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Executive Summary

Inertial navigation systems are used in many situations where the use of an
external reference to measure position is impractical or unreliable. Typical
inertial navigation systems used in aeronautics and marine applications are
highly advanced pieces of equipment costing thousands of dollars. However,
inexpensive accelerometers and angular rate sensors (gyros) can be used to
make a far less accurate inertial navigation unit for around $100.

Applications of such systems include human motion tracking for capturing
gestures, or enhancement of existing sensor systems like GPS or magnetic
compasses. The design implemented in this report uses three Analog Devices
MEMS rate gyros, a three-axis Kionix MEMS accelerometer, and a Microchip
dsPIC 16-bit microcontroller.

Proper calibration is explored as a means of improving the system accu-
racy, as the parameters of the sensors used are not as stable or as closely
specified as their more advanced counterparts. A least squares approach is
used to estimate the accelerometer and the gyro bias parameters by holding
the inertial navigation system in a set of different orientations.

A software design for the system is presented and the performance is
evaluated using static tests. The system is found to have an approximate
position error of 0.17 m and velocity error of 0.3 m/s after one second, making
it potentially useful for increasing accuracy of a GPS system, where typical
accuracies are in the 1 to 3 meter range.
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I Introduction

1. Overview of Navigation

There are many instances where it is desirable to know the position and
velocity of an object for purposes of navigation or guidance. These include
household robots, hikers, land, sea, and air vehicles, missiles, and spacecraft.
Position information is also used for surveying or mapping, as well as remote
tracking of position. There are many other examples.

Methods of measuring position and velocity are just as numerous. They
include fixed land references such as beacons, devices measuring motion rel-
ative to a fixed medium such as the ground, atmosphere, or earth’s magnetic
field, and satellite navigation systems like GPS. However varied all these
methods may be, they all resemble each other in that they involve measure-
ment with respect to a reference with known position and velocity. On one
hand, this is part of the nature of the problem, since position is by definition
relative. However, there are numerous cases where a moving object’s initial
position is known, but its subsequent motions cannot be conveniently tracked
with respect to a reference. In these cases, an inertial navigation system is
used.

Examples of such applications include submarines, which cannot use radio
navigation due to water’s opacity to radio waves, and are a prominent early
example of inertial navigation [12]. Aircraft are perhaps the most important
application today, because they often travel in conditions of low visibility
and must be able to maintain level flight without ground references. Missiles,
especially ballistic missiles, are designed to operate in an environment where
any given reference might be jammed or destroyed by the enemy.

Even in cases where a reference is normally available, it might be nec-
essary to use an inertial navigation system in case of a momentary outage.
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This specifically applies to GPS and other radio navigation systems, which
can become unavailable unexpectedly and for minutes at a time due to bad
weather or other blockage of the signal. In cities and other obstacle- rich
environments, a GPS signal can be quite difficult to obtain, which impedes
GPS navigation by car.

Finally, even in cases where the external reference is currently available,
it is often desirable to combine the outputs of multiple sensors, in order to
increase precision. These latter two cases are where an inertial navigation
system like the one described in this report can be helpful.

2. Inertial Navigation

An inertial navigation system (INS) uses two types of sensors called ac-
celerometers and gyros to measure its motion parameters. A prototypical
accelerometer contains a mass suspended on a spring, with some way of mea-
suring the extent to which the spring is compressed. When the accelerom-
eter’s body is accelerated, a force is transmitted to the mass through the
spring, causing the spring to stretch or contract. This can then be measured,
and results in a value proportional to the accelerometer’s acceleration.

A gyro is a device that measures the rate of rotation around the gyro
axis. The earliest gyros were actual spinning gyroscopes which, when ro-
tated perpendicularly to their spin axis, will produce a force which can be
measured. Today, Ring Laser Gyros and Fiber Optic Gyros are the most
common types of high-end gyro [8]. At the low end, numerous designs of
MEMS gyros exist. The type used in this project measures the coriolis effect
on a vibrating structure. This essentially the same principle as a spinning
wheel gyro, but instead of a continuous rotation, an oscillation is exploited.
Since the resonant frequency is higher for smaller structures, it is actually
possible to achieve greater sensitivity for smaller gyros [7].

In the early days of inertial navigation, the gyros were used in a feedback
loop with a motorized gimbal to keep the sensor in a desired orientation
for the duration of the mission. This is termed a stable platform INS. The
accelerometer readings then corresponded to the acceleration of the vehicle
in some useful coordinate frame. These could then be integrated to produce
velocity and again to produce position.

It is easy to see that over time, even a small inaccuracy in acceleration
measurement will result in an enormous error in position. This is the essential
limitation of an inertial navigation system. The AIRS (Advanced Inertial

6



Reference Sphere), which is used in the Minuteman III ICBM, has gyro drift
rates of 1.5 × 10−5 degrees per hour [1] (i.e. the estimated orientation will
be off by that much after an hour from the initial). However, it costs over a
million dollars and takes a year to assemble. A typical INS used on a ship
or in an airplane will have a drift rate of around 0.01 degrees per hour. Such
a device will have a position error drift of around 0.6 miles per hour [8], its
cost being around $20,000. The MEMS gyros used in this project might be
expected to have a drift of 1 to 10 degrees per hour, and the position error
drift over an hour is essentially infinite, but the cost might be around $100.

So-called strapdown systems, of which this project is an example, do
not use a stabilized platform, and use the gyro outputs to calculate the
orientation of the unit in a global coordinate frame, then perform a rotation
on the local acceleration to find acceleration in the global coondinate frame.
Although this eliminates the mechanical components of the gimbal, it is
significantly more demanding computationally. It also requires the gyros to
have a greater measurement range. However, in the context of a low-cost
MEMS system, a gimbal would not be justified, and it would cause more
power consumption than desirable in a small handheld or automotive device.

3. Potential of a MEMS INS

One of the inspirations for this project was an article called Navigating the
City in GPS World [5]. This article describes the use of a strapdown MEMS
INS in conjunction with GPS to reliably navigate a city in a car or by foot.
The periodic stops that a car makes at intersections were used to reset the
INS using the GPS estimate. This prevented the position estimate from
diverging, and allowed a reasonable trajectory plot.

A very meticulous design that used a commercial MEMS inertial mea-
surement system achieved around 1 km error in 5 minutes [11]. This is a
typical result for such systems, and makes them all but useless over times
much longer than a second. However, applying what are called non holo-
nomic constraints, which take into account the fact that the INS is mounted
on a vehicle and only certain types of motion are possible, reduced the error
to tens of meters over 20 minutes (varying with vehicle velocity).

If we casually assume that the rate of error divergence is linear, then a
5-minute 1 km error would lead to a 1-second error of 3 meters. Averaging N
measurements with equal variance reduces the variance by 1/

√
N (assuming

Gaussian noise). So given a GPS unit that outputs 3-meter RMS error
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Parameter Value
Position error 3 m per second
Velocity error 1 m/s per second

Cost $100

Table 1: Desired Performance for this INS design

positions once a second, the total error of the system will go down to around
2 meters. At the end of every measurement cycle, the new position is fed
back to the INS as a new initial value.

Adding the aforementioned non-holonomic constraints, or other constraints
that depend on the specific nature of the problem, can also improve things.
Human motion tracking is a popular application where motion is obviously
greatly constrained by the possible trajectories that a human appendage is
capable of making. Small unmanned aerial vehicles are another. In short,
there is a wide range of applications for a MEMS INS where one or both of
the following conditions are met:

• A model exists to constrain what motion is possible

• The INS is augmented by another sensor or set of sensors

The desired goals for this INS design are therefore not very restrictive, but
a demonstrated performance of a few kilometers error in a few minutes would
place it in the range of existing designs. To be at all practical, the MEMS
INS must be significantly cheaper to justify its lack of precision. Table 1
summarizes desired project performance.

II Hardware Design

1. Component Selection

The most important component of the design is, of course, the MEMS sensors
themselves. These were not selected at all, because some were available on
hand, and all MEMS sensors that are available today are fairly comparable
to each other. The accelerometer used is a Kionix KXM52-1050 three-axis
accelerometer with a dynamic range of ±2g, costing around $20 per unit. The
gyros are three Analog Devices ADXRS401s which have a range of ±70o/s
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Model Range RMS Noise Sensitivity Bandwidth Cost
Gyros

Analog ADXRS401 ±70o/s 0.05 o/s/
√

Hz 15 mV/o/s 40 Hz $22.00

Silicon Sensing CRS03 ±100o/s 0.05 o/s/
√

Hz 20 mV/o/s 10 Hz $304.00
Accelerometers

Kionix KXM52 ±2g 50 µg/
√

Hz 1 V/g 3 kHz $20.00

Analog ADXL322 ±2g 220 µg/
√

Hz 420 mV/g 2.5 kHz $3.75

MEMSic MXR7202GL ±2g 300 µg/
√

Hz 300 mV/g 20 Hz $9.30

STMicro LIS3L02 ±2g 50 µg/
√

Hz 1 V/g 100 Hz ?

Table 2: A comparison of some available MEMS sensors (bold indicates what
was used)

and likewise cost around $20 per unit. This leaves around $20 for the rest of
the hardware. Table 2 summarizes the performance of the MEMS sensors,
with some other models included for comparison. The sensitivity, RMS noise,
and bandwidth all come into play in the final performance of the INS, but
in ways that aren’t very straightforward. According to a qualitative table
in Bar-Shalom ([4], p.500), both of these sensors are in the medium to low
category of inertial sensor performance based on their noise specifications.
This means they would not even be considered for a true INS in an aircraft
or missile, but we will use them.

The design of the hardware is primarily driven by cost. Given greater
computing resources, the performance of the INS could be increased some-
what, but it seems that more than doubling the price for a 40 MHz 32-bit
PowerPC type processor is not worth the gain in performance that is in the
end still limited by the sensors. There are plenty of cheap 8-bit microcon-
trollers on the market. However, the Microchip dsPIC platform was selected
for its 16-bit capability. The dsPIC 30F2012 was used for this design. It
includes 10 12-bit A/D channels, and can run at up to 30 MHz. It also
comes in a convenient DIP package, has free development tools, and is easy
to program. The 16-bit processing, however, is the crucial bit, since it halves
the processing time for 16-bit quantities, which all of our state parameters
must be to have any acceptable precision. Hardware floating point would be
even nicer, but no inexpensive microcontrollers have one.

The dsPIC 30F2012 cost $10, bringing the total cost of the design to $90
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excluding discrete parts, connectors, and the printed circuit board. In large
quantities the total will not exceed $100 in parts, or at least not by much.

2. Circuit Design

A printed circuit board was fabricated using the ExpressPCB service with a
ground plane, separate power buses for analog and digital circuits, and plenty
of decoupling capacitors. Appendix 1 includes the circuit diagram and the
PCB layout. See Figure 1 for photographs of the board. Overall, the noise
reduction techniques practiced seem to have helped, given that the RMS
noise on the analog power line was measured at 8 mV at the A/D reference
input, in comparison to the RMS noise on the digital line which was 50 mV.
The gyro power lines had an RMS noise of 3 mV. Clearly, the less noise
the better, because, as explained above, the smallest error accumulates over
time.

A serial interface chip is included on the board for PC communication,
and four pins are reserved for data transfer to another device (say, one that
does INS/GPS integration). Three of the ADC channels are used for the
accelerometer axes, three for the gyro axes, and one for a gyro temperature
output which is used to compensate for bias drift due to temperature. A 20
MHz crystal using the 4/3 on-chip PLL achieves a clock rate of 26.6 MHz.

The total current draw at 9V for the circuit was found to be 0.1 A,
which is considerable, but could be reduced by around a factor of three using
switching and/or low-dropout regulators (linear voltage regulators are about
37% efficient).

3. Processor Time Budget

There are three essential things that the INS must do. First, it must read the
A/D inputs at the required rate, then convert them into some useful form,
then output them. It may also need to accept initial conditions or commands
as inputs.

To start with, the sampling rate for the sensors must be more than twice
the sensor bandwidth (the Nyquist Criterion). For the gyros this means
more than 80 Hz. Note that in an INS on a military jet , the gyro would be
updated at a much higher frequency, 2 kHz or so. For a gimballed system,
30 Hz would be sufficient [8]. For the accelerometers, it means more than 6
kHz. Since fundamentally, the position estimation can only be updated as
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often as the gyro data, the accelerometer data can be sampled at the full
rate and averaged, or low pass filtered and only sampled at the gyro rate. It
seems that the first approach should be better for noise.

