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Abstract

We consider the optimization of the topology and geometry of an elas-
tic structure O ⊂ R2 subjected to a fixed boundary load, i. e. we aim to
minimize a weighted sum of material volume Vol(O), structure perimeter
Per(O), and structure compliance Comp(O) (which is the work done by
the load). As a first simple and instructive case, this article treats the sit-
uation of an imposed uniform uniaxial tension load in 2D. If the weight ε
of the perimeter is small, optimal geometries exhibit very fine-scale struc-
ture which cannot be resolved by numerical optimization. Instead, we
prove how the minimum energy scales in ε, which involves the construc-
tion of a family of near-optimal geometries and thus provides qualitative
insights. The construction is based on a classical branching procedure
with some features unique to compliance minimization. The proof of the
energy scaling also requires an ansatz-independent lower bound, which we
derive once via a classical convex duality argument (which is restricted to
2D and the uniaxial load) and once via a Fourier-based refinement of the
Hashin–Shtrikman bounds for the effective elastic moduli of composite
materials. We also highlight the close relation to and the differences from
shape optimization with a scalar PDE-constraint, and a link to the pattern
formation observed in intermediate states of type-I superconductors.

1 Problem formulation and discussion

The aim of this article is to gain some insight into optimal geometries of elas-
tically loaded structures, that is, geometries which achieve an optimal balance
between some measure of structural rigidity, material weight, and structural
complexity. We here consider the case where structural rigidity and complexity
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are expressed in terms of the elastic compliance and the geometry perimeter,
respectively. If a low structural complexity or equivalently a small perimeter is
of minor importance, optimal geometries often exhibit very fine microstructure,
which is difficult to capture by numerical optimization. However, following the
lead by Kohn and Müller [18], one can achieve some understanding by exploring
how the energy of optimal geometries scales in the model parameters. Such an
analysis involves constructing a family of geometries with a certain scaling and
proving that no other construction can do better. As a first instructive case we
focus here on two spatial dimensions and a simple geometry with an imposed
uniaxial load.

1.1 Introduction to compliance minimization

The elastic compliance of a structure O ⊂ R2 subjected to a surface load F :
Γ→ R2 on a part of the boundary Γ ⊂ ∂O is defined as

Comp(O) =
1

2

∫
Γ

F · uda

for the equilibrium displacement u : O → R2, which is the minimizer of the free
energy [13]

E[u] =

∫
O

1

2
Cε(u) : ε(u) dx−

∫
Γ

F · uda with ε(u) =
1

2
(∇u+∇uT ) ,

potentially subject to some Dirichlet boundary conditions on part of ∂O \ Γ.
Here, C denotes the elasticity tensor of the material, and we have abbreviated
A : B = tr(ATB) for A,B ∈ R2×2. For simplicity we have neglected any body
forces. The compliance measures the mechanical work of the load and thus can
be interpreted as the inverse structural rigidity.

Fixing a domain of interest Ω ⊂ R2 with Γ ⊂ ∂Ω one now seeks the geome-
try O ⊂ Ω which minimizes the compliance under a constraint or a penalty on
the volume Vol(O) =

∫
O 1dx, which may be interpreted as the material weight

or material costs. To prevent geometries with infinitely fine microstructure and
thereby ensure existence of minimizers (see e. g. [2, 6]), additional regularization
is required such as a penalization of the geometry perimeter Per(O) = H1(∂O)
(H1 denotes the one-dimensional Hausdorff measure). Note that since we penal-
ize Per(O) we will always work with geometries of finite perimeter, and through-
out this article ∂O shall refer to the so-called essential boundary of O [5]. The
perimeter regularization may be regarded as a measure of structural complexity
or production costs of the design. Altogether we are led to the optimization
problem of finding the optimal shape O ⊂ Ω with respect to the objective
functional

J[O] = αComp(O) + βVol(O) + εPer(O)

for weighting parameters α, β, ε > 0.
Compliance minimization represents by now a classical field in optimal design

and has been mathematically analyzed and numerically implemented in different
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variants, using level set formulations [4], phase field approaches [7, 24, 22],
multiple materials [7, 24], design-dependent loads [4, 7], nonlinear elasticity
[22], or other regularizations such as constraining the topological genus [8].
Alternative objectives to the compliance such as the L2-norm of the internal
stresses or the expected excess compliance for a probability distribution of loads
are much less understood but also possible [1, 14].

1.2 Energy scaling law for uniaxial load geometry

In this article we restrict ourselves to the simple case of a rectangular domain
Ω = [0, `] × [0, L] and a boundary load σ̂n imposed on ∂Ω (n denotes the
unit outward normal) which is consistent with a uniform uniaxial stress field
σ̂ = ( 0 0

0 F ). In other words, a normal tension of magnitude F is applied at
the top and bottom boundary Γ = [0, `] × {0, L} ⊂ ∂Ω (see Figure 1). Note
that this load configuration implies the implicit geometry constraint ∂O ⊃ Γ.
Furthermore, for simplicity we shall consider an isotropic material with shear
modulus µ and zero Poisson’s ratio so that the compliance is finally given by
Compµ,F,`,L(O) =∞ if ∂O 6⊃ Γ and otherwise

Compµ,F,`,L(O) =
1

2

∫
∂Ω

(σ̂n) · uda with σ̂ = ( 0 0
0 F ) ,

in which the equilibrium displacement u minimizes the free energy

Eµ,F,`,L[u] =

∫
O
µ|ε(u)|2 dx−

∫
∂Ω

(σ̂n) · uda

(the superscripts here refer to the model parameters). As can be readily verified,
the objective functional

Jα,β,ε,µ,F,`,L[O] = αCompµ,F,`,L(O) + βVol(O) + εPer(O)

satisfies the scale invariance

Jα,β,ε,µ,F,`,L[LO] = βL2J1,1, εβL ,
1
4 ,F
√

α
4µβ ,

`
L ,1[O]

so that it suffices to consider the case α = β = L = 1, µ = 1
4 which we

will assume throughout. We will show that the optimal geometry satisfies the
following scaling law.

