is a
worst-case — leading to the smallest energy savings
— because every link and switch in the network is
needed. For far traffic, the savings depend heavily

on the network utilization, u = % (Aij is the
traffic from host 4 to host j, A;; < 1 Gbps). If u is
close to 100%, then all links and switches must re-
main active. However, with lower utilization, traffic
can be concentrated onto a smaller number of core
links, and unused ones switch off. Figure 7 shows
the potential savings as a function of utilization for
both extremes, as well as traffic to the aggregation
layer Mid), for a k = 48 fat tree with roughly 28K
servers. Running ElasticTree on this configuration,
with near traffic at low utilization, we expect a net-
work energy reduction of 60%; we cannot save any
further energy, as the active network subset in this
case is the MST. For far traffic and u=100%, there
are no energy savings. This graph highlights the
power benefit of local communications, but more im-



100,
]
Td

_ 80l S
[ °

2 F
o
o
X~
5 60F : . .
E #’
9]
c
& 40t
=)
5
X
20t

8o 01 02 03 04 05 06 07
Avg. network utilization

Figure 8: Scatterplot of power savings with
random traffic matrix. Each point on the
graph corresponds to a pre-configured aver-
age data center workload, for a k£ = 6 fat tree

portantly, shows potential savings in all cases. Hav-
ing seen these two extremes, we now consider more
realistic traffic matrices with a mix of both near and
far traffic.

3.1.2 Random Demand

Here, we explore how much energy we can expect
to save, on average, with random, admissible traf-
fic matrices. Figure 8 shows energy saved by Elas-
ticTree (relative to the baseline) for these matrices,
generated by picking flows uniformly and randomly,
then scaled down by the most oversubscribed host’s
traffic to ensure admissibility. As seen previously,
for low utilization, ElasticTree saves roughly 60% of
the network power, regardless of the traffic matrix.
As the utilization increases, traffic matrices with sig-
nificant amounts of far traffic will have less room for
power savings, and so the power saving decreases.
The two large steps correspond to utilizations at
which an extra aggregation switch becomes neces-
sary across all pods. The smaller steps correspond
to individual aggregation or core switches turning on
and off. Some patterns will densely fill all available
links, while others will have to incur the entire power
cost of a switch for a single link; hence the variabil-
ity in some regions of the graph. Utilizations above
0.75 are not shown; for these matrices, the greedy
bin-packer would sometimes fail to find a complete
satisfying assignment of flows to links.

3.1.3 Sine-wave Demand

As seen before (§1.2), the utilization of a data cen-
ter will vary over time, on daily, seasonal and annual
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Figure 9: Power savings for sinusoidal traffic
variation in a k = 4 fat tree topology, with 1
flow per host in the traffic matrix. The input
demand has 10 discrete values.

time scales. Figure 9 shows a time-varying utiliza-
tion; power savings from ElasticTree that follow the
utilization curve. To crudely approximate diurnal
variation, we assume u = 1/2(1 + sin(t)), at time ¢,
suitably scaled to repeat once per day. For this sine
wave pattern of traffic demand, the network power
can be reduced up to 64% of the original power con-
sumed, without being over-subscribed and causing
congestion.

We note that most energy savings in all the above
communication patterns comes from powering off
switches. Current networking devices are far from
being energy proportional, with even completely idle
switches (0% utilization) consuming 70-80% of their
fully loaded power (100% utilization) [22]; thus pow-
ering off switches yields the most energy savings.

3.1.4 Traffic in a Realistic Data Center

In order to evaluate energy savings with a real
data center workload, we collected system and net-
work traces from a production data center hosting an
e-commerce application (Trace 1, §1). The servers
in the data center are organized in a tiered model as
application servers, file servers and database servers.
The System Activity Reporter (sar) toolkit available
on Linux obtains CPU, memory and network statis-
tics, including the number of bytes transmitted and
received from 292 servers. Our traces contain statis-
tics averaged over a 10-minute interval and span 5
days in April 2008. The aggregate traffic through
all the servers varies between 2 and 12 Gbps at any
given time instant (Figure 2). Around 70% of the
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Figure 10: Energy savings for production
data center (e-commerce website) traces, over
a 5 day period, using a k=12 fat tree. We
show savings for different levels of overall
traffic, with 70% destined outside the DC.

traffic leaves the data center and the remaining 30%
is distributed to servers within the data center.