The time to sample and convert three channels from the A/D converter
was determined experimentally to be 84µs. If sleep mode is entered before
sampling (to reduce noise from the microcontroller operation), the time goes
up to a minimum of 90µs but can go as high as 400µs. This depends on how
long the oscillator takes to restart after being shut off. Getting all 7 inputs in
sleep mode takes at least 350µs. Since the gyro inputs are sampled less often
than the accelerometers, it makes sense to use sleep mode for them, and not
use sleep mode for the accelerometers. 80 times 350 µs is 28 ms. 6000 times
84 µs is 0.5 s. So, using the full sampling rate, around half the processor
time is consumed sampling the gyro and accelerometer data. This can be
decreased should there be time constraints. This leaves 2166 instruction
cycles per accelerometer sample. We will see in the software design section
just what needs to be done in this time.

III INS Mechanization

1. Basic Concepts

Mechanization is a fancy term used to describe the mathematical analysis of
INS data to generate velocity and position information in a useful coordinate
frame. In this section the basic design for the INS mechanization will be de-
scribed. The implementation will be discussed in more detail in the software
design section.

The basic information found by the sensors is the acceleration â and
angular velocity ω̂. The main complication is that â includes the actual
acceleration, the force of gravity, and (to a small extent) the coriolis effect of
earth’s rotation on a moving object. If the direction of the gravity vector is
known exactly, it can be subtracted from the â and all is well. However, the
estimated attitude of the INS will gradually diverge from its true attitude
because of errors in the gyros. As this happens, the gravity vector will no
longer be correctly subtracted from â and then the acceleration will appear to
be bigger than it actually is. This causes the velocity and position estimates
to diverge. Hence, estimating attitude is just as important if not more so
than estimating velocity itself.
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Figure 1: Top and bottom views of INS board

Various coordinate frames have been referred to casually in this report but
it is now time to define them with slightly more rigor. The local coordinate
frame of the INS, with respect to which it makes all of its measurements, will
be called the body frame. There are numerous possible choices for a more
global frame, but we will choose what are called navigation coordinates,
which use the local vertical, north, and east directions centered on the INS.
Many systems use earth centered coordinates that make it easier to take
earth’s curvature into account, but since our INS is useless over the time it
would take to travel a significant distance on the earth, the local coordinates
will suit us just fine. Furthemore, they are intuitive to people, which makes
them easy to use. Further, instead of working in terms of latitude, longitude,
and altitude for position, we will work with location relative to the initial
position and convert as necessary.
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At every measurement cycle, the INS must find the coordinate transfor-
mation matrix from body to navigation coordinates based on the integrated
gyro measurements, then use that to transform the accelerometer readings
into the navigation frame. At that point the gravity vector is subtracted,
and the velocity, attitude, and position are updated.

2. Some Math

The best treatment of the INS measurement equations, online or in print, has
been found in Shin [11]. It appears that the traditional method of passing
along knowledge about INS design is through expensive seminars taught by
INS engineers. Perhaps this is due to the fact that INS have historically
been developed by defense companies that do not have the same level of
openness as academia. In any case, it seems that few sources exist that
offer a comprehensive discussion of INS design and are written after 1970
(all INS developed before about 1980 were gimballed). Shin himself got
his information from one of the aforementioned seminars. In any case, the
mechanization equations are mostly based on his presentation.

High-performance INS must take into account the earth’s angular velocity
about its axis, which is easily computed as Ωe = 7.27 × 10−5 rad/sec. Our
gyros have a sensitivity of 15 mV/o/s, so the earth’s rotation would translate
to 1 µV. It can therefore be safely ignored. The coriolis effect mentioned
above is the angular velocity of the navigation frame with respect to an
inertial frame (usually a nonrotating frame centered at the earth’s center).
The navigation frame rotates due to the earth’s rotation, as well as the INS
motion along the earth’s surface. Thus,

ωin =




Ωe cos(φ) + vE/Re

−vN/Re

−Ωe sin(φ)− vE tan(φ)/Re




Where φ is the current latitude and vE and vN are east and north velocity.
Re ∼ 6 × 106 m is earth’s radius. Given a latitude of 45o and velocity
of 1 m/s both east and north, the resulting acceleration is ac = ωin × v.
‖ac‖ = 1.26 × 10−4g. This is not quite as insignificant as the gyro effect.
However, considering that the accelerometer sensitivity is 1 V/g, this comes
out to 0.1 mV, ten times smaller than the A/D converter can sense. The v/Re

terms turn out to be much smaller than the earth rotation terms for small
velocities, so ‖ac‖ is roughly linear in ‖v‖. It becomes 1 mg at ‖v‖=14 m/s,
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which is 32 miles per hour. So this term might be of marginal importance in
highway driving, but certainly not in human motion. It will be included for
completeness.

So the first two measurement equations for our INS are:

ṙn = vn (1)

v̇n = Cn
b â− ac − g (2)

where r is position and v is velocity (the n subscript indicates that it is in
the navigation frame). Cn

b is the coordinate transformation matrix, which
must be now found.

A mathematical entity called the quaternion comes into play. This is
the generally used method of coordinate rotation for strapdown systems [7].
There is much to be said about them, but they will be treated here simply
as four-vectors. Given three angles θx, θy, θz, representing roll, pitch, and
yaw, the corresponding quaternion is:

q =




sin(1
2
θx) cos(1

2
θy) cos(1

2
θz)− cos(1

2
θx) sin(1

2
θy) sin(1

2
θz)

cos(1
2
θx) sin(1

2
θy) cos(1

2
θz) + sin(1

2
θx) cos(1

2
θy) sin(1

2
θz)

cos(1
2
θx) cos(1

2
θy) sin(1

2
θz)− sin(1

2
θx) sin(1

2
θy) cos(1

2
θz)

cos(1
2
θx) cos(1

2
θy) cos(1

2
θz) + sin(1

2
θx) sin(1

2
θy) sin(1

2
θz)


 (3)

This is useful for initialization. Further, the derivative of a quaternion is
simply q̇ = 1

2
qωq, which in matrix form is:

q̇ =
1

2




0 ωz ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0


 q (4)

Shin presents the corresponding equation in discrete time ([11], p.23):

∆θ =
√

∆θ2
x + ∆θ2

y + ∆θ2
z (5)

s =
2

∆θ
sin(

∆θ

2
) (6)

c = 2(cos(
∆θ

2
− 1) (7)

qk+1 = qk +
1

2




c s∆θz −s∆θy s∆θx

−s∆θz c s∆θx s∆θy

s∆θy −s∆θx c s∆θz

−s∆θx −s∆θy −s∆θz c


 qk (8)

14



=
1

2
Ω(k)qk (9)

(10)

Where the elements of ∆θ are just the elements of ω̂ multiplied by the gyro
sampling period.

Finally, the matrix Cn
b is formed from q:

Cn
b =




(q2
1 − q2

2 − q2
3 + q2

4) 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) (q2

2 − q2
1 − q2

3 + q2
4) 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) (q2
3 − q2

1 − q2
2 + q2

4)


 (11)

This is the last equation. A quaternion can be used to multiply a vector
directly, but it amounts to the same number of operations, and coordinate
transformation matrices are more intuitive (or at least more familiar).

We will leave these equations for now, and return to them in the software
design section. In the meantime, we must consider how to get â and ω̂.

3. Gyro Measurement Model

The gyros output a voltage nominally proportional to the rate of rotation
around their sense axis. Thus the rotation rate may be written as:

ω̂ = A(Vs − Vb)

With Vs being the output voltage, Vb being the sensor bias voltage, A being
the sensor voltage gain, and ω being the actual rotation rate. In practice,
there are variations in Vb and A that might need to be accounted for in
order to have a reasonably accurate measurement of ω. Table 3 shows the
effect of various parameters on bias and gain, based on the Analog Devices
ADXRS150 datasheet.

Note that a 12-bit ADC can sense one part in 4096 voltage variations,
which corresponds to 0.02%. It seems from the table that the most significant
variations are those in temperature. To estimate the effect of Vcc variations
we must consider the potential variation in voltage. It turns out that this is
around 8 mV RMS when the system is running. Then the voltage variations
become around 0.0048% total, which is trivial, and because the voltage vari-
ations are approximately zero mean (the voltage does not drift over time),
their effect on the bias will average out to be even smaller.
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Although the three gyros used for angular velocity sensing are meant to
be mounted at right angles to each other, in reality they are not exactly
orthogonal. This situation can be fixed by a matrix AR. The diagonal terms
of the matrix can also be used to incorporate the base gain of the gyros
(uncompensated for temperature). The off-diagonals will be used to carry
out an orthogonalization of the measurement axes. The total gain matrix
thus looks like:

(AR + diag[CT2]∆T ) =




A11 + CT2(1)∆T 0 0
(x̂, ŷ)A11 A22 + CT2(2)∆T 0
(x̂, ẑ)A11 (ŷ, ẑ)A22 A33 + CT2(3)∆T




(The parentheses (x̂, ŷ) represent an inner product between the axes).
A quadratic term will be included to model the nonlinearity. If we figure

that the quadratic term is 0.1% of the full gain, and the temperature is 10
% of the full gain, then the temperature will have an effect of around 0.01%
on the full measurement through the quadratic term. This effect can thus be
safely neglected, so we do not need separate temperature coefficients for the
quadratic gain.

The above analysis leads to the following definitions:

∆T = T − 27oC

Vb = Vb0 + CT1∆T + Caa

ω = (AR + diag[CT2]∆T )((Vs − Vb) + diag[A2](Vs − Vb)
2)

The bottom two equations are vector equations, with three Vb and three ω.
There is only one ∆T because the temperature is only read from one sensor.
diag of a vector means to form a matrix and place the vector’s elements on
the diagonal.

Parameter Effect on bias Effect on gain
Nominal 2.5V 12.5 mV/o/s

Temperature 12% 8%
Vcc 0.6%/V 0.7 %/V

Acceleration 0.12% –
Nonlinearity – 0.1 %

Table 3: Sources of error in ADXRS150 gyro (Datasheet Rev.B)
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4. Accelerometer Measurement Model

The basic accelerometer model is essentially the same as the gyro model.
Table 4 lists the parameters that affect the accelerometer: Evidently, the

Parameter Effect on bias Effect on gain
Nominal 2.5V 1 V/g

Temperature 6% 2%
Nonlinearity – 0.1%
Cross-Axis – 2%

Table 4: Sources of error in KXM52-1050 accelerometer (Datasheet Rev.1.4)

accelerometer is much less sensitive to temperature. Furthermore, it does
not have a built-in temperature sensor, so it is impossible to know the tem-
perature of the actual die, which is what matters. As a result, the effect will
be modeled as a linear function of the temperature of one of the gyros. This
is based on the idea that the main source of heating is the operation of the
accelorometer itself. Since the accelerometers and gyros are turned on at the
same time, their temperature profiles should be approximately the same, ex-
cept perhaps for a scale factor. This assumes that the ambient temperature
is consistent around the whole unit, which can be assured by enclosing the
unit in a container with plenty of room for air to circulate inside.

Because the accelerometer has sensors for all three axes on a single die,
there is no way to geometrically measure the non-orthogonality of these sen-
sors. The ”Cross-axis” line in the table is meant to illustrate the extent to
which the sensors may be non-orthogonal. Effectively this says that the co-
sine of the angles between the accelerometers may be as high as 0.02, which
corresponds to the angles varying as much as 1.15o from perfectly orthogonal.

The measurement model is then defined as follows:

∆T = T − 27oC

Vb = Vb0 + CT1∆T

a = (AR + diag[CT2]∆T )((Vs − Vb) + diag[A2](Vs − Vb)
2)
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IV INS Calibration

In order to actually use the accelerometer and gyro models to calculate values
for a and ω, we need to find the values of the various parameters. The more
precisely these parameters are known, the more accurate the measurements,
and the slower the increase in position and velocity error. In some cases,
these parameters may vary unpredictably in time. If so, that will also become
evident in the calibration.

The process would be easy given access to devices for, say, rotating the
INS at a consistent rate, which would allow the calibration of individual
gyros. Unfortunately, no such devices were available for this project. A
motor with a PWM control and position feedback could be used to produce
controlled motion, but this still leaves the problem of precisely mounting the
INS in a specified way relative to the direction of motion. Lacking access to
precision machining capability, we must resort to other methods.

Fortunately, there is one source of constant acceleration, and that is grav-
ity. By orienting the INS in a variety of different ways, it is possible to give it
a set of different acceleration inputs, all with a magnitude of 1g. If there were
a way to precisely orient the INS, this would be the end of the story. Sadly,
there is no way to do that either (if we can’t orient the INS with more than
1 degree precision, we have no hope of measuring the cross-axis error due to
1 degree accelerometer misalignment). Nonlinear least squares optimization
will be used to find both the parameters and the orientations.