Theorem 1 (Optimal energy scaling for uniaxial normal load). Let δ = 1
16 . In

the regime |F | < 1− δ, ε < min(`3|F |, |F |4), there exist c, C > 0 with

c`|F | 13 ε 2
3 ≤ min

O⊂Ω
Jε,F,`[O]− J∗,F,`0 ≤ C`|F | 13 ε 2

3

for J∗,F,`0 = 2`|F |.

3



????????????????????

66666666666666666666

F

F

6

?

L=1-� `

-6
x1

x2

Ω

level

1

1

2

2

3

3
unit cell

�-
w

?
6l

Figure 1: Left: Load geometry considered in this article with a uniform normal
tension F at the top and bottom. The optimal design O is sought inside Ω.
Right: Sketch of optimal construction (here with three branching levels), which
is composed of several unit cells.

In the above we require |F | to stay bounded away from 1 by some δ, where
the choice δ = 1

16 just reduces the level of technicality in the proof of the upper
inequality. For |F | close to 1, results for related problems (cf. [9, 10] and the later
discussion in Section 1.4) suggest a different energy scaling involving a power of
(1− |F |). In that case one requires additional constraints on the smallness of ε

relative to (1− |F |). Let us also remark that the factor |F | 13 in the scaling law
is only relevant for |F | near zero, since it is of order 1 otherwise.

The upper bound is proved in Section 2.1 by constructing a family of designs
with the claimed scaling. Those designs follow a classical branching pattern
with slight adaptations to compliance optimization (cf. Figure 1). Section 2.2
will then put forward two proofs of how the lower bound scales in ε, one based
on convex duality and the other based on a Fourier argument. Alternative proofs
of lower bounds are of interest, because they enrich our collection of methods
for the analysis of material microstructure. Furthermore, the convex duality
proof (in the provided, very elementary and intuitive version) only holds for
|F | smaller than and bounded away from 1

2 , in which case it yields the optimal

prefactor c`|F | 13 , while the Fourier argument seems more generalizable but only
provides the optimal prefactor for |F | bounded away from 0 and 1.

In the limit ε = 0, minimizing geometries cease to exist since the functional
J0,F,` is not lower semi-continuous along sequences of geometries with weakly
converging characteristic functions. However, the infimum of J0,F,` can be ex-
pressed as the minimum of the relaxation rel(J0,F,`) (the lower semi-continuous

envelope), which is given by J∗,F,`0 and is well-understood (cf. Section 2 and
[19, 20, 21]). In the case of our uniaxial load, the minimizers of the relaxed
problem are known to be rank-1 laminates, i. e. near-optimal geometries are al-
most one-dimensional and consist of very many very thin parallel strands along
the loading direction. This is the borderline case between two very different
situations:

• In one situation the boundary load is consistent with a uniform stress field
σ̂ with two eigenvalues of opposite sign (e. g. a shear load). In that case
the only optimal geometries are known to be rank-2 laminates aligned
with the two orthogonal principal stress directions [3]. A one-dimensional
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branching as in Section 2.1 then no longer suffices for nonzero ε, and the
energy scaling law is quite different [17].

• In the other situation σ̂ has two eigenvalues of equal sign (e. g. a hy-
drostatic pressure load). In that case there are many different optimal
microstructures such as rank-2 and higher-rank laminates or confocal el-
lipse constructions. Depending on the shape of Ω there might even be
minimizers of J0,F,` without microstructure so that minO⊂Ω Jε,F,`[O] is
independent of ε: a simple example is the unit disk Ω = {x ∈ R2 | |x| < 1}
under hydrostatic pressure—the optimal geometry O will be an annulus.

The uniaxial load case treated here is relatively simple and thus serves as a
good starting point for the understanding of compliance minimization. Let us
finally mention that our restriction to zero Poisson’s ratio considerably simplifies
the analysis, but is not expected to have a strong influence, since the optimal
geometries are composed of truss-like structures for which the lateral contraction
is irrelevant.

1.3 Dual reformulation via stress field

It is a classical result in linearized elasticity that the compliance can alternatively
be expressed in terms of the equilibrium stress σ instead of the equilibrium
displacement u [23]. For our choice of parameters we have

CompF,`(O) =

∫
O
|σ|2 dx = min

σ̃∈ΣOad

∫
O
|σ̃|2 dx ,

where the set ΣOad of statically admissible stress fields is given by divergence-free
symmetric tensor fields satisfying the prescribed stress boundary conditions,

ΣOad = {σ : Ω→ R2×2
sym |divσ = 0 in Ω, σ = 0 in Ω \ O, σn = σ̂n on ∂Ω} .

Indeed, testing the Euler–Lagrange equation for the equilibrium displacement,
∂uEF,`[u] = 0, with u itself, we obtain

CompF,`(O) =
1

2

∫
∂Ω

(σ̂n) · uda =

∫
O

1

4
|ε(u)|2 dx = −EF,`[u] .