In order to compute the energy savings from Elas-
ticTree for these 292 hosts, we need a k = 12 fat
tree. Since our testbed only supports k& = 4 and
k = 6 sized fat trees, we simulate the effect of Elas-
ticTree using the greedy bin-packing optimizer on
these traces. A fat tree with £ = 12 can support up
to 432 servers; since our traces are from 292 servers,
we assume the remaining 140 servers have been pow-
ered off. The edge switches associated with these
powered-off servers are assumed to be powered off;
we do not include their cost in the baseline routing
power calculation.

The e-commerce service does not generate enough
network traffic to require a high bisection bandwidth
topology such as a fat tree. However, the time-
varying characteristics are of interest for evaluating
ElasticTree, and should remain valid with propor-
tionally larger amounts of network traffic. Hence,
we scale the traffic up by a factor of 20.

For different scaling factors, as well as for different
intra data center versus outside data center (exter-
nal) traffic ratios, we observe energy savings ranging
from 25-62%. We present our energy savings results
in Figure 10. The main observation when visually
comparing with Figure 2 is that the power consumed
by the network follows the traffic load curve. Even
though individual network devices are not energy-
proportional, ElasticTree introduces energy propor-
tionality into the network.
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Figure 12: Power consumption in a robust
data center network with safety margins, as
well as redundancy. Note “greedy+1” means
we add a MIST over the solution returned by
the greedy solver.

We stress that network energy savings are work-
load dependent. While we have explored savings
in the best-case and worst-case traffic scenarios as
well as using traces from a production data center,
a highly utilized and “never-idle” data center net-
work would not benefit from running ElasticTree.

3.2 Robustness Analysis

Typically data center networks incorporate some
level of capacity margin, as well as redundancy in
the topology, to prepare for traffic surges and net-
work failures. In such cases, the network uses more
switches and links than essential for the regular pro-
duction workload.

Consider the case where only a minimum spanning
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tree (MST) in the fat tree topology is turned on (all
other links/switches are powered off); this subset
certainly minimizes power consumption. However,
it also throws away all path redundancy, and with
it, all fault tolerance. In Figure 11, we extend the
MST in the fat tree with additional active switches,
for varying topology sizes. The MST+1 configura-
tion requires one additional edge switch per pod,
and one additional switch in the core, to enable any
single aggregation or core-level switch to fail with-
out disconnecting a server. The MST+2 configura-
tion enables any two failures in the core or aggre-
gation layers, with no loss of connectivity. As the
network size increases, the incremental cost of addi-
tional fault tolerance becomes an insignificant part
of the total network power. For the largest networks,
the savings reduce by only 1% for each additional
spanning tree in the core aggregation levels. Each
+1 increment in redundancy has an additive cost,
but a multiplicative benefit; with MST+2, for exam-
ple, the failures would have to happen in the same
pod to disconnect a host. This graph shows that the
added cost of fault tolerance is low.

Figure 12 presents power figures for the k=12 fat
tree topology when we add safety margins for ac-
commodating bursts in the workload. We observe
that the additional power cost incurred is minimal,
while improving the network’s ability to absorb un-
expected traffic surges.

4. PERFORMANCE

The power savings shown in the previous section
are worthwhile only if the performance penalty is
negligible. In this section, we quantify the perfor-
mance degradation from running traffic over a net-
work subset, and show how to mitigate negative ef-
fects with a safety margin.

4.1 Queuing Baseline

Figure 13 shows the setup for measuring the buffer
depth in our test switches; when queuing occurs,
this knowledge helps to estimate the number of hops
where packets are delayed. In the congestion-free
case (not shown), a dedicated latency monitor PC
sends tracer packets into a switch, which sends it
right back to the monitor. Packets are timestamped
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Bottlenecks Median  Std. Dev
0 36.00 2.94
1 473.97 7.12
2 914.45 10.50

Table 4: Latency baselines for Queue Test Se-
tups
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Figure 14: Latency vs demand, with uniform
traffic.

by the kernel, and we record the latency of each re-
ceived packet, as well as the number of drops. This
test is useful mainly to quantify PC-induced latency
variability. In the single-bottleneck case, two hosts
send 0.7 Gbps of constant-rate traffic to a single
switch output port, which connects through a second
switch to a receiver. Concurrently with the packet
generator traffic, the latency monitor sends tracer
packets. In the double-bottleneck case, three hosts
send 0.7 Gbps, again while tracers are sent.

Table 4 shows the latency distribution of tracer
packets sent through the Quanta switch, for all three
cases. With no background traffic, the baseline la-
tency is 36 us. In the single-bottleneck case, the
egress buffer fills immediately, and packets expe-
rience 474 us of buffering delay. For the double-
bottleneck case, most packets are delayed twice, to
914 us, while a smaller fraction take the single-
bottleneck path. The HP switch (data not shown)
follows the same pattern, with similar minimum la-
tency and about 1500 us of buffer depth. All cases
show low measurement variation.