1. Linear and Nonlinear Least Squares

Least squares fitting is a method for using a large number of measurements
to calculate the most likely set of values that produced those measurements.
Suppose there is a vector of values x and the measurements z are these
values transformed by a matrix A, so z = Ax. If A is square, then x is
simply A−1z. If A has more rows than columns, then we have a typical least
squares problem. The solution is through what is called the normal equation,
x = (ATA)−1AT z.

The measurement model equations, however, are nonlinear. They are of
the form z = f(x), where f is some nonlinear function. A common method
for finding x in this case is called the Gauss-Newton method. Like many
other methods, it essentially follows the gradient of the function to a local
minimum. The following basic algorithm is followed:
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1. Set xg to an initial guess which is close enough to the solution that the
algorithm will converge to it rather than some other undesired solution.

2. Find F = ∇xf evaluated at xg.

3. Set the error e = z − f(xg).

4. Solve the linear least squares problem e = F∆x using the equation
x = (F T F )−1F T . ∆x will be our step – the guess for x will be changed
by this value in the next iteration. However, in some cases it is possible
that ∆x is too high, and the algorithm will miss the solution entirely.
For this reason we have the next few steps.

5. Find the cost J = 1
2
eT e.

6. Our error at the next iteration will be enew = z−f(xg +α∆x), because
we will add ∆x to xg. α is initially set to 1.

7. Find the cost Jnew = 1
2
eT

newenew.

8. While Jnew > J , set α to α/2. Then re-evaluate Jnew.

9. Once an alpha that makes Jnew ≤ J has been found, set xg to xg+α∆x.
Go back to step to 2.

This algorithm is repeated until ∆x becomes very small, which suggests that
a local equilibrium has been reached.

A related algorithm, called the Levenberg-Marquardt method, adjusts
the normal equation in step 4 of the above algorithm by replacing F T F with
F T F + λI. λ is initialized with 10−3 max(F T F )ii. Then it is successively
increased and ∆x re-evaluated until the parameter ρ, defined as (‖e‖2 −
‖enew‖2)/(∆xT (λ∆x + F T e)), becomes greater than 0. α is not used.

In essence, this method propagates the α of the Gauss-Newton method
through the the measurement function f , and thus takes the nonlinearities
into account while selecting the step size. This is the method that actually
succeeded in finding the accelerometer parameters. Here is a step-by-step
listing of the method (Based on [9]):

1. Set xg to an initial guess which is close enough to the solution that the
algorithm will converge to it rather than some other undesired solution.
Set ν to 2.
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2. Find F = ∇xf evaluated at xg.

3. Set the error e = z − f(xg).

4. If this is our first iteration, set λ = 10−3 max(F T F )ii.

5. Solve the linear least squares problem e = F∆x using the equation
x = (F T F + λI)−1F T .

6. Find the cost J = 1
2
eT e.

7. Our error at the next iteration will be enew = z − f(xg + ∆x), because
we will add ∆x to xg.

8. Find the value of ρ = (‖e‖2 − ‖enew‖2)/(∆xT (λ∆x + F T e)).

9. While ρ ≤ 0, set λ to ν ∗ λ. Set ν to 2ν (effectively achieving an
exponential increase in λ). Go back to step 5.

10. Once a λ satisfying ρ > 0 has been found, set xg to xg + ∆x. Set λ to
λ max(1

3
, 1− (2ρ− 1)3) and reset ν back to 2.

2. Finding the Accelerometer Parameters

The experimental setup is as follows. The INS is placed in an adjustable
clamp. Some readings of the accelerometer outputs and the temperature are
recorded. Then the clamp is rotated and more readings are recorded in this
different orientation. Each of these orientiations gives a new set of equations:




0
0
1


 = R(θ, φ)M(pa, Vs, ∆T ) = h(θ, φ, pa, Vs, ∆T )

R(θ, φ) =




cos(θ) sin(θ) sin(φ) sin(θ) cos(φ)
0 cos(φ) sin(φ)

− sin(θ) cos(θ) sin(φ) cos(θ) cos(φ)




R is a rotation matrix, with the two angles θ and φ (pitch and roll). Since the
gravitational field is symmetric around the z axis, there is no need to include
yaw. pa is the set of parameters which we wish to find. Vs and ∆T are the
voltage and temperature measurements that are taken at each sample. pa

has 4 parameters for each sensor, plus 6 for AR, yielding 18 total parameters.
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Parameter Derivative

θ



− sin(θ) cos(θ) sin(φ) cos(θ) cos(φ)

0 0 0
− cos(θ) − sin(θ) sin(φ) − sin(θ) cos(φ)


 M(pa, Vs, ∆T )

φ




0 sin(θ) cos(φ) − sin(θ) sin(φ)
0 − sin(φ) cos(φ)

− sin(θ) cos(θ) cos(φ) − cos(θ) sin(φ)


 M(pa, Vs, ∆T )

Vb0 −R(θ, φ)(AR + diag[CT2]∆T )(1 + 2diag[A2](Vs − Vb))
CT1 ∆T∂h/∂Vb0

AR R(θ, φ)((Vs − Vb) + diag[A2](Vs − Vb)
2)

CT2 ∆T∂h/∂AR

A2 −R(θ, φ)(AR + diag[CT2]∆T )(Vs − Vb)
2

Table 5: Derivatives of the accelerometer equations with respect to their
parameters

There is a separate θ and φ for each set of equations, but since there are three
equations in each set, we still only need a total of 18 equations.

The next step is to find the derivative of h(θ, φ, pa, Vs, ∆T ) with respect
to each of the parameters. They are shown in Table 5.

Now the algorithm can be written. See appendix A-2 for code. The ques-
tion moves to, what should be the orientations used for the measurements?
In principle, any set of distinct orientiations would do, but it is best to have
them separated as far from each other as possible, to maximize observability.
Considering that there are 18 measurements, the first 18 positions will be 9
evenly spaced rotations around the x axis of the INS and 9 evenly spaced
rotations around the y axis. These are shown in Figure 2.

Roughly knowing these orientations is important in order to provide an
initial guess to the algorithm. The initial guess that was chosen uses the
nominal accelerometer parameters of 2.5V bias and 1 V/g gain, and the
nominal orientations, first rotating around the y axis by 40o increments,
then doing the same for the x axis. For a photo of the setup, see Figure 3.

3. Finding the Gyro parameters

The static gyro parameters (i.e. the bias parameters) can be found using the
same data used for the accelerometers. The gyro outputs can be described
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Figure 2: Angles at which to measure gravity

by the equation Vs = Vb0 + CT1∆T + Caa. Because this equation is linear, it
can be solved directly via the normal equation.

Finding the dynamic gyro parameters is more challenging because while
gravity provides a reference for acceleration, there is no reference for rota-
tional velocity, absent a special device to do the job. However, because the
orientations in the accelerometer calibration process above were optimized,
they are known fairly precisely (about as precisely as the accelerometer pa-
rameters). Thus the change in orientation from position to position is well
known. The mere integral of the gyro angular velocities, however, will not
suffice for comparison. This is because the local coordinate system changes
every time the INS rotates, so the integral is no longer the same as in the
global system.

What will be compared instead are the quaternions of the rotations. The
quaternion for the total change in orientation can be formed using equation
3. It should match the quaternion formed from the repeated application of
equation 8 to the gyro data. The derivative of the quaternion is shown in
equation 4 and will be used in forming the gradient H.
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Figure 3: Accelerometer Calibration Setup

So, given the set of ω̂(k) from k0 to kf ,

qkf = (I +
1

2
Ω(kf−1))qkf−1

= (I +
1

2
Ω(kf−1))(I +

1

2
Ω(kf − 1))qkf−2

=
n∏

i=1

(I +
1

2
Ω(ki−1))qk0

where n is the number of steps from k0 to kf , and

∂qkf

∂p
=

1

2

∂Ωc

∂p
qkf

Where Ωc is the continuous time version of Ω(k), as shown in eqn. 4. Table
6 shows the derivatives of the components of ω̂ with respect to the various
elements of the parameters p. qk0 in this case is [0 0 0 1]T .

4. Accelerometer Calibration Results

The Gauss-Newton method failed to produce reasonable values, but the
Levenberg-Marquard method succeded. To verify the stability of the pa-
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rameters, eight separate trials were conducted. The residual errors for the
trials were all well below 1% indicating a close fit of the model to the pa-
rameters. The mean and standard deviation of the parameters are shown in
Table 7. Clearly, some of the parameters are more statistically significant
than others. The bias and the gain, the two most important parameters, are
seen to have very low standard deviation. The other parameters show quite
a bit more variation, but this is not unexpected since their magnitudes are
at the very limits of the measuring ability of the INS.

Bar-Shalom ([4], p.156) provides a criterion for determining whether a
parameter is statistically significant. To make a long story short, if for pa-
rameter x, c = |x̂|/σx, then 1−2G(c) is the probability that the parameter is
significant, with G being the normal cdf with mean 0 and variance 1. For the
accelerometer parameters, the gain and bias have very high significance (¿
95%), while the other parameters have very low significance. This suggests
that the basic linear model is adequate for the accelerometer, which is in
one sense a good thing. On the other hand, it shows that the variation in
parameters can’t be modeled effectively beyond the two basic parameters, in
other words that any parameter variation that is encountered is essentially
random.

Since most of the parameters proved to be insignificant, we have redo the
parameter fit to the reduced order model. Table 8 shows the final values.

5. Gyro Calibration Results

The bias calibration was performed for all eight of the datasets used in the
accelerometer calibration. The residuals were around 0.04% for each dataset.
Table 9 shows the values and standard deviations of the parameters. A sig-

Parameter Derivative
Vb0 −(AR + diag[CT2]∆T )(1 + 2diag[A2](Vs − Vb))
CT1 ∆T∂h/∂Vb0

AR ((Vs − Vb) + diag[A2](Vs − Vb)
2)

CT2 ∆T∂h/∂AR

A2 −(AR + diag[CT2]∆T )(Vs − Vb)
2

Ca(i, j) aj∂hi/∂Vb0

Table 6: Derivatives of the gyro equations with respect to their parameters
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nificance analysis was performed just as for the accelerometer calibration.
The biases themselves and most elements of the Ca matrix (except elements
(1,2) and (2,1)) had greater than 95% significance. The only temperature
parameter to have significance was CT1(3), which is the one whose tempera-
ture is being measured. This suggests that the gyro temperatures must vary
a great deal from gyro to gyro, and each temperature must be measured
separately in order to do temperature compensation properly. Clearly, the
gyros are significantly less ideal devices than the accelerometers. This is not
surprising given that the physical phenomenon that they measure is much
more complex, but it does not bode well for our ability to accurately measure
angular velocity.

The bias parameters, and the nominal values of gain (1.39 rad/s/V) are
used to initialize p for the fitting to dynamic data. This turns out to be a
rather time consuming procedure in MATLAB, with a single iteration of the
LM algorithm taking around 40 seconds. Unfortunately, the algorithm was
unsuccessful, with initial errors around 70% and coming down to around 30%
when the algorithm converged.

One possible explanation for this lies in the fact that while we ignore

Parameter x±σ y±σ z±σ Unit
Vb0 2.4446±0.12663 2.5263±0.068762 2.6491±0.020407 Volts
CT1 -45.514±85.582 -20.426±50.528 -30.180±13.532 mV/oC

AR(i, i) 0.93686±0.014344 -0.91193±0.080782 1.0127±0.017384 g/Volt
AR(2, 1) – 10.609±20.867 – mg/Volt
AR(3, 1) – – -3.4143±16.583 mg/Volt
AR(3, 2) – – 37.849±0.11101 mg/Volt

CT2 -9.5187±28.005 -18.822±64.064 7.0169±11.530 mg/(Volt oC)
A2 6.004±8.0378 -1.1454±10.981 -2.5614±7.5659 1× 10−3/Volts

Table 7: Accelerometer parameters

Parameter x±σ y±σ z±σ Unit
Vb0 2.5073±0.0005 2.5171±0.0006 2.6509±0.0014 Volts

AR(i, i) 0.9289±0.0001 -0.9271±0.0001 1.0257±0.0001 g/Volt

Table 8: Accelerometer parameters, Reduced order model
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the change in z-axis orientation (yaw) for the accelerometer calibration, be-
cause gravity is symmetric about the z axis, the total change in orientation
as recorded by the gyros will nevertheless have some (possibly small) value
for that axis. However, there is no way to infer this change based on the
accelerometer readings, so it is assumed to be zero. It is doubtful that this
explains the entire error, however. Perhaps there is a mistake in the algo-
rithm, but it could not be located as of this report’s writing.

An alternative method for gyro calibration is to attach the INS to a
swinging pendulum. The maximum swing of the pendulum can be measured
through the accelerometers, and then the theoretical angular velocity can
straightforwardly be calculated. However, there was not enough time to
implement this method. For the remainder of this project, the gyro gains
will be assumed to equal 12.5 V/o/s, the nominal value in the datasheet,
which is 1.3963 rad/s/V.