Furthermore, by Fenchel duality,∫
O

1

4
|ε(ũ)|2 + |σ̃|2 dx ≥

∫
O
σ̃ : ε(ũ) dx =

∫
∂O

(σ̃n) · ũda−
∫
O

divσ̃ · ũdx

with equality if and only if σ̃ = 1
2ε(ũ), i. e. σ̃ is the stress induced by the

displacement ũ. Hence, for any ũ and σ̃ ∈ ΣOad we have∫
O
|σ̃|2 dx ≥

∫
∂Ω

(σ̃n) · ũda−
∫
O

1

4
|ε(ũ)|2 dx = −EF,`[ũ] ,
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which implies the desired expression for the compliance. Summarizing, an al-
ternative formulation of the compliance minimization problem reads

min
O⊂Ω

Jε,F,`[O] for Jε,F,`[O] = min
σ̃∈ΣOad

∫
O
|σ̃|2 dx+ Vol(O) + εPer(O) .

1.4 Two related optimal design problems

Compliance minimization can be viewed as PDE-constrained optimization in
which the PDE constraint is vector-valued. The corresponding scalar version
is the optimization of a heat or electricity conductor for prescribed normal flux
f̂ · n : ∂Ω→ R with f̂ = ( 0

F ) on the boundary, i. e.

minimize Jε,F,`scal [O] = DissF,`(O) + Vol(O) + εPer(O) ,

where the energy dissipation is defined as

DissF,`(O) =
1

2

∫
∂Ω

(f̂ · n)udx for u = argmin
ũ:O→R

∫
O

1

4
|∇ũ|2 dx−

∫
∂Ω

(f̂ · n)ũdx

with u : O → R the equilibrium temperature or electric potential. The corre-
sponding dual reformulation via fluxes f = ∇u reads

min
O⊂Ω

Jε,F,`scal [O] for Jε,F,`scal [O] = min
f̃∈ΦOad

∫
O
|f̃ |2 dx+ Vol(O) + εPer(O) ,

where the set of admissible fluxes is given by

ΦOad = {f : Ω→ R2 |divf = 0 in O, f = 0 in Ω \ O, f · n = f̂ · n on ∂Ω} .

In the above scalar problem, a pointwise flux constraint ∇u ·n = f ·n = f̂ ·n
on ∂Ω is imposed. A less restrictive problem formulation is to extend the flux
to R2 and just penalize the difference f − f̂ on R2 \ Ω,

min
O⊂Ω

Jε,F,`scal,rel[O] for Jε,F,`scal,rel[O] = min
f̃∈ΦOad,rel

∫
O
|f̃ |2 dx+

∫
R2\Ω

|f̃−f̂ |2 dx+Vol(O)+εPer(O)

with
ΦOad,rel = {f : R2 → R2 |divf = 0 in R2, f = 0 on Ω \ O} .

This can also be interpreted as penalizing the H−
1
2 -norm of f− f̂ on ∂Ω instead

of strictly requiring f · n = f̂ · n on ∂Ω [12]. This latter optimization problem
turns out to be equivalent to the variational pattern formation problem in inter-
mediate states of type-I superconductors: If an external magnetic field f̂ = ( 0

F )
is applied to a sample Ω ⊂ R2 of superconducting material, then the material
spontaneously partitions into superconducting and normal regions, and an in-
duced magnetic field f : R2 → R2 develops, which is divergence-free and zero in
the superconducting region. Denoting by O the normal region, the free energy
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can be modeled as being composed of a magnetic term and a small interfacial
energy between both regions [9],

Jε,F,`SC [O] = min
f∈ΦOad,rel

∫
O∪(R2\Ω)

|f − f̂ |2 dx+

∫
Ω\O
|f̂ |2 − 1 dx+ εPer(O) .

The relaxed energy for ε = 0 has the minimum J∗,F,`SC,0 = −(|F | − 1)2`. Using∫ `
0
f2(x1, x2) dx1 = F` for any f ∈ ΦOad,rel and every cross-section x2, we obtain

Jε,F,`SC [O]−J∗,F,`SC,0 = min
f∈ΦOad,rel

∫
O
|f |2−2f ·f̂ dx+

∫
Ω

|f̂ |2−1 dx+

∫
R2\Ω

|f−f̂ |2 dx

+ Vol(O) + εPer(O) + (|F | − 1)2` = Jε,F,`scal,rel[O]− J∗,F,`0 .

By a straightforward adaptation of the proofs presented in the next section,
the energy scaling Theorem 1 is also valid for the above presented scalar and
relaxed scalar problem. In fact, by choosing the second row of σ̃ : Ω→ R2×2

sym as

a test flux f̃ : Ω→ R2, we find

Jε,F,`[O] ≥ Jε,F,`scal [O] ≥ Jε,F,`scal,rel[O]

so that the upper bound would only have to be proven for the compliance
minimization and the lower bound for the type-I superconductor problem. Nev-
ertheless, in the next section we shall present the proof of the upper as well
as the lower bound in the context of compliance minimization, since the con-
vex duality proof of the lower bound is very instructive and intuitive, and the
Fourier-type argument for the lower bound will form the basis for the analysis
of a compliance minimization scaling law in the more complicated case of an
imposed shear load.