4.2 Uniform Traffic, Varying Demand

In Figure 14, we see the latency totals for a uni-
form traffic series where all traffic goes through the
core to a different pod, and every hosts sends one
flow. To allow the network to reach steady state,
measurements start 100 ms after packets are sent,



I
o

e -e margin:0.01Gbps

35| =a margin:0.05Gbps B
. + -+ margin:0.15Gbps
2 301 2 margin:0.2Gbps
R A margin:0.25Gbps
“2
g 20
[
Q 15
@
S 10

5 .

o g

0 100 200 300 400 500

overload (Mbps / Host)
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and continue until the end of the test, 900 ms later.
All tests use 512-byte packets; other packet sizes
yield the same results. The graph covers packet
generator traffic from idle to 1 Gbps, while tracer
packets are sent along every flow path. If our solu-
tion is feasible, that is, all flows on each link sum to
less than its capacity, then we will see no dropped
packets, with a consistently low latency.

Instead, we observe sharp spikes at 0.25 Gbps,
0.33 Gbps, and 0.5 Gbps. These spikes correspond
to points where the available link bandwidth is ex-
ceeded, even by a small amount. For example, when
ElasticTree compresses four 0.25 Gbps flows along
a single 1 Gbps link, Ethernet overheads (preamble,
inter-frame spacing, and the CRC) cause the egress
buffer to fill up. Packets either get dropped or sig-
nificantly delayed.

This example motivates the need for a safety
margin to account for processing overheads, traffic
bursts, and sustained load increases. The issue is
not just that drops occur, but also that every packet
on an overloaded link experiences significant delay.
Next, we attempt to gain insight into how to set the
safety margin, or capacity reserve, such that perfor-
mance stays high up to a known traffic overload.

4.3 Setting Safety Margins

Figures 15 and 16 show drops and latency as a
function of traffic overload, for varying safety mar-
gins. Safety margin is the amount of capacity re-
served at every link by the optimizer; a higher safety
margin provides performance insurance, by delaying
the point at which drops start to occur, and aver-
age latency starts to degrade. Traffic overload is
the amount each host sends and receives beyond the
original traffic matrix. The overload for a host is
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LP GLPK, without split|]
LP GLPK, with split
LP GAMS, with split

Computation time (s)

r v -v Greedy, without split
107 ¢ o - Greedy, with split
o -8 Topo-aware Heuristic
10 ; n n
10? 10° 10
Total Hosts

Figure 17: Computation time for different op-
timizers as a function of network size

spread evenly across all flows sent by that host. For
example, at zero overload, a solution with a safety
margin of 100 Mbps will prevent more than 900
Mbps of combined flows from crossing each link. If
a host sends 4 flows (as in these plots) at 100 Mbps
overload, each flow is boosted by 25 Mbps. Each
data point represents the average over 5 traffic ma-
trices. In all matrices, each host sends to 4 randomly
chosen hosts, with a total outgoing bandwidth se-
lected uniformly between 0 and 0.5 Gbps. All tests
complete in one second.

Drops Figure 15 shows no drops for small
overloads (up to 100 Mbps), followed by a steadily
increasing drop percentage as overload increases.
Loss percentage levels off somewhat after 500 Mbps,
as some flows cap out at 1 Gbps and generate no
extra traffic. As expected, increasing the safety
margin defers the point at which performance
degrades.



Latency In Figure 16, latency shows a trend sim-
ilar to drops, except when overload increases to 200
Mbps, the performance effect is more pronounced.
For the 250 Mbps margin line, a 200 Mbps over-
load results in 1% drops, however latency increases
by 10x due to the few congested links. Some margin
lines cross at high overloads; this is not to say that a
smaller margin is outperforming a larger one, since
drops increase, and we ignore those in the latency
calculation.

Interpretation Given these plots, a network op-
erator can choose the safety margin that best bal-
ances the competing goals of performance and en-
ergy efficiency. For example, a network operator
might observe from past history that the traffic av-
erage never varies by more than 100 Mbps in any
10 minute span. She considers an average latency
under 100 us to be acceptable. Assuming that Elas-
ticTree can transition to a new subset every 10 min-
utes, the operator looks at 100 Mbps overload on
each plot. She then finds the smallest safety margin
with sufficient performance, which in this case is 150
Mbps. The operator can then have some assurance
that if the traffic changes as expected, the network
will meet her performance criteria, while consuming
the minimum amount of power.