V Software Design

1. Raw Output

We now move into the matter of how to program the INS with the mecha-
nization equations to enable it to calculate position and velocity. First, the
code that was used to produce raw output for the calibration setup will be
presented, both for its own sake and as a stepping stone to the full INS code.

A pseudocode version of the raw output code runs as follows (for the full
code, see Appendix A-3):

main() {

Set up A/D converter and UART

Program timer to interrupt after n cycles

Parameter x±σ y±σ z±σ Unit
Vb0 2.5453±0.001 2.4231±0.004 2.3841±0.004 Volts
CT1 -1.1533±1.4341 -1.9233±2.3982 -3.2033±0.64503 mV/oC

Ca(1, :) 2.9885±0.38354 -1.4008±0.76318 -1.0364±0.30870 mV/g
Ca(2, :) 0.39261±0.38013 -2.4646±0.73646 1.7959±0.58858 mV/g
Ca(3, :) -1.7667±0.48504 -1.2477±0.47567 1.4351±0.07497 mV/g

Table 9: Static gyro parameters
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Set sample mode to read all seven inputs in sleep mode

while(1) {

if(Temperature updated) {

Send temperature over serial

Clear temperature update flag

}

if(Gyro data updated) {

Send gyro data over serial

Clear gyro update flag

}

if(Accelerometer data updated) {

Send accelerometer data over serial

Clear accelerometer update flag

}

}

}

Timer interrupt {

Reset timer

Configure A/D converter based on desired sample mode

Start conversion

Go to sleep, if desired

}

Conversion complete interrupt {

Read in data to appropriate variables

Set update flags for variables that were updated

Set sample mode for next conversion based on desired sampling frequencies

}

The time from entering the timer interrupt to exiting the conversion com-
plete interrupt was determined to be 60 µs for the no-sleep-mode accelerom-
eter only readings, and 1.16 ms for readings of all channels with sleep mode
(all timing is determined by toggling a port pin in the code and monitoring
it with an oscilloscope). If we sample at 6 kHz, which is the approximate
Nyquist frequency of the accelerometers, we will use 36% of the processor
time on that every second. Sampling the gyros at 80 Hz in sleep mode will
take roughly 10% of processor time.

Sampling modes are defined as follows:

• sampmode=0 Sample accelerometers only

• sampmode=1 Sample accelerometers and gyros

• sampmode=2 Sample accelerometers, gyros, and temperature

• sampmode=4-6 Same as above, but with sleep mode enabled
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T G1 G2 G3
Lo Hi 0x01 Lo Hi 0x02 Lo Hi 0x03 Lo Hi 0x04

A1 A2 A3 EOL
Lo Hi 0x05 Lo Hi 0x06 Lo Hi 0x07 \r \n

Table 10: Raw output format (T=Temperature, Gx=Gyro x,
Ax=Accelerometer x)

The conversion complete interrupt routine selects the appropriate sample
mode based on a counter that resets every 6000 cycles. Every 75 cycles (80
Hz), sample mode 5 (acc. and gyros in sleep mode) is used, and every 6000
cycles, sample mode 6 (everything in sleep mode) is used. The rest of the
time, sample mode 0 is used. Sampling in sleep mode is time consuming,
however it has been seen to decrease the noise by a factor of 4 or more. This
is especially true for the gyro inputs, which are right next to the clock pins of
the dsPIC. When the clock is shut down, the noise on these pins is decreased
dramatically.

The timer interrupt frequency had to be determined experimentally, be-
cause in sleep mode, the main clock is shut down, and the timer stops in-
crementing. Interrupting every 4205 cycles proved to be the right rate for a
6 kHz sample frequency. This also tells us that we have 315,375 cycles per
gyro data update to do all of our processing.

At a serial output rate of 57.6 kbps, there is not nearly enough time to
output all of the accelerometer readings to the computer. Therefore, the
readings are averaged together and output at the same rate as the gyro data.
The serial data format is shown in Table 10.

If a field does not need to be sent because it has not been updated, it
is simply omitted. This allows the data to be transmitted more efficiently
and flexibly. If the gyro data and accelerometer data are sent 80 times a
second, and temperature once a second, that translates to around 15kbps,
which easily fits in the available bandwidth.

On the PC side, capturing the data is accomplished by a small program
written in C#, which reads the data, translates it into comma separated text
format, and saves it to a file. This allows for easy processing in MATLAB.
See Appendix A-5 for the code.
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2. The INS update procedure

Now it is time to implement the mechanization equations. They will be
placed in the same main loop where the serial output code was in the pseu-
docode shown above. Here is the pseudocode for the mechanization equa-
tions:

// Accelerometer bias and gain

Vb_a={Vb_a_1,Vb_a_2,Vb_a_3};

A_a={A_a_1,A_a_2,A_a_3};

// Gyro bias parameters

Vb0_g={Vb0_1,Vb0_2,Vb0_3};

Ct1_g={Ct1_1,Ct1_2,Ct1_3};

Aa_g={Aa_11,Aa_12,Aa_13,Aa_21,Aa_22,Aa_23,Aa_31,Aa_32,Aa_33};

A_g; // Gyro scale factor

At; // Temperature scale factor

fs; // Sampling frequency (80 Hz)

if(Temp data updated) {

DeltaT=(raw_temp - 2048)*At;

}

if(Gyro data updated and Acc data updated) {

// Find ahat

ahat[0]=(raw_acc[0] - Vb_a[0])*A_a[0];

(repeat for ahat 1 and 2)

// Find omegahat

Vb_g[0]=Vb0_g[0]+Ct1_g[0]*DeltaT+Aa_g[0] . . .

(repeat for Vb 1 and 2)

omegahat[0]=(raw_gyro[0] - Vb_g[0])*A_g/fs;

(repeat for omegahat 1 and 2)

// Update q

dtheta=sqrt(omegahat[0]^2 + omegahat[1]^2 + omegahat[2]^2);

s=(2/dtheta)*sin(dtheta/2);

c=2*(cos(dtheta/2)-1);

q[0]=q[0]+0.5*(c*q[0] + s*omegahat[3]*q[1] + . . .

(continues like Equation 8)

// Find rotation matrix

q2={q[0]^2,q[1]^2,q[2]^2,q[3]^2};

C[0,0]=q2[0]-q2[1]-q2[3]+q2[4];

(continues like Equation 11)

// Find true acceleration

a[0]=C[0,0]*ahat[0]+C[0,1]*ahat[1]+C[0,2]*ahat[2];

a[1]=C[1,0]*ahat[0]+C[1,1]*ahat[1]+C[1,2]*ahat[2];

a[2]=C[2,0]*ahat[0]+C[2,1]*ahat[1]+C[2,2]*ahat[2] - 1;

vn[0]=vn[0]+a[0]/fs;

(repeat for vn 1 and 2)

rn[0]=rn[0]+vn[0]/fs;

(repeat for rn 1 and 2)

}
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The full code is included in Appendix A-4. A first pass at this code in
full (software) floating point yields 12,579 instruction cycles in the simulator.
When run on the actual dsPIC, it completed in 1.6ms, around a tenth of the
time between gyro updates. Note that in an INS on a military jet, the gyro
would be updated at a much higher frequency, 2 kHz or so. For a gimballed
system, 30 Hz would be sufficient [8]. So the amount of processing power
necessary is very problem-specific, but for these particular gyros, a dsPIC
running at 26 MHz is more than enough.

One detail that complicates matters is figuring out the initial orientation.
Aviation grade INS generally accomplish this through gyrocompassing, where
the INS is held stationary for a period of time and the gyros are used to
sense which way the earth is rotating. This allows accurate computation of
the orientation of the INS in all axes. It is also quite practical since aircraft
typically spend some time parked on the tarmac before taking off, so there
is time to perform the alignment.

In the case of this INS, the earth’s rotation can’t be sensed. Initial roll and
pitch alignment must therefore be performed using the accelerometers as tilt
sensors. The heading can’t be determined without an additional sensor such
as a magnetometer or a GPS unit. However, the heading is not important
for subtracting the gravity vector anyway, so it can be initialized at zero for
now.

If the INS is stationary and it is only sensing gravity, ‖â‖ will be 1. The
roll can be calculated as θx = sin−1(ây) and the pitch as θy = sin−1(âx). A
small complication arises from the fact that if the INS is upside down, the
direction of gravity is reversed. The simplest way of dealing with this problem
is to require that the INS be right side up when turned on. Alternatively, we
can take the direction of the largest magnitude accelerometer signal (if the
INS is close to level, it will be âz), and if that is negative, negate θx and θy

and add 180o to them. Here it is in pseduocode:

int maxa;

if(abs(ahat[0])>abs(ahat[1]))

maxa=ahat[0];

else

maxa=ahat[1];

if(abs(ahat[2])>abs(maxa))

maxa=ahat[2];

if(maxa > 0) {

thetax = asin(ahat[1]);

thetay = asin(ahat[0]);

} else {

thetax = 180-asin(ahat[1]);

thetay = -asin(ahat[0]);

}

thetaz=0;
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Then equation 3 is then applied to generate the initial value for the quater-
nion vector. It also helps to average over multiple accelerometer samples in
order to obtain a better estimate of the attitude.

3. INS Code results

As a start, the INS was programmed to only output â and ω̂. The serial
output was recorded over a period of twenty minutes while the INS was held
stationary. Table 11 shows some representative statistics for this dataset.
The first thing to note is that the accelerometers overall show an output
very close to 1 g over the 20 minute period, and that their null (i.e. the
zero offset) drifts very little over time. The gyros, on the other hand, show
an average angular velocity of almost 0.5 o/s, and drift almost 2 degrees per
second in an hour. This is what was expected. Figure 4 shows a plot of the
three gyro signals averaged together and smoothed with an 80-step sliding
window average.

The noise level closely matches the manufacturer specifications. The ac-
celerometer noise was specified at 50 µg/

√
Hz, and the gyro noise was spec-

ified at 0.05 o/s/
√

Hz. This shows that the sensors are being used correctly
and that the analog to digital conversion process does not adversely affect
the signals.

â ω̂
Norm of the mean 0.9947 g 0.4662 o/s

Norm of the std. dev. 2.3959 mg 0.4475 o/s

std.dev. /
√

Hz 43.74 µg/
√

Hz 0.07075 o/s/
√

Hz
Null drift -2.8607 mg/hr 1.6347 o/s/hr

Table 11: Statistics from a 20-minute run

Next, the measured acceleration (the right hand side of equation 2) was
recorded over about a minute while the INS was stationary. Figure 5 shows
the norm of the acceleration and each acceleration component over time.
What these plots really tell us is how fast the attitude estimates diverge,
causing the gravity vector to be subtracted in the wrong direction. We see
that, at least in the stationary case, we diverge almost linearly at around 10
mg/sec. The linearity is due to the fact that the divergence is small, so the
sine of the error is approximately linear.

Since velocity is the integral of the acceleration, it can be expected to
diverge quadratically at a rate of 0.5 · 0.01 · 9.8 = 0.049m/s2. Indeed, as
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Figure 4: A plot of the gyro drift over 20 minutes

32



Figure 6 shows, this is approximately what happens. Lastly, Figure 7 shows
the divergence of the position, which should diverge with the cube of time at
the rate of 0.0163m/s3 (in practice it’s not quite a cubic function). There-
fore, the divergence is quite a bit faster than the INS that experienced 5km
in 5 minutes that was mentioned in the introduction. On the other hand,
that setup used a commercial integrated sensor unit which may have had
marginally better performance. However, divergence after one second is only
around 0.17 m, and velocity error is around 0.3 m/s, which is much better
than the typical error of a GPS unit, for instance. So we see that, if the INS
were integrated with another sensor, it could potentially be useful.
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Figure 5: Plots of the acceleration (top) and each component (bottom) for a
stationary INS
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Figure 6: Plots of the velocity (top) and each component (bottom) for a
stationary INS
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Figure 7: Plots of the distance (top) and each component (bottom) for a
stationary INS
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VI Conclusion

A design has been presented which can be used to measure acceleration,
velocity, and position over time scales of several seconds. An overall position
error of 0.17 meters and velocity error of 0.3 m/s can be expected after one
second of operation.

Some aspects of the calibration process to identify parameters for the
sensors have been described as an exploration of ways to improve the sys-
tem’s accuracy. The calibration showed that neither temperature nor higher
order terms nor cross axis terms are useful in modeling the behavior of this
particular accelerometer model, given the level of accuracy obtained from
the digital to analog converter and the rest of the system. There have been
claims [3] that a quadratic model can improve readings, but for this sensor
the quadratic term was found to be insignificant.