Note that the scaling law of the type-I superconductor problem has already
been proven in [9] (improved estimates for extreme regimes of small or large
applied field in 3D are given in [10]). The lower bound is obtained by simply
observing that the energy is larger than the energy of a particular micromagnetic
pattern formation problem with known energy scaling law. This micromagnetic
scaling law was derived in 2D in [11], following the classic approach due to
Kohn and Müller [18] which we also present for compliance minimization in
Section 2.2.1, and in 3D in [12], where the argument is based on interpolation
inequalities whose derivation is not unlike the Fourier-based proof of the lower
bound presented in Section 2.2.2.

2 Energy scaling of optimal elastic design for
uniaxial load

In this section we prove the energy scaling law Theorem 1 for the load case from
Figure 1 and the compliance minimization energy

Jε,F,`[O] = min
σ∈ΣOad

∫
O
|σ|2 dx+ Vol(O) + εPer(O) .
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As previously discussed, for nonzero ε one pays an excess energy over J∗,F,`0 =
infO⊂Ω J0,F,`[O]. By identifying O with all those points in Ω where the stress
field is nonzero, we can express this infimum as

J∗,F,`0 = inf
σ∈ΣΩ

ad

∫
Ω

g(σ) dx with g(σ) =

{
0 if σ = 0 ,

|σ|2 + 1 else.

The integral is not lower semi-continuous with respect to a weakly converging
sequence of stress fields σ so that the infimum is not achieved, however, one
may replace the infimum by the minimum of the lower semi-continuous envelope,
which is obtained by quasi-convexifying the integrand g and which in [19, 20, 21]
is shown to be

J∗,F,`0 = min
σ∈ΣΩ

ad

∫
Ω

g̃(σ) dx with g̃(σ) =

{
2(|σ1|+ |σ2| − |σ1σ2|) if |σ1|+ |σ2| ≤ 1,

1 + σ2
1 + σ2

2 else.

The minimum value J∗,F,`0 = 2`|F | for |F | ≤ 1 is achieved by σ = σ̂.
Intuitively, due to the uniaxial load geometry only one row of the stress

field σ contributes to the relaxed energy. For integrands with vector-valued
arguments, quasi-convexification is equivalent to convexification, and indeed we
also have J∗,F,`0 = minσ∈ΣΩ

ad

∫
Ω
g∗∗(σ) dx for the convexification g∗∗ of g with

g∗∗(σ) = 2|σ| if |σ| < 1 and g∗∗(σ) = 1 + |σ|2 else. This gives a hint as to why
convex duality techniques suffice for the proof of a lower bound in Section 2.2.1.

We will next prove the upper bound and then provide two different argu-
ments for the lower bound. In the following, for two expressions A and B we
shall abbreviate by A . B that there exists an independent constant C for
which A ≤ CB. A & B will be used equivalently to B . A, and A ∼ B shall
stand for A . B and B . A.

2.1 Upper bound: A classical branching construction

Close to the center x2 ∼ 1
2 , near-optimal structures must be very coarse to save

interfacial energy, while the material must be distributed quite evenly along the
boundary x2 ∼ 0, x2 ∼ 1 in order to support the load. Hence one may expect
a stepwise structural refinement from the center to the boundary via branching
(cf. Figure 1), similar to constructions known from type-I superconductors [9].
As is most useful for branching constructions, we shall proceed in the standard
steps; also we just consider the upper half x2 ∈ [ 1

2 , 1] for the construction since
the lower one will be symmetric.

Step 1. Specify the geometry of a unit cell and find its excess energy
and optimal aspect ratio. The typical tree-like branching structure from
type-I superconductors or similar problems (Figure 2) does not suffice since all
branches will bend towards each other under load, producing lots of compliance.
However, by introducing a cross-truss in between all branching pairs, the tree
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Figure 2: Left: Classical branching structure describing the pattern emerging
in intermediate states of type-I superconductors. Right: Deformation of the
same structure under a tension load. All branches bend, which results in a high
compliance.

� -
w

?

6

l

??????1

6661 6661

1

2 3
��

4

5

3
?

6

l

� -w/2

�α��:��9
b

?

6a
σ1 = ( sinα

cosα )⊗ ( sinα
cosα )

σ2 =
(−1 0

0 0

)
σ3 = ( 0 0

0 1 )

σ4 = ( 1 0
0 1 )

σ5 = cosα
(− cosα sinα

sinα cosα

)

Figure 3: Sketch of a unit cell; the domains of constant stress are numbered.
The right graph serves to indicate the geometric parameters.
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turns into a truss structure in which each truss is either compressed or dilated,
which costs much less than bending.

The unit cell of width w and height l is depicted in Figure 3. The total
normal load acting on its top or bottom is given by |F |w. In order to have
uniaxial stress of magnitude 1 in each truss (which from the convexification of

g we know to be a preferred value) we choose a = |F |w
2 tanα and b = |F |w

2 cosα ,
where tanα = w/4l and we will ensure w/l ≤ 1. The excess energy over the
relaxed energy 2|F |wl per unit cell for ε = 0 can then be estimated as

∆Jcell = Compcell+Volcell+εPercell−2|F |wl ∼ 2(2 l
cosαb+a

w
2 )+4ε l

cosα+2εw2−2|F |wl

∼ 2|F |wl (w
2

16 + l2) + |F |w
3

8l + 4ε

√
l2 + w2

16 + εw− 2|F |wl ∼ |F |w
3

l + ε(l+w) ,

which is minimized by l =
√
|F |w3/ε. We thus choose the dimensions from

Figure 3 as

l =

√
|F |w3

ε , α = arctan( 1
4

√
ε
|F |w ) , a = 1

8

√
|F |wε , b = |F |w

2

√
1 + ε

16|F |w .