S. PRACTICAL CONSIDERATIONS

Here, we address some of the practical aspects of
deploying ElasticTree in a live data center environ-
ment.

5.1 Comparing various optimizers

We first discuss the scalability of various optimiz-
ers in ElasticTree, based on solution time vs network
size, as shown in Figure 17. This analysis provides
a sense of the feasibility of their deployment in a
real data center. The formal model produces solu-
tions closest to optimal; however for larger topolo-
gies (such as fat trees with & >= 14), the time to
find the optimal solution becomes intractable. For
example, finding a network subset with the formal
model with flow splitting enabled on CPLEX on a
single core, 2 Ghz machine, for a k = 16 fat tree,
takes about an hour. The solution time growth
of this carefully optimized model is about O(n3?),
where n is the number of hosts. We then ran the
greedy-bin packer (written in unoptimized Python)
on a single core of a 2.13 Ghz laptop with 3 GB of
RAM. The no-split version scaled as about O(n*?),
while the with-split version scaled slightly better,
as O(n?). The topology-aware heuristic fares much
better, scaling as roughly O(n), as expected. Sub-
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set computation for 10K hosts takes less than 10
seconds for a single-core, unoptimized, Python im-
plementation — faster than the fastest switch boot
time we observed (30 seconds for the Quanta switch).
This result implies that the topology-aware heuris-
tic approach is not fundamentally unscalable, espe-
cially considering that the number of operations in-
creases linearly with the number of hosts. We next
describe in detail the topology-aware heuristic, and
show how small modifications to its “starter subset”
can yield high-quality, practical network solutions,
in little time.

5.2 Topology-Aware Heuristic

We describe precisely how to calculate the subset
of active network elements using only port counters.
Links. First, compute LFEdgeyt,, the minimum
number of active links exiting edge switch e in pod

p to support up-traffic (edge — agg):

LEdge?, = [( Y F(e —a))/r]
acA,

A, is the set of aggregation switches in pod p,
F(e — a) is the traffic flow from edge switch e to
aggregation switch a, and r is the link rate. The
total up-traffic of e, divided by the link rate, equals
the minimum number of links from e required to
satisfy the up-traffic bandwidth. Similarly, compute
LEdgeg)"E“’”, the number of active links exiting edge
switch e in pod p to support down-traffic (agg —
edge):

LEdgedown

p,e

=[(Y_ Fla—e)/r]

acAy

The maximum of these two values (plus 1, to en-
sure a spanning tree at idle) gives LEdge, ., the min-
imum number of links for edge switch e in pod p:

LEdge®*™ 1}

LEdge, . = max{LEdge.". e

p,e

Now, compute the number of active links from
each pod to the core. LAgg,? is the minimum num-
ber of links from pod p to the core to satisfy the
up-traffic bandwidth (agg — core):

LAggs? =1( Y.  Fla—c)/r]
ceC,ac€Ap,a—c

Hence, we find the number of up-links, LAgggo“m
used to support down-traffic (core — agg) in pod p:

>

ceC,acAy,c—a

LAggy™™ = [( Fle—a))/r]

The maximum of these two values (plus 1, to en-
sure a spanning tree at idle) gives LAgg,, the mini-



mum number of core links for pod p:
LAgg, = max{LEdge,", LEdgezm”"}

Switches. For both the aggregation and core lay-
ers, the number of switches follows directly from the
link calculations, as every active link must connect
to an active switch. First, we compute N Agg,?, the
minimum number of aggregation switches required
to satisfy up-traffic (edge — agg) in pod p:

NAgg,? = gré%)i{LEdgeZi

Next, compute N Agggow”, the minimum number
of aggregation switches required to support down-
traffic (core — agg) in pod p:

NAggiow™ = [(LAggie™™ /(k/2)]

C' is the set of core switches and k is the switch
degree. The number of core links in the pod, divided
by the number of links uplink in each aggregation
switch, equals the minimum number of aggregation
switches required to satisfy the bandwidth demands
from all core switches. The maximum of these two
values gives N Agg,, the minimum number of active
aggregation switches in the pod:

N Agg, = max{N Agg,"?, NAggzm’m, 1}

Finally, the traffic between the core and the most-
active pod informs NCore, the number of core
switches that must be active to satisfy the traffic
demands:

NCore (Iglea;((LAggp )]

Robustness. The equations above assume that
100% utilized links are acceptable. We can change
r, the link rate parameter, to set the desired aver-
age link utilization. Reducing r reserves additional
resources to absorb traffic overloads, plus helps to
reduce queuing delay. Further, if hashing is used to
balance flows across different links, reducing r helps
account for collisions.