The gyro bias was found to depend substantially on temperature and ac-
celeration, with both effects incorporated into the software. The gyro gain
could not be accurately estimated using the method presented, although
there may be other methods, such as using a pendulum to produce a con-
trollerd angular velocity, that could be used to calibrate the gyro gain in the
absence of precision equipment.

One of the biggest limitations of the inertial navigation system is that it is
unable to distinguish between the force used to accelerate it and the force of
gravity. Therefore, the force of gravity must be continually subtracted from
the accelerometer readings. In order to know the direction of the gravitational
force, rotations of the inertial navigation system must be sensed with the
highest accuracy possible.

Inevitably, all inertial navigation systems experience divergence of their
position and velocity measurements as the errors from their sensors accumu-
late. Thus, an inertial navigation system for a particular application must
be designed on the basis of expected time ranges over which the system is
expected to give accurate readings.

It might seem that a system that can only be used for a few seconds
can’t possibly be useful. However this is not so, as long as it can be reset
at regular intervals by another, slower sensor such as a GPS system. Inte-
grated GPS/INS systems are a popular way of enhancing accuracy. Inertial
navigation systems such as the one presented have the potential to bring im-
proved navigation to applications where it has formerly been too expensive
to implement.
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A-1 Circuit Board Schematic and Layout

INS Board schematic
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INS Board PCB layout

A-2 MATLAB Code for INS calibration

1. ins calib routine
This routine is the entry point to the calibration procedure. The first two
lines specify the location of the data files used by the routine.

function [pa,pg,aerr,gberr]=ins_calib(do_acc,ind)

disp(’Loading data’);

data1=load([’C:\Documents and Settings\Administrator.CUDGCKAYAK\Desktop\data\y9turn’ num2str(ind) ’.txt’]);

data2=load([’C:\Documents and Settings\Administrator.CUDGCKAYAK\Desktop\data\x9turn’ num2str(ind) ’.txt’]);

% Fill in blank areas in data with surrounding values

disp(’Splitting into stationary regions’)

gbreak=ones(100,1)*[0 0 0 0 1700 1700 1700 0];

odata=[gbreak;data1;gbreak;data2];

data=odata;

n=length(data);

clear data1 data2;

for i=1:n

for j=1:8

if(data(i,j)==-1)

if(i<2)

data(i,j)=0;

else

data(i,j)=data(i-1,j);

end

end

end

end

% Break data up into regions where INS was held still
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[regions, ranges]=findregiondata(data,odata,1);

n=size(regions,1);

acc_Vs=regions(:,2:4)’;

gyro_b_Vs=fliplr(regions(:,5:7)’);

acc_temp=regions(:,8);

bits2volts=5/4096;

acc_Vs=acc_Vs*bits2volts;

gyro_b_Vs=gyro_b_Vs*bits2volts;

% Run accelerometer calibration routine

if(do_acc==1)

disp(’Finding accelerometer parameters’);

[pa,aerr]=acc_short_calib(acc_Vs,findT(acc_temp));

else

load pa;

end

pa=[pa(1:3);zeros(3,1);pa(4:6);zeros(9,1);pa(7:end)];

disp([’Final acc. err:’ num2str(100*aerr(end)) ’%’]);

% Run gyro calibration routine

disp(’Performing gyro bias calibration’);

[pg,gberr]=gyro_bias_calib(acc_Vs,pa,gyro_b_Vs,findT(acc_temp));

disp([’Final acc. err:’ num2str(100*gberr(end)) ’%’]);

return;

pg(7:9)=[1.39; -1.39; 1.39];

lmax=max([0; ranges(1:end-1,1)]-ranges(:,2));

% Prepare data for gyro dynamic calibration

disp(’Performing gyro dynamic parameter calibration’);

O=fliplr(reshape(pa(19:end),2,18)’);

O=[O zeros(length(O),1)];

DeltaO=[];

gyro_Vs=zeros(3,lmax,16);

gyro_temp=zeros(lmax,16);

gyro_a=zeros(3,lmax,16);

gyro_lengths=zeros(lmax,1);

samps=1;

for k=[1 10;

8 17];

for i=k(1):k(2)

start=ranges(i,2);

stop=ranges(i+1,1);

r1=odata(start:stop,5:7);

nn_ind=find(r1(:,1)~=-1);

r1=r1(nn_ind,:);

r1=fliplr(r1)’*bits2volts;

gyro_Vs(:,1:size(r1,2),samps)=r1;

r1=findT(data(start+nn_ind-1,8));

gyro_temp(1:length(r1),samps)=r1;

for j=1:length(nn_ind)

Vs=data(start+nn_ind(j)-1,1:3)’*bits2volts;

gyro_a(:,j,samps)=findM(pa,Vs,gyro_temp(j,samps),0);

end

gyro_lengths(samps)=length(nn_ind);

DeltaO=[DeltaO; (O(i+1,:)-O(i,:))’];

samps=samps+1;

end

end

% Run dynamic calibration routine

[pg, err]=gyro_calib(pg,gyro_Vs,gyro_temp,gyro_a,DeltaO,gyro_lengths);

%This function splits the data up into regions where the

%INS is not moving, based on the gyro data

function [aregions,ranges]=findregiondata(data,odata,nsplit)

n=length(data);

raw_a=data(:,2:4);

raw_r=fliplr(data(:,5:7));

raw_temp=data(:,8);
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nr=sum(raw_r.^2,2);

nr=abs(nr-mean(nr));

cutoff=1.885e5;

ranges=[];

while(length(ranges) ~= 18)

ischng=smooth(nr,301)>cutoff;

ranges=[];

on=0;

for i=2:n

if(ischng(i) < ischng(i-1) & on==0 & n-i > 200)

on=1;

ranges=[ranges; [i 0]];

end

if(ischng(i) > ischng(i-1) & on==1)

on=0;

ranges(end,2)=i;

end

end

if(on==1)

ranges(end,2)=n;

end

cutoff=cutoff+100;

end

% cutoff

% plot(1:n,smooth(nr,301),1:n,ischng*3e6)

aregions=[];

for i=1:size(ranges,1)

ln1=floor((ranges(i,2)-ranges(i,1))/nsplit);

for j=1:nsplit

start=ranges(i,1)+ln1*(j-1);

stop=ranges(i,1)+ln1*j;

nn_ind=find(odata(start:stop,2)~=-1);

aregions=[aregions; mean(data(start+nn_ind-1,:),1)];

end

end

2. acc calib

This is where the parameter fitting for the accelerometers takes place. A
second script, acc short calib, does the same for the reduce order model
(only the biases and the gains).

function [p,err]=acc_calib(Vs,DeltaT)

n=length(DeltaT);

p=[2.5;

2.5;

2.5;

0;

0;

0;

1;

-1;

1;

0;

0;

0;

0;

0;

0;

0;

0;

0;

reshape(([40; 0]*(0:8)*pi/180),n,1);

reshape(([0;-40]*(0:8)*pi/180),n,1)];

err=[];

iters=0;

finished=0;
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% z is just the gravity vector

% pointing down

z=[0;0;1]*ones(1,n);

z=reshape(z,n*3,1);

h=waitbar(0,’Calibrating Accelerometers’);

maxiters=200;

L=-1;

while(~finished)

waitbar(iters/maxiters,h);

iters=iters+1;

% This is where all the action happens

[deltap, L]=findlmJ(p,Vs,DeltaT,L);

p=p+deltap;

err=[err norm(z-findh(p,Vs,DeltaT))];

if(norm(deltap) < 1e-15 | iters==maxiters)

finished=1;

end

end

close(h);

% Gauss-Newton least squares estimation

% (Does not converge)

function [deltap,alpha]=findJ(p,Vs,DeltaT)

H=findgradh(p,Vs,DeltaT);

n=length(DeltaT);

z=[0;0;1]*ones(1,n);

z=reshape(z,n*3,1);

[Qv,Rv]=qr(H’*H);

err=(z-findh(p,Vs,DeltaT));

mnew=Qv’*H’*err;

deltap=Rv\mnew;

alpha=1;

J=err’*err;

errnew=(z-findh(p+alpha*deltap,Vs,DeltaT));

Jnew=errnew’*errnew;

while(Jnew >= J)

alpha=alpha/2;

errnew=(z-findh(p+alpha*deltap,Vs,DeltaT));

Jnew=errnew’*errnew;

if(alpha < 1e-15)

break;

end

end

% Levenberg-Marquard estimation - use this one

function [deltap,Lnext]=findlmJ(p,Vs,DeltaT,L)

tau=1e-3;

epserr=1e-15;

k=100;

nu=2;

alpha=1;

rho=0;

iter=0;

while(rho <= 0)

if(iter > 0)

L=L*nu;

nu=2*nu;

end

H=findgradh(p,Vs,DeltaT);

n=length(DeltaT);

z=[0;0;1]*ones(1,n);

z=reshape(z,n*3,1);

A=H’*H;

if(L==-1)

L=tau*max(diag(A));

end

err=(z-findh(p,Vs,DeltaT));
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[Qb,Rb]=qr(A+L*eye(size(A)));

deltap=Rb\Qb’*H’*err;

errnew=(z-findh(p+deltap,Vs,DeltaT));

rho=(norm(err)^2-norm(errnew)^2)/(deltap’*(L*deltap + H’*err));

iter=iter+1;

end

Lnext=L*max(1/3,1-(2*rho-1)^3);

% Finds the gradient of h by numerical differentiation

% useful for checking accuracy of analytical function

function H=findnumgradh(p,Vs,DeltaT,delta)

np=length(p);

H=[];

for i=1:np

pplus=p;

pplus(i)=pplus(i)+delta;

pminus=p;

pminus(i)=pminus(i)-delta;

hplus=findh(pplus,Vs,DeltaT);

hminus=findh(pminus,Vs,DeltaT);

Hcol=(hplus-hminus)/(2*delta);

H=[H Hcol];

end

% Finds the gradient of h analytically

function H=findgradh(p,Vs,DeltaT)

H=[];

n=length(DeltaT);

for i=1:n

[R,DRmat_th,DRmat_ph]=findR(p(17+i*2),p(18+i*2),1);

[M,gradM]=findM(p,Vs(:,i),DeltaT(i),1);

newRow=[R*gradM zeros(3,2*(i-1))];

newRow=[newRow DRmat_th*M DRmat_ph*M];

newRow=[newRow zeros(3,2*(n-i))];

H=[H; newRow];

end

% Finds h (the measurement function)

function h=findh(p,Vs,DeltaT)

h=[];

for i=1:length(DeltaT)

h=[h; findR(p(17+i*2),p(18+i*2),0)*findM(p,Vs(:,i),DeltaT(i),0)];

end

3. acc short calib
function [p,err]=acc_short_calib(Vs,DeltaT)

n=length(DeltaT);

p=[2.5;

2.5;

2.5;

1;

-1;

1;

reshape(([40; 0]*(0:8)*pi/180),n,1);

reshape(([0;-40]*(0:8)*pi/180),n,1)];

err=[];

iters=0;

finished=0;

z=[0;0;1]*ones(1,n);

z=reshape(z,n*3,1);

h=waitbar(0,’Calibrating Accelerometers’);

maxiters=200;

L=-1;

while(~finished)

waitbar(iters/maxiters,h);

iters=iters+1;

[deltap, L]=findlmJ(p,Vs,DeltaT,L);
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p=p+deltap;

err=[err norm(z-findh(p,Vs,DeltaT))];

if(norm(deltap) < 1.5e-9 | iters==maxiters)

finished=1;

end

end

close(h);

function [deltap,alpha]=findJ(p,Vs,DeltaT)

H=findgradh(p,Vs,DeltaT);

n=length(DeltaT);

z=[0;0;1]*ones(1,n);

z=reshape(z,n*3,1);

[Qv,Rv]=qr(H’*H);

err=(z-findh(p,Vs,DeltaT));

mnew=Qv’*H’*err;

deltap=Rv\mnew;

alpha=1;

J=err’*err;

errnew=(z-findh(p+alpha*deltap,Vs,DeltaT));

Jnew=errnew’*errnew;

while(Jnew >= J)

alpha=alpha/2;

errnew=(z-findh(p+alpha*deltap,Vs,DeltaT));

Jnew=errnew’*errnew;

if(alpha < 1e-15)

break;

end

end

function [deltap,Lnext]=findlmJ(p,Vs,DeltaT,L)

tau=1e-3;

epserr=1e-15;

k=100;

nu=2;

alpha=1;

rho=0;

iter=0;

while(rho <= 0)

if(iter > 0)

L=L*nu;

nu=2*nu;

end

H=findgradh(p,Vs,DeltaT);

n=length(DeltaT);

z=[0;0;1]*ones(1,n);

z=reshape(z,n*3,1);

A=H’*H;

if(L==-1)

L=tau*max(diag(A));

end

err=(z-findh(p,Vs,DeltaT));