Using the stress field given in Figure 3, a detailed but straightforward calculation
of the total excess energy of the unit cell reveals

∆Jcell(w) .
√
|F |w3ε

under the condition w < l.

Step 2. Compute coarsest unit cell width and estimate total bulk
energy. At x2 = 1

2 the width wcoarse of the unit cells will be largest, and it
will be halved with each new layer of unit cells, i. e. the kth layer has unit cell
width wk = wcoarse/2

k and height lk =
√
|F |w3

k/ε = 2−3k/2
√
|F |w3

coarse/ε. The
total height of Ω equals the accumulated height of the unit cell layers. Hence,
using n layers,

1 = 2

n∑
k=0

lk = 2

√
|F |w3

coarse

ε

n∑
k=0

2−
3k
2 ∼

√
|F |w3

coarse

ε ,

which implies

wcoarse ∼ 3

√
ε
|F | .

The width of the coarsest unit cell has to be smaller than the width ` of Ω from
which we obtain the construction constraint

ε . `3|F | .

The total bulk excess energy can now be estimated from above by

∆Jbulk ≤
n∑
i=0

`
wi

∆Jcell(wi) ∼ `
wcoarse

∆Jcell(wcoarse) ∼ `|F | 13 ε 2
3 .
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Figure 4: Boundary layer at x2 = 1 with test stress field.

Step 3. Introduce boundary layer. We have to stop layering unit cells
as soon as wk reaches the same size as lk. This implies the maximum num-
ber of layers n = log2(|F |wcoarse/ε) ∼ 2

3 log2(|F |/ε) from which we obtain the
constraint ε . |F | for our construction. Furthermore, we have to introduce a
boundary layer between this nth layer and x2 = 1. The boundary layer and a
corresponding test stress field are shown in Figure 4. Note that wn ∼ ε

|F | so

that the volume of the boundary layer scales like `wn ∼ `ε
|F | , which is less than

`|F | 13 ε 2
3 as long as

ε ≤ |F |4 .

The contribution to the compliance is of the same order. Finally, the perimeter
contribution is of order `ε, which is even smaller so that altogether the boundary
layer does not interfere with the bulk energy scaling.

2.2 Lower bound: A real space and a Fourier approach

We will now prove the inequality

cF `ε
2
3 ≤ min

O⊂Ω
Jε,F,`[O]− J∗,F,`0 ,

where the constant cF scales like |F | 13 for |F | close to zero and is of order 1 for
|F | bounded away from zero. The first proof imitates the classical approach due
to Kohn and Müller [18] and provides a very intuitive idea of how the deforma-
tion of near-optimal structures will be distributed. To avoid technicalities, the
proof assumes that |F | is smaller than and bounded away from 1

2 . The second
approach to prove the lower bound is based on a refinement of the Hashin–
Shtrikman bounds for the effective elastic moduli of composite materials. This
proof attains the correct scaling in ε, but not quite the correct expression in
|F | for the prefactor in the case that |F | is small. Nevertheless we present this
proof since it is valid also for |F | ≥ 1

2 and furthermore forms the basis for the
analysis of compliance minimization under shear loads [17]. It is an open ques-
tion whether its deficiency of the suboptimal scaling in |F | can be remedied by
a refinement of the argument.

2.2.1 Lower bound by convex duality

Abbreviate minO JF,ε,`[O] by Ĵ and set ∆J = Ĵ − JF,∗,`0 = Ĵ − 2|F |`. From
∆J ≥ εPer(O) for the optimal O we obtain that there is a generic cross-section
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x2 = x̂2 ∼ 1
2 on which (up to a constant factor) there are at most ∆J

ε interfaces.

Furthermore, Ĵ ≥ Vol(O) implies that the material volume fraction on x̂2 may

be assumed to be less than a constant times Ĵ
` , which by the previous section is

. |F |. We shall try to compute the excess energy of such a configuration over

the relaxed energy JF,∗,`0 . Assume there are N material gaps on x2 = x̂2, their
union denoted by Γ̃ = ((a1, b1) ∪ . . . ∪ (aN , bN ))× {x̂2}. Then

JF,ε,`[O] = min
σ∈ΣOad

σn=0 on Γ̃

∫
O
|σ|2 dx+ Vol(O) + εPer(O) ≥ min

σ∈ΣΩ
ad

σn=0 on Γ̃

∫
Ω

g(σ) dx

which by convexification is greater than or equal to

min
σ∈ΣΩ

ad

σn=0 on Γ̃

∫
Ω

g∗∗(σ) dx = min
σ:Ω→R2×2

sym

σn=σ̂n on ∂Ω
σn=0 on Γ̃

sup
u:Ω→R2

∫
Ω

g∗∗(σ) + u · divσ dx

= min
σ:Ω→R2×2

sym

sup
u:Ω→R2

∫
Ω\Γ̃

g∗∗(σ)− ε(u) : σ dx+

∫
∂Ω

(σ̂n) · uda

≥ sup
u:Ω→R2

∫
Ω\Γ̃

min
σ∈R2×2

sym

g∗∗(σ)− ε(u) : σ dx+

∫
∂Ω

(σ̂n) · uda

= sup
u:Ω→R2

∫
Ω\Γ̃
−g∗(ε(u)) dx+

∫
∂Ω

(σ̂n) · uda ,

where the Lagrange multiplier u ∈ H1(Ω;R2) has the interpretation of a dis-
placement and the Legendre–Fenchel dual g∗ to g is given by

g∗(ε) = (g∗∗)∗(ε) =

{
0 if |ε| ≤ 2,
|ε|2
4 − 1 else.