To add k-redundancy to the starter subset for im-
proved fault tolerance, add k aggregation switches
to each pod and the core, plus activate the links
on all added switches. Adding k-redundancy can be
thought of as adding k& parallel MSTs that overlap
at the edge switches. These two approaches can be
combined for better robustness.

5.3 Response Time

The ability of ElasticTree to respond to spikes in
traffic depends on the time required to gather statis-
tics, compute a solution, wait for switches to boot,
enable links, and push down new routes. We mea-
sured the time required to power on/off links and
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switches in real hardware and find that the domi-
nant time is waiting for the switch to boot up, which
ranges from 30 seconds for the Quanta switch to
about 3 minutes for the HP switch. Powering indi-
vidual ports on and off takes about 1 — 3 seconds.
Populating the entire flow table on a switch takes un-
der 5 seconds, while reading all port counters takes
less than 100 ms for both. Switch models in the fu-
ture may support features such as going into various
sleep modes; the time taken to wake up from sleep
modes will be significantly faster than booting up.
ElasticTree can then choose which switches to power
off versus which ones to put to sleep.

Further, the ability to predict traffic patterns for
the next few hours for traces that exhibit regular
behavior will allow network operators to plan ahead
and get the required capacity (plus some safety mar-
gin) ready in time for the next traffic spike. Al-
ternately, a control loop strategy to address perfor-
mance effects from burstiness would be to dynami-
cally increase the safety margin whenever a thresh-
old set by a service-level agreement policy were ex-
ceeded, such as a percentage of packet drops.

5.4 Traffic Prediction

In all of our experiments, we input the entire traf-
fic matrix to the optimizer, and thus assume that
we have complete prior knowledge of incoming traf-
fic. In a real deployment of ElasticTree, such an
assumption is unrealistic. One possible workaround
is to predict the incoming traffic matrix based on
historical traffic, in order to plan ahead for expected
traffic spikes or long-term changes. While predic-
tion techniques are highly sensitive to workloads,
they are more effective for traffic that exhibit regular
patterns, such as our production data center traces
(§3.1.4). We experiment with a simple auto regres-
sive AR(1) prediction model in order to predict traf-
fic to and from each of the 292 servers. We use traf-
fic traces from the first day to train the model, then
use this model to predict traffic for the entire 5 day
period. Using the traffic prediction, the greedy bin-
packer can determine an active topology subset as
well as flow routes.

While detailed traffic prediction and analysis are
beyond the scope of this paper, our initial exper-
imental results are encouraging. They imply that
even simple prediction models can be used for data
center traffic that exhibits periodic (and thus pre-
dictable) behavior.

5.5 Fault Tolerance

ElasticTree modules can be placed in ways that
mitigate fault tolerance worries. In our testbed, the



routing and optimizer modules run on a single host
PC. This arrangement ties the fate of the whole sys-
tem to that of each module; an optimizer crash is
capable of bringing down the system.

Fortunately, the topology-aware heuristic — the
optimizer most likely to be deployed — operates inde-
pendently of routing. The simple solution is to move
the optimizer to a separate host to prevent slow
computation or crashes from affecting routing. Our
OpenFlow switches support a passive listening port,
to which the read-only optimizer can connect to grab
port statistics. After computing the switch/link sub-
set, the optimizer must send this subset to the rout-
ing controller, which can apply it to the network.
If the optimizer doesn’t check in within a fixed pe-
riod of time, the controller should bring all switches
up. The reliability of ElasticTree should be no worse
than the optimizer-less original; the failure condition
brings back the original network power, plus a time
period with reduced network capacity.

For optimizers tied to routing, such as the for-
mal model and greedy bin-packer, known techniques
can provide controller-level fault tolerance. In active
standby, the primary controller performs all required
tasks, while the redundant controllers stay idle. On
failing to receive a periodic heartbeat from the pri-
mary, a redundant controller becomes to the new pri-
mary. This technique has been demonstrated with
NOX, so we expect it to work with our system. In
the more complicated full replication case, multiple
controllers are simultaneously active, and state (for
routing and optimization) is held consistent between
them. For ElasticTree, the optimization calculations
would be spread among the controllers, and each
controller would be responsible for power control for
a section of the network. For a more detailed discus-
sion of these issues, see §3.5 “Replicating the Con-
troller: Fault-Tolerance and Scalability” in [5].

6. RELATED WORK

This paper tries to extend the idea of power pro-
portionality into the network domain, as first de-
scribed by Barroso et al. [4]. Gupta et al. [17] were
amongst the earliest researchers to advocate con-
serving energy in networks. They suggested putting
network components to sleep in order to save en-
ergy and explored the feasibility in a LAN setting
in a later paper [18]. Several others have proposed
techniques such as putting idle components in a
switch (or router) to sleep [18] as well as adapting
the link rate [14], including the IEEE 802.3az Task
Force [19].