[Qb,Rb]=qr(A+L*eye(size(A)));

deltap=Rb\Qb’*H’*err;

errnew=(z-findh(p+deltap,Vs,DeltaT));

rho=(norm(err)^2-norm(errnew)^2)/(deltap’*(L*deltap + H’*err));

iter=iter+1;

end

Lnext=L*max(1/3,1-(2*rho-1)^3);

function H=findnumgradh(p,Vs,DeltaT,delta)

np=length(p);

H=[];

for i=1:np

pplus=p;

pplus(i)=pplus(i)+delta;

pminus=p;
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pminus(i)=pminus(i)-delta;

hplus=findh(pplus,Vs,DeltaT);

hminus=findh(pminus,Vs,DeltaT);

Hcol=(hplus-hminus)/(2*delta);

H=[H Hcol];

end

function H=findgradh(p,Vs,DeltaT)

H=[];

n=length(DeltaT);

for i=1:n

[R,DRmat_th,DRmat_ph]=findR(p(5+i*2),p(6+i*2),1);

[M,gradM]=findM([p(1:3);zeros(3,1);p(4:6);zeros(9,1)],Vs(:,i),DeltaT(i),1);

newRow=[R*gradM(:,[1 2 3 7 8 9]) zeros(3,2*(i-1))];

newRow=[newRow DRmat_th*M DRmat_ph*M];

newRow=[newRow zeros(3,2*(n-i))];

H=[H; newRow];

end

function h=findh(p,Vs,DeltaT)

h=[];

for i=1:length(DeltaT)

h=[h; findR(p(5+i*2),p(6+i*2),0)*findM([p(1:3);zeros(3,1);p(4:6);zeros(9,1)],Vs(:,i),DeltaT(i),0)];

end

4. gyro bias calib.m

This is a simple linear least squares fit for the gyro bias.

function [pg,err]=gyro_bias_calib(acc_Vs,pa,gyro_b_Vs,DeltaT);

n=length(DeltaT);

a=[];

z=[];

for i=1:n

a=[a findM(pa,acc_Vs(:,i),DeltaT(i),0)];

z=[z; gyro_b_Vs(:,i)];

end

H=[];

for i=1:n

newRow=[eye(3)...

DeltaT(i)*eye(3)...

[a(:,i)’; zeros(2,3)]...

[zeros(1,3); a(:,i)’; zeros(1,3)]...

[zeros(2,3); a(:,i)’]];

H=[H; newRow];

end

[Q,R]=qr(H’*H);

pg_=R\Q’*H’*z;

pg=zeros(27,1);

pg(1:6)=pg_(1:6);

pg(19:end)=pg_(7:end);

err=norm(z-H*pg_)/norm(z);

5. gyro calib

This is where the fitting is done for the gyro gain. This routine does not
provide acceptable results as is, and is very slow.

function [p,err]=gyro_calib(p,Vs,DeltaT,a,DeltaO,lengths)

n=length(lengths);

err=[];

iters=0;
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finished=0;

z=[];

for i=1:n

k=eul2q(DeltaO(3*i-2:3*i));

z=[z; k];

end

h=waitbar(0,’Calibrating Gyros’);

maxiters=200;

L=-1;

while(~finished)

waitbar(iters/maxiters,h);

iters=iters+1;

[deltap, L,nerr]=findlmJ(p,Vs,DeltaT,a,z,lengths,L);

p=p+deltap;

err=[err nerr];

disp([’Error:’ num2str(100*norm(nerr)/norm(DeltaO)) ’%’]);

plot(reshape(nerr*180/pi,3,16)’)

if(norm(deltap) < 1e-15 | iters==maxiters)

finished=1;

end

end

close(h);

function [deltap,Lnext,errout]=findlmJ(p,Vs,DeltaT,a,z,lengths,L)

tau=1e-3;

epserr=1e-15;

k=100;

nu=2;

alpha=1;

rho=0;

iter=0;

while(rho <= 0 && L < 1e18)

if(iter > 0)

L=L*nu;

nu=2*nu;

end

[h,H]=findh(p,Vs,DeltaT,a,lengths,0);

H=numgradh(p,Vs,DeltaT,a,lengths);

A=H’*H;

if(L==-1)

L=tau*max(diag(A));

end

err=(z-h);

[Qb,Rb]=qr(A+L*eye(size(A)));

deltapshort=Rb\Qb’*H’*err;

deltap=[zeros(6,1); deltapshort; zeros(9,1)];

errnew=(z-findh(p+deltap,Vs,DeltaT,a,lengths,0));

rho=(norm(err)^2-norm(errnew)^2)/(deltapshort’*(L*deltapshort + H’*err));

iter=iter+1;

end

Lnext=L*max(1/3,1-(2*rho-1)^3);

errout=[];

for i=1:16

errout=[errout; (q2eul(z(4*i-3:4*i))-q2eul(h(4*i-3:4*i)))];

end

function H=numgradh(p,Vs,DeltaT,a,lengths)

H=[];

for j=7:18

j

delta=1e-6;

pplus=p;

pminus=p;

pplus(j)=p(j)+delta;

pminus(j)=p(j)-delta;

hplus=findh(pplus,Vs,DeltaT,a,lengths,0);

hminus=findh(pminus,Vs,DeltaT,a,lengths,0);

H=[H (hplus-hminus)/(2*delta)];

end

%[h,H2]=findh(p,Vs,DeltaT,a,lengths,1);

%mesh(1:64,1:12,H2-H);
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function [h,H]=findh(p,Vs,DeltaT,a,lengths,dervflag)

h=[];

H=[];

for i=1:length(lengths)

q=[0;0;0;1];

for j=1:lengths(i)

if(j==lengths(i))

[N,gradN]=findN(p,Vs(:,j,i),DeltaT(j,i),a(:,j,i),dervflag);

else

N=findN(p,Vs(:,j,i),DeltaT(j,i),a(:,j,i),0);

end

bigomega_d=s2bomega_d(N);

q=(eye(4)+0.5*bigomega_d)*q;

end

h=[h; q];

if(dervflag==1)

newRow=[];

for j=7:18

newRow=[newRow s2bomega_c(gradN(:,j))*q];

end

H=[H; 0.5*newRow];

end

end

function thetas=q2eul(q)

dcm=q2dcm(q);

thetas=zeros(3,1);

thetas(1)=atan2(dcm(2,3),dcm(3,3));

thetas(2)=asin(-dcm(1,3));

thetas(3)=atan2(dcm(1,2),dcm(1,1));

function dcm=q2dcm(q)

q2=q.^2;

dcm=[(q2(1)-q2(2)-q2(3)+q2(4)) 2*(q(1)*q(2)+q(3)*q(4)) 2*(q(1)*q(3)-q(2)*q(4));...

2*(q(1)*q(2)-q(3)*q(4)) (q2(2)-q2(1)-q2(3)+q2(4)) 2*(q(2)*q(3)+q(1)*q(4));...

2*(q(1)*q(3)+q(2)*q(4)) 2*(q(2)*q(3)-q(1)*q(4)) (q2(3)-q2(1)-q2(2)+q2(4))];

function q=eul2q(thetas)

c=cos(thetas/2);

s=sin(thetas/2);

q=[s(1)*c(2)*c(3)-c(1)*s(2)*s(3);...

c(1)*s(2)*c(3)+s(1)*c(2)*s(3);...

c(1)*c(2)*s(3)-s(1)*s(2)*c(3);...

prod(c)+prod(s)];

function bigomega=s2bomega_c(omega)

bigomega=[0 omega(3) -omega(2) omega(1);...

-omega(3) 0 omega(1) omega(2);...

omega(2) -omega(1) 0 omega(3);...

-omega(1) -omega(2) -omega(3) 0];

function bigomega=s2bomega_d(omega)

dtheta=omega/80;

ndtheta=norm(dtheta);

dtheta=(2/ndtheta)*sin(ndtheta/2)*dtheta;

c=2*(cos(ndtheta/2) -1);

bigomega=[c dtheta(3) -dtheta(2) dtheta(1);...

-dtheta(3) c dtheta(1) dtheta(2);...

dtheta(2) -dtheta(1) c dtheta(3);...

-dtheta(1) -dtheta(2) -dtheta(3) c];

6. findM, findN, findT, and findR

These are used to evaluate the accelerometer measurement function, the gyro
measurement function, the temperature conversion from volts to degrees, and
the rotation matrix, respectively.

function [Mvec,gradM]=findM(p,Vs,DeltaT,dervflag)

Vb0=p(1:3);
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Ct1=p(4:6);

Ar=diag(p(7:9));

Ar(2,1)=p(10);

Ar(3,1)=p(11);

Ar(2,3)=p(12);

Ar(3,2)=Ar(2,3);

Ct2=p(13:15);

A2=p(16:18);

Vb=Vb0+Ct1*DeltaT;

Mvec=(Ar + diag(Ct2)*DeltaT)*((Vs-Vb) + A2.*(Vs-Vb).^2);

gradM=zeros(3,18);

if(dervflag==1)

S=((Vs-Vb) + A2.*(Vs-Vb).^2);

gradM(:,1:3)=-diag((Ar + diag(Ct2)*DeltaT)*(1+2*A2.*(Vs-Vb)));

gradM(:,4:6)=gradM(:,1:3)*DeltaT;

gradM(:,7:9)=diag(S);

gradM(:,10)=[0; S(1); S(1)];

gradM(:,11)=[0; 0; S(1)];

gradM(:,12)=[0; 0; S(2)];

gradM(:,13:15)=DeltaT*gradM(:,7:9);

gradM(:,16:18)=diag((Ar + diag(Ct2)*DeltaT)*(Vs-Vb).^2);

end

function [Nvec, gradN]=findN(p,Vs,DeltaT,a,dervflag)

Vb0=p(1:3);

Ct1=p(4:6);

Ar=diag(p(7:9));

Ar(2,1)=p(10);

Ar(3,1)=p(11);

Ar(3,2)=Ar(2,3);

Ct2=p(13:15);

A2=p(16:18);

Ca=reshape(p(19:27),3,3);

Vb=Vb0+Ct1*DeltaT+Ca*a;

Nvec=(Ar + diag(Ct2)*DeltaT)*((Vs-Vb) + A2.*(Vs-Vb).^2);

gradN=zeros(3,27);

if(dervflag==1)

S=((Vs-Vb) + A2.*(Vs-Vb).^2);

gradN(:,1:3)=-diag((Ar + diag(Ct2)*DeltaT)*(1+2*A2.*(Vs-Vb)));

gradN(:,4:6)=gradN(:,1:3)*DeltaT;

gradN(:,7:9)=diag(S);

gradN(:,10)=[0; S(1); S(1)];

gradN(:,11)=[0; 0; S(1)];

gradN(:,12)=[0; 0; S(2)];

gradN(:,13:15)=DeltaT*gradN(:,7:9);

gradN(:,16:18)=diag((Ar + diag(Ct2)*DeltaT)*(Vs-Vb).^2);

gradN(:,19:21)=gradN(:,1:3)*a(1);

gradN(:,22:24)=gradN(:,1:3)*a(2);

gradN(:,25:27)=gradN(:,1:3)*a(3);

end

function DeltaT=findT(temp)

bits2volts=5/4096;

tempbias=2048;

tempoffset=0;%=27;

temp_Vperdeg=0.0084;

DeltaT=(temp-tempbias)*bits2volts/temp_Vperdeg + tempoffset;

function [Rmat,DRmat_th,DRmat_ph]=findR(theta,phi,dervflag)

Rmat=[-cos(theta) -sin(theta)*sin(phi) -sin(theta)*cos(phi);

0 -cos(phi) sin(phi);

-sin(theta) cos(theta)*sin(phi) cos(theta)*cos(phi)];

if(dervflag==1)

DRmat_th=[sin(theta) -cos(theta)*sin(phi) -cos(theta)*cos(phi);

0 0 0;

-cos(theta) -sin(theta)*sin(phi) -sin(theta)*cos(phi)];

DRmat_ph=[0 -sin(theta)*cos(phi) sin(theta)*sin(phi);

0 sin(phi) cos(phi);

0 cos(theta)*cos(phi) -cos(theta)*sin(phi)];

else

DRmat_th=zeros(3);

DRmat_ph=zeros(3);

end
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A-3 INS Raw output code

This code dumps the gyro and accelerometer data directly to the serial port
(used MPLAB and C30 compiler v.2.20).