Summarizing, the excess energy ∆J is bounded below by

sup
u:Ω→R2

|ε(u)|≤2 on Ω\Γ̃

∫
∂Ω

(σ̂n) · uda− 2|F |` .

We now construct an appropriate test displacement u. Without loss of gener-
ality assume the case of σ̂ being a tension load (for σ̂ a compression the direction
of the displacement is just reversed). The test displacement u is chosen to pull
the fissures Γ̃ open (cf. Figure 5): Take the ansatz

u =
(

0
2ηx2

)
+2f(x1)

(
0

sgn(x2−x̂2)

)
, Du =

(
0 0

±2f ′(x1) 2η

)
, ε(u) =

(
0 ±f ′(x1)

±f ′(x1) 2η

)
for some η ∈ R and f : R→ R so that |ε(u)|2 = 4η2 + 2f ′(x1)2. We choose

f(x) =
√

2(1− η2)


x− ai if x ∈ [ai,

ai+bi
2 ],

bi − x if x ∈ [ai+bi2 , bi],

0 else.
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Figure 5: Illustration of the domain Ω with the material gaps Γ̃ and of the test
displacement, a uniform vertical dilation by the factor 2(1 + η) superimposed
with a piecewise linear deformation pulling the fissures Γ̃ open.

Introducing di = bi − ai and d = 1
N

∑N
i=1 di, we directly obtain

∫
∂Ω

(σ̂n) · uda− 2|F |` = 2|F |

[
`(η − 1) +

√
1−η2

2

N∑
i=1

d2
i

]

≥ 2|F |
[
`(η − 1) +

√
1−η2

2 Nd2

]
≥ 2|F |`

(√
1 + (Nd)4

2N2`2 − 1

)
,

where the last step comes from minimization over η, yielding η2 = 1/(1+ (Nd)4

2N2`2 ).

Using Nd & (` − Ĵ) ∼ ` (here we exploit that |F | lies well below 1
2 ) as well as

N . ∆J
ε . `|F |1/3ε−1/3 (from the previous section) we arrive at the bound

∆J & 2|F |`

(√
1 + 1

2

(
ε
|F |
)2/3 − 1

)
& `|F | 13 ε 2

3 ,

where we used that ε < |F |.

2.2.2 Lower bound via refined Hashin–Shtrikman bounds

The lower Hashin–Shtrikman bound [15] provides lower estimates on the elastic
moduli of composite materials. In particular, given an applied stress field, the
Hashin–Shtrikman bound tells us the least compliance with respect to that stress
that a microstructured material with prescribed material fraction can have. A
neat derivation in discrete Fourier space is given in [3]. We will refine that
calculation for our setting in order to extract

(a) the energy costs associated with a deviation of the material trusses from
the vertical direction and

(b) the costs associated with a deviation from the optimal material volume.

These two pieces of information will be combined with

(c) a Fourier-estimate that encodes the strict pointwise boundary condition
σn = σ̂n for the material stress σ and

13



(d) a Fourier-estimate of Per(O)

to yield the desired bound.
Let χ : Ω→ {0, 1} be the characteristic function of the optimal geometry O

and θ = 1
Vol(Ω)

∫
Ω
χ(x) dx be its volume fraction. Furthermore define γ : R2 → R

by γ = χ − θ on Ω, extended by zero outside Ω. For k ∈ R2 \ {0} abbreviate

k̂ = k
|k| and denote the Fourier transform of a function f : R2 → R by

f̂(k) =

∫
R2

f(x)e−2πik·x dx

(the inverse Fourier transform is given by ǧ(x) =
∫
R2 g(k)e2πik·x dk). Finally, let

Σ0
ad denote the symmetric divergence-free tensor fields on R2 vanishing outside

Ω,
Σ0

ad = {η : R2 → R2×2
sym |divη = 0 in R2, η = 0 in R2 \ Ω} .

Note that those tensor fields have a zero normal component on ∂Ω, ηn = 0.
Repeating and adapting the calculation in [3], the refined Hashin–Shtrikman
bound is obtained as follows:

Comp(O) + Vol(O)

= min
η∈Σ0

ad

(σ̂+η)(1−χ)=0 on Ω

∫
Ω

|σ̂ + η|2 + χdx

≥ lim sup
K→0

min
η∈Σ0

ad

∫
Ω

χ|σ̂ + η|2 + χ+ (1− χ)K−1|σ̂ + η|2 dx

= lim sup
K→0

min
η∈Σ0

ad

∫
Ω

|σ̂ + η|2 + χ+ (1− χ)(K−1 − 1)|σ̂ + η|2 dx

= lim sup
K→0

min
η∈Σ0

ad

∫
Ω

|σ̂ + η|2 + χ+ (1− χ) max
τ

[
2(σ̂ + η) : τ − (K−1 − 1)−1|τ |2

]
dx ,

using Fenchel duality in the last step. Assuming the strain τ to be spatially
constant and exploiting