Chabarek et al. [6] use mixed integer programming
to optimize router power in a wide area network, by

14

choosing the chassis and linecard configuration to
best meet the expected demand. In contrast, our
formulation optimizes a data center local area net-
work, finds the power-optimal network subset and
routing to use, and includes an evaluation of our
prototype. Further, we detail the tradeoffs associ-
ated with our approach, including impact on packet
latency and drops.

Nedevschi et al. [26] propose shaping the traffic
into small bursts at edge routers to facilitate putting
routers to sleep. Their research is complementary to
ours. Further, their work addresses edge routers in
the Internet while our algorithms are for data cen-
ters. In a recent work, Ananthanarayanan [3] et
al. motivate via simulation two schemes - a lower
power mode for ports and time window prediction
techniques that vendors can implemented in future
switches. While these and other improvements can
be made in future switch designs to make them more
energy efficient, most energy (70-80% of their total
power) is consumed by switches in their idle state.
A more effective way of saving power is using a traf-
fic routing approach such as ours to maximize idle
switches and power them off. Another recent pa-
per [25] et al. discusses the benefits and deployment
models of a network proxy that would allow end-
hosts to sleep while the proxy keeps the network
connection alive.

Other complementary research in data center net-
works has focused on scalability [24][10], switching
layers that can incorporate different policies [20], or
architectures with programmable switches [11].

7. DISCUSSION

The idea of disabling critical network infrastruc-
ture in data centers has been considered taboo. Any
dynamic energy management system that attempts
to achieve energy proportionality by powering off a
subset of idle components must demonstrate that
the active components can still meet the current of-
fered load, as well as changing load in the immedi-
ate future. The power savings must be worthwhile,
performance effects must be minimal, and fault tol-
erance must not be sacrificed. The system must pro-
duce a feasible set of network subsets that can route
to all hosts, and be able to scale to a data center
with tens of thousands of servers.

To this end, we have built ElasticTree, which
through data-center-wide traffic management and
control, introduces energy proportionality in today’s
non-energy proportional networks. Our initial re-
sults (covering analysis, simulation, and hardware
prototypes) demonstrate the tradeoffs between per-



formance, robustness, and energy; the safety mar-
gin parameter provides network administrators with
control over these tradeoffs. ElasticTree’s ability to
respond to sudden increases in traffic is currently
limited by the switch boot delay, but this limita-
tion can be addressed, relatively simply, by adding
a sleep mode to switches.

ElasticTree opens up many questions. For exam-
ple, how will TCP-based application traffic interact
with ElasticTree? TCP maintains link utilization in
sawtooth mode; a network with primarily TCP flows
might yield measured traffic that stays below the
threshold for a small safety margin, causing Elas-
ticTree to never increase capacity. Another ques-
tion is the effect of increasing network size: a larger
network probably means more, smaller flows, which
pack more densely, and reduce the chance of queuing
delays and drops. We would also like to explore the
general applicability of the heuristic to other topolo-
gies, such as hypercubes and butterflies.

Unlike choosing between cost, speed, and relia-
bility when purchasing a car, with ElasticTree one
doesn’t have to pick just two when offered perfor-
mance, robustness, and energy efficiency. During
periods of low to mid utilization, and for a variety
of communication patterns (as is often observed in
data centers), ElasticTree can maintain the robust-
ness and performance, while lowering the energy bill.

8. ACKNOWLEDGMENTS

The authors want to thank their shepherd, Ant
Rowstron, for his advice and guidance in produc-
ing the final version of this paper, as well as the
anonymous reviewers for their feedback and sugges-
tions. Xiaoyun Zhu (VMware) and Ram Swami-
nathan (HP Labs) contributed to the problem for-
mulation; Parthasarathy Ranganathan (HP Labs)
helped with the initial ideas in this paper. Thanks
for OpenFlow switches goes to Jean Tourrilhes and
Praveen Yalagandula at HP Labs, plus the NEC
IP8800 team. Greg Chesson provided the Google
traces.

9. REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity Data Center Network Architecture. In ACM
SIGCOMM, pages 63-74, 2008.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang,
and A. Vahdat. Hedera: Dynamic Flow Scheduling for Data
Center Networks. In USENIX NSDI, April 2010.