#include "p30f2012.h"

#include "stdio.h"

void printSerial_int(unsigned int val,char sep) {

PORTDbits.RD9=1;

while(U1STAbits.UTXBF);

U1TXREG=val & 0xFF;

while(U1STAbits.UTXBF);

U1TXREG=val >> 8;

while(U1STAbits.UTXBF);

U1TXREG=sep;

PORTDbits.RD9=0;

}

void printSerial_str(char * str) {

char i = 0;

while(str[i]!=0) {

while(U1STAbits.UTXBF);

U1TXREG=str[i];

i++;

}

}

char * hex_convert(char *buf, unsigned long value, char lastCar) {

char num[32];

int pos;

*buf++=’0’;

*buf++=’x’;

pos=0;

while(value!=0) {

char c = value & 0x0F;

num[pos++]="0123456789ABCDEF"[(unsigned) c];

value=(value >> 4) & (0x0fffffffL);

}

if(pos==0) num[pos++]=’0’;

while(--pos >= 0) *buf++=num[pos];

*buf++ = lastCar;

*buf=0;

return buf;

}

void printSerial_nbr(unsigned long nbr, char lastCar) {

char strNbr[12];

hex_convert(strNbr,nbr,lastCar);

printSerial_str(strNbr);

}

void timersetup(void) {

// Set up timer to trigger every 4410 cycles

T1CONbits.TCS=0;

T1CONbits.TCKPS=0;

T1CONbits.TGATE=0;

T1CONbits.TSIDL=1;

TMR1=0;

PR1=0x106D; /* Interrupt after this many cycles*/

IPC0bits.T1IP = 4; /* set priority level */

IFS0bits.T1IF = 0; /* clear interrupt flag */

SRbits.IPL = 3; /* enable CPU priority levels 4-7 */

T1CONbits.TON=1;

IEC0bits.T1IE = 1; /* enable interrupts */

}

void adcsetup(void) {

ADPCFG=~127; // AN0-AN6 A/D mode, rest are just ports

ADCSSL=127; // Scan AN0-AN6 pins for data
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ADCHS=0;

ADCON3bits.ADRC=1; // Use ADC internal clock

ADCON2bits.ALTS=0; // Always use MUXA for inputs

ADCON2bits.BUFM=0; // Split buffers into 8 and 8 words

ADCON2bits.SMPI=13; // Sample/Convert sequences per interrupt

ADCON2bits.CSCNA=1; // Scan through multiple inputs

ADCON2bits.VCFG=0; // Select AVDD, AVSS for VREF

ADCON1bits.ASAM=0; // Auto start sampling

ADCON1bits.SSRC=7; // Automatically convert after sampling

ADCON1bits.FORM=0; // Results stored in integer form

ADCON1bits.ADSIDL=0;// Don’t stop in idle mode

IEC0bits.ADIE=1;

ADCON1bits.ASAM=0;

ADCON1bits.ADON=1;

}

void uartsetup(void) {

U1MODEbits.STSEL=0; // 1 Stop bit

U1MODEbits.PDSEL=0; // 8 bit no parity

U1MODEbits.ALTIO=0; // Use regular tx/rx pins

U1MODEbits.UARTEN=1; // enable UART

U1BRG=28; // At Fcy=26MHZ, 57600 baud

U1STAbits.UTXEN=1; // enable TX

}

/*

* Sampmode determines things about the next A/D conversion:

* 0 - Accelerometers only

* 1 - Accelerometers and gyros

* 2 - Accelerometers, gyros, and temperature

* Bit 3 set to 1 enables sleep mode during the conversion

*/

unsigned char sampmode=0;

// Calib mode on means we always stay in sampmode=6

unsigned char calibmode=0;

// The number of conversions so far this second

unsigned int convcnt=0;

typedef struct {

unsigned int temperature;

unsigned long mu1;

unsigned long mu2;

unsigned long mu3;

unsigned int a1;

unsigned int a2;

unsigned int a3;

unsigned int r1;

unsigned int r2;

unsigned int r3;

unsigned char tempupd; // Whether or not we have sent the current value of temperature

unsigned char r_upd; // Whether or not we have sent the current values or r1-3

unsigned int a_upd; // The index up to which we have sent a1-3

} ConvData;

ConvData convData;

int main(void)

{

unsigned int data[8];

char sent;

TRISD=0;

PORTD=0x0000;

timersetup();

adcsetup();

uartsetup();

while(1) {

sent=0;
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if(convData.tempupd) {

printSerial_int(convData.temperature,1);

convData.tempupd=0;

sent++;

}

if(convData.r_upd) {

printSerial_int(convData.r1,2);

printSerial_int(convData.r2,3);

printSerial_int(convData.r3,4);

convData.r_upd=0;

sent++;

}

if(convData.a_upd) {

printSerial_int(convData.a1,5);

printSerial_int(convData.a2,6);

printSerial_int(convData.a3,7);

convData.a_upd=0;

sent++;

}

if(sent) printSerial_int(’\r’,’\n’);

}

return 0;

}

void __attribute__((__interrupt__)) _ADCInterrupt(void)

{

IFS0bits.ADIF=0;

ADCON1bits.ASAM=0;

switch(sampmode) {

case 2:

// Temp, gyro, acc (no sleep)

convData.temperature=ADCBUF6;

convData.tempupd=1;

case 1:

// gyro, acc (no sleep)

convData.r1 = ADCBUF3;

convData.r2 = ADCBUF4;

convData.r3 = ADCBUF5;

convData.r_upd=1;

case 0:

// acc (no sleep)

convData.mu1+=ADCBUF0;

convData.mu2+=ADCBUF1;

convData.mu3+=ADCBUF2;

break;

case 4:

// acc (sleep)

convData.mu1+=ADCBUF3;

convData.mu2+=ADCBUF4;

convData.mu3+=ADCBUF5;

break;

case 5:

// gyro, acc (sleep)

convData.mu1+=ADCBUF6;

convData.mu2+=ADCBUF7;

convData.mu3+=ADCBUF8;

convData.r1 = ADCBUF9;

convData.r2 = ADCBUFA;

convData.r3 = ADCBUFB;

convData.r_upd=1;

break;

case 6:

// Temp, gyro, acc (sleep)

convData.mu1+=ADCBUF7;

convData.mu2+=ADCBUF8;

convData.mu3+=ADCBUF9;

convData.r1 = ADCBUFA;

convData.r2 = ADCBUFB;

convData.r3 = ADCBUFC;

convData.temperature=ADCBUFD;

convData.r_upd=1;

convData.tempupd=1;

break;

}
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/*

* Figure out what the next conversion should measure

*/

convcnt++;

sampmode=0;

if((convcnt % 75)==0) {

IEC0bits.T1IE = 0;

convData.a1=convData.mu1/75;

convData.a2=convData.mu2/75;

convData.a3=convData.mu3/75;

convData.a_upd=1;

convData.mu1=0;

convData.mu2=0;

convData.mu3=0;

IEC0bits.T1IE = 1;

}

if(calibmode) {

sampmode=6;

} else if(convcnt>=6000) {

// 6020 conversion cycles per second; once a second, sample gyro

// and temp gauge in sleep mode

convcnt=0;

sampmode=6;

} else if((convcnt % 75)==0) {

// At 140 Hz, sample the gyro in sleep mode

sampmode=5;

}

PORTDbits.RD9=0;

return;

}

void __attribute__((__interrupt__)) _T1Interrupt(void)

{

// Reset the timer

IEC0bits.T1IE = 0;

timersetup();

IEC0bits.T1IE = 1;

PORTDbits.RD9=1;

switch(sampmode & 0x03) {

case 0:

ADCSSL=7; // Scan AN0-AN2 pins for data

ADCON2bits.SMPI=2; // Sample/Convert sequences per interrupt

break;

case 1:

ADCSSL=63; // Scan AN0-AN5 pins

ADCON2bits.SMPI=5; // Sample/Convert sequences per interrupt

break;

case 2:

ADCSSL=127; // Scan AN0-AN6 pins

ADCON2bits.SMPI=6; // Sample/Convert sequences per interrupt

break;

}

// Add extra conversions to make sure we have entered sleep mode before

// doing the main ones

if(sampmode & 0x04)

ADCON2bits.SMPI=2*ADCON2bits.SMPI+1;

ADCON1bits.ASAM=1;

if(sampmode & 0x04) Sleep();

return;

}
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A-4 INS main code

This code performs the actual INS processing. The main.c file contains the
bulk of the code. main.h contains parameter values and definitions. se-
rial stuff.c contains functions for serial output.

main.c
#include "p30f2012.h"

#include "stdio.h"

#include "math.h"

#include "serial_stuff.h"

#include "main.h"

void timersetup(void) {

// Set up timer to trigger every 4410 cycles

T1CONbits.TCS=0;

T1CONbits.TCKPS=0;

T1CONbits.TGATE=0;

T1CONbits.TSIDL=1;

TMR1=0;

PR1=0x106D; /* Interrupt after this many cycles*/

IPC0bits.T1IP = 4; /* set priority level */

IFS0bits.T1IF = 0; /* clear interrupt flag */

SRbits.IPL = 3; /* enable CPU priority levels 4-7 */

T1CONbits.TON=1;

IEC0bits.T1IE = 1; /* enable interrupts */

}

void adcsetup(void) {

ADPCFG=~127; // AN0-AN6 A/D mode, rest are just ports

ADCSSL=127; // Scan AN0-AN6 pins for data

ADCHS=0;

ADCON3bits.ADRC=1; // Use ADC internal clock

ADCON2bits.ALTS=0; // Always use MUXA for inputs

ADCON2bits.BUFM=0; // Split buffers into 8 and 8 words

ADCON2bits.SMPI=13; // Sample/Convert sequences per interrupt

ADCON2bits.CSCNA=1; // Scan through multiple inputs

ADCON2bits.VCFG=0; // Select AVDD, AVSS for VREF

ADCON1bits.ASAM=0; // Auto start sampling

ADCON1bits.SSRC=7; // Automatically convert after sampling

ADCON1bits.FORM=0; // Results stored in integer form

ADCON1bits.ADSIDL=0;// Don’t stop in idle mode

IEC0bits.ADIE=1;

ADCON1bits.ASAM=0;

ADCON1bits.ADON=1;

}

void uartsetup(void) {

U1MODEbits.STSEL=0; // 1 Stop bit

U1MODEbits.PDSEL=0; // 8 bit no parity

U1MODEbits.ALTIO=0; // Use regular tx/rx pins

U1MODEbits.UARTEN=1; // enable UART

U1BRG=28; // At Fcy=26MHZ, 57600 baud

U1STAbits.UTXEN=1; // enable TX

}

int main(void)

{

unsigned char *aff;

unsigned int *dw;

unsigned int da;

double deltat, dtheta, s_, c_;

double ahat[3]={0,0,0};

double Vbg[3]={0,0,0};

double omegahat[3]={0,0,0};

double q[4]={0,0,0,0};

double q2[4];

double C[3][3];
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double a[3]={0,0,0};

double vn[3]={0,0,0};

double rn[3]={0,0,0};

double tx2, ty2, ctx2, cty2, stx2, sty2, maxa;

// This determines how long we average accelerometers to measure initial tilt

int startup=STARTUPTIME;

// This tell us if we need to send a newline at the end of some sent data

char sent;

tx2=0;

ty2=0;

TRISD=0;

PORTD=0x0000;

timersetup();

adcsetup();

uartsetup();

while(1) {

sent=0;

if(startup > 0) {

if(convData.a_upd) {

convData.a_upd=0;

// Add up the accelerometer data (will divide later)

ahat[0]+=(((double)convData.a1)*bits2volts-Vb_a0)*A_a0;

ahat[1]+=(((double)convData.a2)*bits2volts-Vb_a1)*A_a1;

ahat[2]+=(((double)convData.a3)*bits2volts-Vb_a2)*A_a2;

// This means we have all our samples

if(startup==1) {

// Average accelerometer data

ahat[0]=ahat[0]/STARTUPTIME;

ahat[1]=ahat[1]/STARTUPTIME;

ahat[2]=ahat[2]/STARTUPTIME;

maxa=ahat[0];

// Find maximum accelerometer vector

if(ahat[1] > ahat[0] || -ahat[1] > -ahat[0])

maxa=ahat[1];

if(ahat[2] > maxa || -ahat[2] > -maxa)

maxa=ahat[2];

// Find thetax and thetay

// ahat should not exceed 1, but it might

// by a little bit.

if(maxa > 0) {

if(ahat[1] >1 || ahat[1] < -1)

tx2=ahat[1] > 0 ? -PI/4:PI/4;

else

tx2=-asin(ahat[1])/2;

if(ahat[0] >1 || ahat[0] < -1)

ty2=ahat[0] > 0 ? PI/4:-PI/4;

else

ty2=asin(ahat[0])/2;

} else {

if(ahat[1] >1 || ahat[1] < -1)

tx2=ahat[1] > 0 ? 3*PI/4:-3*PI/4;

else

tx2=(PI+asin(ahat[1]))/2;

if(ahat[0] >1 || ahat[0] < -1)

ty2=ahat[0] > 0 ? -PI/4:PI/4;

else

ty2=-asin(ahat[0])/2;