∫
Ω
η dx = 0, the previous expression is greater than or

equal to

min
η∈Σ0

ad

∫
Ω

|σ̂ + η|2 + χ+ (1− χ)2(σ̂ + η) : τ dx

=Vol(Ω)(|σ̂|2 + 2(1− θ)σ̂ : τ + θ) + min
η∈Σ0

ad

∫
R2

|η|2 − 2γη : τ dx

≥`(|σ̂|2 + 2(1− θ)σ̂ : τ + θ) + min
η̂(k)∈R2×2

sym and η̂(k) k=0 for all k∈R2

∫
R2

|η̂|2 − 2γ̂η̂ : τ dk

using Parseval’s identity. Letting superscript ⊥ denote a counter-clockwise ro-
tation by π

2 , this expression is minimized by η̂ = γ̂(k̂⊥ · τ k̂⊥)k̂⊥ ⊗ k̂⊥, yielding

`(|σ̂|2 + 2(1− θ)σ̂ : τ + θ)−
∫
R2

|γ̂|2|k̂⊥ · τ k̂⊥|2 dk
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=`(|σ̂|2 + 2(1− θ)σ̂ : τ + θ − θ(1− θ) max(τ2
1 , τ

2
2 )) +

∫
R2

|γ̂|2[max(τ2
1 , τ

2
2 )− |k̂⊥ · τ k̂⊥|2] dk ,

using
∫
R2 |γ̂|2 dx =

∫
Ω
|γ|2 dx = `θ(1−θ). Here, τ1 and τ2 denote the two singular

values of τ . The integral is non-negative, and the remainder is maximized
by τ = σ̂

θ , which we shall assume from now on. Given this τ , the integrand

behaves like F 2

θ2 |γ̂|2 k2
2

k2
1+k2

2
so that altogether the excess compliance and volume

are estimated below by

∆Jelast = Comp(O) + Vol(O)− J∗,F,`0

& `( 1
θF

2 + θ − 2|F |) + F 2

θ2

∫
R2

|γ̂|2 k2
2

k2
1+k2

2
dk

= ` (|F |−θ)2

θ + F 2

θ2

∫
R2

|γ̂|2 k2
2

k2
1+k2

2
dk .

This estimate quantifies the penalty for deviating from the material fraction
θ = |F | and for the Fourier coefficients of χ or rather γ lying away from the
horizontal axis.

Since from the upper bound we know ∆Jelast . `|F |1/3ε2/3, we directly see

|F |1/3ε2/3 & (|F |−θ)2

θ = |F |( |F |θ − 1)(1 − θ
|F | ), which can be solved for |F |θ to

yield |F |θ = 1 +O((ε/|F |)1/3) ∼ 1. Hence, we may reduce the above estimate to

∆Jelast &
∫
R2

|γ̂|2 k2
2

k2
1+k2

2
dk .

The fact that the structure O stops abruptly at x2 = 0, 1 and has to bear
a load there enters via the continuous Fourier space analog of [12, Lemma 2.4],
which essentially says that the major L2-mass of a (characteristic) function with
support in Ω lies beyond the k2-frequency |k2| = 1 in Fourier space. For the sake
of completeness and readability, let us briefly reproduce the short argument:∫

R
|γ̂|2 k2

2

k2
1+k2

2
dk2 ≥

∫
|k2|> 1

4

|γ̂|2 k2
2

k2
1+k2

2
dk2

≥ 1
16k2

1+1

(∫
R
|γ̂|2 dk2 −

∫
|k2|≤ 1

4

|γ̂|2 dk2

)
≥ 1

2
1

16k2
1+1

∫
R
|γ̂|2 dk2 ,

where in the last step we have used |f̂ |2 ≤ ‖f‖2L2([0,1]) = ‖f̂‖2L2(R) for any

f : [0, 1]→ R by Hölder’s inequality so that
∫
|k2|≤ 1

4
|γ̂|2 dk2 ≤ 1

2

∫
R |γ̂|

2 dk2. By

Fubini’s theorem we thus arrive at

∆Jelast &
∫
R2

|γ̂|2 1
1+k2

1
dk .
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Finally, we estimate the perimeter Per(O) in Fourier space by a technique
analogous to the proof of [16, Lemma 3]:

Per(O) &
1

L

∫ 2L

L/2

1

s
‖γ−γ(·+s, ·)‖2L2(R2) ds ∼ 1

L2

∫ 2L

L/2

∫
R2

|γ̂(k)(1−e2πisk1)|2 dk ds

≥ 1

L2

∫
L|k1|≥1

|γ̂|2
∫ 2L

L/2

|1− e2πisk1 |2 dsdk &
1

L

∫
L|k1|≥1

|γ̂|2 dk

for any (small) length scale L > 0.
Combining the estimates for ∆Jelast and Per(O) and assuming L . 1,

∆Jelast

L2
+ LPer(O) ∼ ∆Jelast(1 + 1

L2 ) + LPer(O)

& (1 + 1
L2 )

∫
L|k1|≤1

1
1+k2

1
|γ̂|2 dk +

∫
L|k1|≥1

|γ̂|2 dk ≥
∫
R2

|γ̂|2 dk = `θ(1− θ) .

The choice L = ε
1
3 now yields

∆Jelast + εPer(O) & `θ(1− θ)ε 2
3 & `|F |ε 2

3 .

For |F | bounded away from 0, this bound behaves like `ε
2
3 , which was to be

shown. For |F | close to zero, however, note that the obtained scaling in |F | is
suboptimal.

3 Discussion

Let us here briefly comment on the differences between the structural design
task treated here and related problems.