G. Ananthanarayanan and R. Katz. Greening the Switch.
In Proceedings of HotPower, December 2008.

L. A. Barroso and U. Holzle. The Case for
Energy-Proportional Computing. Computer, 40(12):33-37,
2007.

M. Casado, M. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker. Ethane: Taking control of the enterprise.
In Proceedings of the 2007 Conference on Applications,

(2]

(3]
(4]

5]

15

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19
[20

[21

[22

(23]

[24]

Technologies, Architectures, and Protocols for Computer
Communications, page 12. ACM, 2007.

J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang,
and S. Wright. Power Awareness in Network Design and
Routing. In IEEE INFOCOM, April 2008.

U.S. Environmental Protection Agency’s Data Center
Report to Congress. http://tinyurl.com/2jz3ft.

S. Even, A. Itai, and A. Shamir. On the Complexity of
Time Table and Multi-Commodity Flow Problems. In 16th
Annual Symposium on Foundations of Computer Science,
pages 184-193, October 1975.

A. Greenberg, J. Hamilton, D. Maltz, and P. Patel. The
Cost of a Cloud: Research Problems in Data Center
Networks. In ACM SIGCOMM CCR, January 2009.

A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri,

D. Maltz, P. Patel, and S. Sengupta. VL2: A Scalable and
Flexible Data Center Network. In ACM SIGCOMM,
August 2009.

A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and

S. Sengupta. Towards a Next Generation Data Center
Architecture: Scalability and Commoditization. In ACM
PRESTO, pages 5762, 2008.

D. Grunwald, P. Levis, K. Farkas, C. M. III, and

M. Neufeld. Policies for Dynamic Clock Scheduling. In
OSDI, 2000.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, and
N. McKeown. NOX: Towards an Operating System for
Networks. In ACM SIGCOMM CCR, July 2008.

C. Gunaratne, K. Christensen, B. Nordman, and S. Suen.
Reducing the Energy Consumption of Ethernet with
Adaptive Link Rate (ALR). IEEE Transactions on
Computers, 57:448-461, April 2008.

C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. BCube: A High Performance,
Server-centric Network Architecture for Modular Data
Centers. In ACM SIGCOMM, August 2009.

C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu.
DCell: A Scalable and Fault-Tolerant Network Structure
for Data Centers. In ACM SIGCOMM, pages 75-86, 2008.
M. Gupta and S. Singh. Greening of the internet. In ACM
SIGCOMM, pages 19-26, 2003.

M. Gupta and S. Singh. Using Low-Power Modes for
Energy Conservation in Ethernet LANs. In IEEE
INFOCOM, May 2007.

IEEE 802.3az. ieee802.0rg/3/az/public/index.html.

D. A. Joseph, A. Tavakoli, and I. Stoica. A Policy-aware
Switching Layer for Data Centers. SIGCOMM Comput.
Commun. Rev., 38(4):51-62, 2008.

S. Kandula, D. Katabi, S. Sinha, and A. Berger. Dynamic
Load Balancing Without Packet Reordering. SIGCOMM
Comput. Commun. Rev., 37(2):51-62, 2007.

P. Mahadevan, P. Sharma, S. Banerjee, and

P. Ranganathan. A Power Benchmarking Framework for
Network Devices. In Proceedings of IFIP Networking, May
2009.

J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C.
Mogul. SPAIN: COTS Data-Center Ethernet for
Multipathing over Arbitrary Topologies. In USENIX
NSDI, April 2010.

R. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat.
PortLand: A Scalable Fault-Tolerant Layer 2 Data Center
Network Fabric. In ACM SIGCOMM, August 2009.

S. Nedevschi, J. Chandrashenkar, B. Nordman,

S. Ratnasamy, and N. Taft. Skilled in the Art of Being Idle:
Reducing Energy Waste in Networked Systems. In
Proceedings Of NSDI, April 2009.

S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and
D. Wetherall. Reducing Network Energy Consumption via
Sleeping and Rate-Adaptation. In Proceedings of the 5th
USENIX NSDI, pages 323-336, 2008.

Cisco IOS NetFlow. http://www.cisco.com/web/go/netflow.
NetFPGA Packet Generator. http://tinyurl.com/ygcupdc.
The OpenFlow Switch. http://www.openflowswitch.org.

C. Patel, C. Bash, R. Sharma, M. Beitelmam, and

R. Friedrich. Smart Cooling of data Centers. In
Proceedings of InterPack, July 2003.


http://tinyurl.com/2jz3ft
ieee802.org/3/az/public/index.html
http://www.cisco.com/web/go/netflow
http://tinyurl.com/ygcupdc
http://www.openflowswitch.org

APPENDIX
A. POWER OPTIMIZATION PROBLEM

Our model is a multi-commodity flow formulation,
augmented with binary variables for the power state
of links and switches. It minimizes the total network
power by solving a mixed-integer linear program.