Compared to the geometry optimization problem under a scalar PDE con-
straint, minO⊂Ω Jε,F,`scal , the energy scaling is the same (cf. Section 1.4). Further-
more, as explained in Section 1.4, the two rows of a stress field can be inter-
preted as two decoupled fluxes of a scalar quantity so that any test geometry
and associated test stress for Jε,F,` yield a test geometry and test flux for Jε,F,`scal .
However, the opposite is not true so that both optimization problems are not
equivalent. Indeed, a geometry with optimal energy scaling for Jε,F,`scal is typically
not sufficient for Jε,F,`. The reason lies in the fact that elastic deformations sat-
isfy two balance equations instead of a single one: the conservation of linear
momentum, which expresses that the stress field is divergence-free (a condition
also present in the scalar problem), as well as the conservation of angular mo-
mentum, which can be expressed as a symmetry constraint on the stress and is
special to the elasticity setting. The symmetry of the stress tensor implies that
its rows are actually not two independent fluxes. Choosing a near-optimal flux
for Jε,F,`scal as one row of the stress field thus induces a constraint for the other
row, which typically produces very unfavorable energy. Mechanically, this ad-
ditional conservation of angular momentum manifests as energy-costly bending
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Figure 6: Construction for perturbed load boundaries.

of the geometry (cf. Figure 2). As a remedy, cross-trusses have to be introduced
as in Figure 1.

In case of an applied shear load σ̂ = ( 0 F
F 0 ), the energy scaling is different

(for details we refer to [17]). A shear load can be interpreted as a superposi-
tion of a uniaxial tension and an orthogonal uniaxial compression. Hence, in a
near-optimal geometry we expect to see branching trees similar to the construc-
tion from Section 2.1, only in two orthogonal directions. It turns out that the
branching trees occur on two different scales: along one direction they extend
over the whole domain (just as for the uniaxial load), along the other direction
they only connect the different larger branching trees. In [17], the proof of the
lower bound is based on a refinement of the Hashin–Shtrikman bounds analo-
gous to Section 2.2.2. The ingredients (a) to (d) are essentially the same, only
they have to be adapted and augmented by two further estimates: estimate (a)
now has to express the cost associated with a deviation of the geometry from
the two preferred orthogonal directions, and the two additional estimates penal-
ize an unbalanced material distribution and an unbalanced spatial distribution
between the two directions.

Finally, let us note that slight variations of the load geometry will not alter
the energy scaling. For instance, the proofs of lower and upper bound still
apply if at x1 = 0 and x2 = ` we consider periodic instead of homogeneous
Neumann boundary conditions. Also, if the upper and lower boundary are
slightly perturbed normally into a smooth but e. g. no longer straight curve, the
proof of the lower bound remains valid with the obvious modifications, while the
construction has to be adapted a little as indicated in Figure 6: unit cells are
shifted up or down and connected to unit cells on the next hierarchy level via
vertical struts. As a final note on the corresponding 3D problem, in analogy to
the pattern formation in type-I superconductors [10] we expect a richer behavior
with a number of different optimal geometries for different regimes. Future work
will deal with this and other 3D cases.
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[2] Grégoire Allaire. Shape optimization by the homogenization method, volume
146 of Applied Mathematical Sciences. Springer-Verlag, New York, 2002.
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[4] Grégoire Allaire, Francois Jouve, and Anca-Maria Toader. Structural op-
timization using sensitivity analysis and a level-set method. Journal of
computational physics, 194:363–393, 2004.

[5] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded
variation and free discontinuity problems. Oxford Mathematical Mono-
graphs. Oxford University Press, New York, 2000.

[6] M. P. Bendsøe and O. Sigmund. Topology optimization: theory, methods
and applications. Springer-Verlag, Berlin, 2003.

[7] B. Bourdin and A. Chambolle. Design-dependent loads in topology opti-
mization. ESAIM Control Optim. Calc. Var., 9:19–48, 2003.

[8] Antonin Chambolle. A density result in two-dimensional linearized elas-
ticity, and applications. Archive for Rational Mechanics and Analysis,
167(3):211–233, 2003.

[9] R. Choksi, R. V. Kohn, and F. Otto. Energy minimization and flux domain
structure in the intermediate state of a type-I superconductor. J. Nonlinear
Sci., 14(2):119–171, 2004.

[10] Rustum Choksi, Sergio Conti, Robert V. Kohn, and Felix Otto. Ground
state energy scaling laws during the onset and destruction of the intermedi-
ate state in a type I superconductor. Comm. Pure Appl. Math., 61(5):595–
626, 2008.

[11] Rustum Choksi and Robert V. Kohn. Bounds on the micromagnetic energy
of a uniaxial ferromagnet. Comm. Pure Appl. Math., 51(3):259–289, 1998.

[12] Rustum Choksi, Robert V. Kohn, and Felix Otto. Domain branching in
uniaxial ferromagnets: a scaling law for the minimum energy. Comm. Math.
Phys., 201(1):61–79, 1999.

[13] P. G. Ciarlet. Three-dimensional elasticity. Elsevier Science Publishers B.
V., 1988.

[14] Sergio Conti, Harald Held, Martin Pach, Martin Rumpf, and Rüdiger
Schultz. Risk averse shape optimization. SIAM Journal on Control and
Optimization, 49(3):927–947, 2011.

[15] Z. Hashin and S. Shtrikman. A variational approach to the theory of the
elastic behaviour of multiphase materials. J. Mech. Phys. Solids, 11:127–
140, 1963.

18
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