A.1 Multi-Commodity Network Flow

Flow network G(V,E), has edges (u,v) € E
with capacity c(u,v). There are k commodities
Ky, Ko, ..., K, defined by K; = (s;,t;,d;), where,
for commodity ¢, s; is the source, t; is the sink, and
d; is the demand. The flow of commodity ¢ along
edge (u,v) is fi(u,v). Find a flow assignment which
satisfies the following three constraints [8]:
Capacity constraints: The total flow along each

link must not exceed the edge capacity.

k

Y(u,v) € V,Zfi(u,v) < c(u,v)

i=1

Flow conservation: Commodities are neither
created nor destroyed at intermediate nodes.

Vi, Z filu,w) = 0, when u # s; and u # t;

weV

Demand satisfaction: Each source and sink sends
or receives an amount equal to its demand.

weV weV

A.2 Power Minimization Constraints

Our formulation uses the following notation:

S Set of all switches

Vau Set of nodes connected to a switch u

a(u,v)  Power cost for link (u,v)

b(u) Power cost for switch u

Xuw Binary decision variable indicating
whether link (u,v) is powered ON

Y, Binary decision variable indicating
whether switch u is powered ON

E; Set of all unique edges used by flow i

r;(u,v) Binary decision variable indicating

whether commodity ¢ uses link (u,v)
The objective function, which minimizes the total
network power consumption, can be represented as:
Minimize ., ,ep XuwXa(u, v)+3, ey Yuxb(u)
The following additional constraints create a de-
pendency between the flow routing and power states:
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Deactivated links have no traffic: Flow is re-
stricted to only those links (and consequently
the switches) that are powered on. Thus, for all
links (u,v) used by commodity 4, f;(u,v) = 0,
when X, , = 0. Since the flow variable f is
positive in our formulation, the linearized con-
straint is:

k
Vi,V(u,v) € E, Zfi(u,v) < e(u,v) X Xy
i=1
The optimization objective inherently enforces
the converse, which states that links with no
traffic can be turned off.

Link power is bidirectional: Both “halves” of
an Ethernet link must be powered on if traffic
is flowing in either direction:

V(U,’U) € EvXu,v -

v,u

Correlate link and switch decision variable:
When a switch w is powered off, all links
connected to this switch are also powered off:

Vu € V,Vw € Vi, Xy = Xupu < Vo

Similarly, when all links connecting to a switch
are off, the switch can be powered off. The lin-
earized constraint is:

VueV,Yu< ) Xuw
weVy

A.3 Flow Split Constraints

Splitting flows is typically undesirable due to TCP
packet reordering effects [21]. We can prevent flow
splitting in the above formulation by adopting the
following constraint, which ensures that the traffic
on link (u,v) of commodity ¢ is equal to either the
full demand or zero:

Vi,V(’U/,’U) € E7 fi(uuv) = dl X ’f‘i(u,’l))

The regularity of the fat tree, combined with re-
stricted tree routing, helps to reduce the number of
flow split binary variables. For example, each inter-
pod flow must go from the aggregation layer to the
core, with exactly (k/2)? path choices. Rather than
consider binary variable r for all edges along every
possible path, we only consider the set of “unique
edges”, those at the highest layer traversed. In the
inter-pod case, this is the set of aggregation to edge
links. We precompute the set of unique edges F;
usable by commodity ¢, instead of using all edges in
E. Note that the flow conservation equations will
ensure that a connected set of unique edges are tra-
versed for each flow.



	Introduction
	Data Center Networks
	Inside a Data Center
	Energy Proportionality
	Our Approach

	ElasticTree
	Example
	Optimizers
	Formal Model
	Greedy Bin-Packing
	Topology-aware Heuristic

	Control Software
	Prototype Testbed
	Measurement Setup

	Power Savings Analysis
	Traffic Patterns
	Uniform Demand, Varying Locality
	Random Demand
	Sine-wave Demand
	Traffic in a Realistic Data Center

	Robustness Analysis

	Performance
	Queuing Baseline
	Uniform Traffic, Varying Demand
	Setting Safety Margins

	Practical Considerations
	Comparing various optimizers
	Topology-Aware Heuristic
	Response Time
	Traffic Prediction
	Fault Tolerance

	Related Work
	Discussion
	Acknowledgments
	References
	Power Optimization Problem
	Multi-Commodity Network Flow
	Power Minimization Constraints
	Flow Split Constraints