}

// Initialize quaternion

ctx2=cos(tx2);

cty2=cos(ty2);

stx2=sin(tx2);
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sty2=sin(ty2);

q[0]=stx2*cty2;

q[1]=ctx2*sty2;

q[2]=-stx2*sty2;

q[3]=ctx2*cty2;

/* while(1) {

printSerial_float(tx2,1);

printSerial_float(ty2,3);

printSerial_float(q[0],5);

printSerial_float(q[1],7);

printSerial_float(q[2],9);

printSerial_float(q[3],11);

printSerial_int(’\r’,’\n’);

printSerial_float(ahat[0],1);

printSerial_float(ahat[1],3);

printSerial_float(ahat[2],5);

printSerial_int(’\r’,’\n’);

}*/

}

startup--;

}

} else {

// Update temperature

if(convData.tempupd) {

deltat=(convData.temperature-2048)*bits2volts*GainTemp;

convData.tempupd=0;

}

// This is the main INS update step

if(convData.r_upd && convData.a_upd) {

convData.r_upd=0;

convData.a_upd=0;

PORTDbits.RD8=1;

// Calculate acceleration

ahat[0]=(((double)convData.a1)*bits2volts-Vb_a0)*A_a0;

ahat[1]=(((double)convData.a2)*bits2volts-Vb_a1)*A_a1;

ahat[2]=(((double)convData.a3)*bits2volts-Vb_a2)*A_a2;

// Calculate gyro bias

Vbg[0]=Vb0_g0+Ct1_g0*deltat+Aa_g0*ahat[0]+Aa_g1*ahat[1]+Aa_g2*ahat[2];

Vbg[1]=Vb0_g1+Ct1_g1*deltat+Aa_g3*ahat[0]+Aa_g4*ahat[1]+Aa_g5*ahat[2];

Vbg[2]=Vb0_g2+Ct1_g2*deltat+Aa_g6*ahat[0]+Aa_g7*ahat[1]+Aa_g8*ahat[2];

// Calculate angular velocity * time step = change in angle

omegahat[0]=(((double)convData.r1)*bits2volts-Vbg[0])*GainGyro/FSAMP;

omegahat[1]=-(((double)convData.r2)*bits2volts-Vbg[1])*GainGyro/FSAMP;

omegahat[2]=(((double)convData.r3)*bits2volts-Vbg[2])*GainGyro/FSAMP;

// Update quaternion

dtheta=sqrt((omegahat[0]*omegahat[0] + omegahat[1]*omegahat[1] + omegahat[2]*omegahat[2]));

s_=sin(dtheta/2)/dtheta;

c_=cos(dtheta/2);

q[0]=c_*q[0]+s_*(omegahat[2]*q[1]-omegahat[1]*q[2]+omegahat[0]*q[3]);

q[1]=c_*q[1]+s_*(-omegahat[2]*q[0]+omegahat[0]*q[2]+omegahat[1]*q[3]);

q[2]=c_*q[2]+s_*(omegahat[1]*q[0]-omegahat[0]*q[1]+omegahat[2]*q[3]);

q[3]=c_*q[3]+s_*(-omegahat[0]*q[0]-omegahat[1]*q[1]-omegahat[2]*q[2]);

// Update rotation matrix

q2[0]=q[0]*q[0];

q2[1]=q[1]*q[1];

q2[2]=q[2]*q[2];

q2[3]=q[3]*q[3];

C[0][0]=q2[0]-q2[1]-q2[2]+q2[3];

C[0][1]=2*(q[0]*q[1]+q[2]*q[3]);

C[0][2]=2*(q[0]*q[2]-q[1]*q[3]);

C[1][0]=2*(q[0]*q[1]-q[2]*q[3]);

C[1][1]=q2[1]-q2[0]-q2[2]+q2[3];

C[1][2]=2*(q[1]*q[2]+q[0]*q[3]);

C[2][0]=2*(q[0]*q[2]+q[1]*q[3]);

C[2][1]=2*(q[1]*q[2]-q[0]*q[3]);

C[2][2]=q2[2]-q2[0]-q2[1]+q2[3];

// This is our actual acceleration (minus gravity)

a[0]=C[0][0]*ahat[0]+C[0][1]*ahat[1]+C[0][2]*ahat[2];
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a[1]=C[1][0]*ahat[0]+C[1][1]*ahat[1]+C[1][2]*ahat[2];

a[2]=C[2][0]*ahat[0]+C[2][1]*ahat[1]+C[2][2]*ahat[2]-1;

// Update velocity

vn[0]+=a[0]/FSAMP;

vn[1]+=a[1]/FSAMP;

vn[2]+=a[2]/FSAMP;

// Update position

rn[0]+=vn[0]/FSAMP;

rn[1]+=vn[1]/FSAMP;

rn[2]+=vn[2]/FSAMP;

// Output it over serial port

printSerial_float(vn[0],1);

printSerial_float(vn[1],3);

printSerial_float(vn[2],5);

printSerial_float(rn[0],7);

printSerial_float(rn[1],9);

printSerial_float(rn[2],11);

sent=1;

PORTDbits.RD8=0;

}

}

if(sent) printSerial_int(’\r’,’\n’);

}

return 0;

}

void __attribute__((__interrupt__)) _ADCInterrupt(void)

{

IFS0bits.ADIF=0;

ADCON1bits.ASAM=0;

switch(sampmode) {

case 2:

// Temp, gyro, acc (no sleep)

convData.temperature=ADCBUF6;

convData.tempupd=1;

case 1:

// gyro, acc (no sleep)

convData.r1 = ADCBUF3;

convData.r2 = ADCBUF4;

convData.r3 = ADCBUF5;

convData.r_upd=1;

case 0:

// acc (no sleep)

convData.mu1+=ADCBUF0;

convData.mu2+=ADCBUF1;

convData.mu3+=ADCBUF2;

break;

case 4:

// acc (sleep)

convData.mu1+=ADCBUF3;

convData.mu2+=ADCBUF4;

convData.mu3+=ADCBUF5;

break;

case 5:

// gyro, acc (sleep)

convData.mu1+=ADCBUF6;

convData.mu2+=ADCBUF7;

convData.mu3+=ADCBUF8;

convData.r1 = ADCBUF9;

convData.r2 = ADCBUFA;

convData.r3 = ADCBUFB;

convData.r_upd=1;

break;

case 6:

// Temp, gyro, acc (sleep)

convData.mu1+=ADCBUF7;

convData.mu2+=ADCBUF8;

convData.mu3+=ADCBUF9;

convData.r1 = ADCBUFA;

convData.r2 = ADCBUFB;
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convData.r3 = ADCBUFC;

convData.temperature=ADCBUFD;

convData.r_upd=1;

convData.tempupd=1;

break;

}

/*

* Figure out what the next conversion should measure

*/

convcnt++;

sampmode=0;

if((convcnt % gyrofrac)==0) {

IEC0bits.T1IE = 0;

convData.a1=convData.mu1/gyrofrac;

convData.a2=convData.mu2/gyrofrac;

convData.a3=convData.mu3/gyrofrac;

convData.a_upd=1;

convData.mu1=0;

convData.mu2=0;

convData.mu3=0;

IEC0bits.T1IE = 1;

}

if(convcnt>=numcyc) {

// 6000 conversion cycles per second; once a second, sample gyro

// and temp gauge in sleep mode

convcnt=0;

sampmode=6;

} else if((convcnt % gyrofrac)==0) {

// At 80 Hz, sample the gyro in sleep mode

sampmode=5;

}

PORTDbits.RD9=0;

return;

}

void __attribute__((__interrupt__)) _T1Interrupt(void)

{

// Reset the timer

IEC0bits.T1IE = 0;

timersetup();

IEC0bits.T1IE = 1;

PORTDbits.RD9=1;

switch(sampmode & 0x03) {

case 0:

ADCSSL=7; // Scan AN0-AN2 pins for data

ADCON2bits.SMPI=2; // Sample/Convert sequences per interrupt

break;

case 1:

ADCSSL=63; // Scan AN0-AN5 pins

ADCON2bits.SMPI=5; // Sample/Convert sequences per interrupt

break;

case 2:

ADCSSL=127; // Scan AN0-AN6 pins

ADCON2bits.SMPI=6; // Sample/Convert sequences per interrupt

break;

}

// Add extra conversions to make sure we have entered sleep mode before

// doing the main ones

if(sampmode & 0x04)

ADCON2bits.SMPI=2*ADCON2bits.SMPI+1;

ADCON1bits.ASAM=1;

if(sampmode & 0x04) Sleep();

return;

}

main.h
/*
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* Sampmode determines things about the next A/D conversion:

* 0 - Accelerometers only

* 1 - Accelerometers and gyros

* 2 - Accelerometers, gyros, and temperature

* Bit 3 set to 1 enables sleep mode during the conversion

*/

unsigned char sampmode=0;

// The number of conversions so far this second

unsigned int convcnt=0;

typedef struct {

unsigned int temperature;

unsigned long mu1;

unsigned long mu2;

unsigned long mu3;

unsigned int a1;

unsigned int a2;

unsigned int a3;

unsigned int r1;

unsigned int r2;

unsigned int r3;

unsigned char tempupd; // Whether or not we have sent the current value of temperature

unsigned char r_upd; // Whether or not we have sent the current values or r1-3

unsigned char a_upd; // The index up to which we have sent a1-3

} ConvData;

ConvData convData;

#define printSerial_float(x,y) aff=(char *) &(x); \

dw=(unsigned int *) aff; \

printSerial_int(dw[0],y); \

printSerial_int(dw[1],y+1); \

// Sampling parameters

#define bits2volts 5/4096

#define FSAMP 80

#define numcyc 6000

#define gyrofrac 75

#define GainTemp 0.0084 // Temperature degrees per volt

#define Vb_a0 2.50731184854958 // x accelerometer bias

#define Vb_a1 2.51708344822763 // y accelerometer bias

#define Vb_a2 2.65085336425370 // z accelerometer bias

#define A_a0 0.92889698838059 // x accelerometer gain

#define A_a1 -0.92712035053800 // y accelerometer gain

#define A_a2 1.02570005604879 // z accelerometer gain

#define Vb0_g0 2.54550112933003 // x gyro bias

#define Vb0_g1 2.42309372110485 // y gyro bias

#define Vb0_g2 2.38393062104104 // z gyro bias

#define Ct1_g0 -0.00127332045947 // x gyro bias temp. gain

#define Ct1_g1 -0.00193392098413 // y gyro bias temp. gain

#define Ct1_g2 -0.00309753818907 // z gyro bias temp. gain

#define Aa_g0 0.00301424106840 // Aa(1,1)

#define Aa_g1 -0.00008541220703 // Aa(1,2)

#define Aa_g2 -0.00103822790568 // Aa(1,3)

#define Aa_g3 0.00038442336069 // Aa(2,1)

#define Aa_g4 -0.00253183153360 // Aa(2,2)

#define Aa_g5 0.00172178312521 // Aa(2,3)

#define Aa_g6 -0.00179240853058 // Aa(3,1)

#define Aa_g7 -0.00129305222382 // Aa(3,2)

#define Aa_g8 0.00142030748636 // Aa(3,3)

#define GainGyro 1.3963 // gyro gain

#define STARTUPTIME 20

#define PI 3.14159

serial stuff.c

#include "p30f2012.h"

void printSerial_int(unsigned int val,char sep) {
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PORTDbits.RD9=1;

while(U1STAbits.UTXBF);

U1TXREG=val & 0xFF;

while(U1STAbits.UTXBF);

U1TXREG=val >> 8;

while(U1STAbits.UTXBF);

U1TXREG=sep;

PORTDbits.RD9=0;

}

void printSerial_str(char * str) {

char i = 0;

while(str[i]!=0) {

while(U1STAbits.UTXBF);

U1TXREG=str[i];

i++;

}

}

char * hex_convert(char *buf, unsigned long value, char lastCar) {

char num[32];

int pos;

*buf++=’0’;

*buf++=’x’;

pos=0;

while(value!=0) {

char c = value & 0x0F;

num[pos++]="0123456789ABCDEF"[(unsigned) c];

value=(value >> 4) & (0x0fffffffL);

}

if(pos==0) num[pos++]=’0’;

while(--pos >= 0) *buf++=num[pos];

*buf++ = lastCar;

*buf=0;

return buf;

}

void printSerial_nbr(unsigned long nbr, char lastCar) {

char strNbr[12];

hex_convert(strNbr,nbr,lastCar);

printSerial_str(strNbr);

}

serial stuff.h

void printSerial_int(unsigned int val,char sep);

void printSerial_str(char * str);

char * hex_convert(char *buf, unsigned long value, char lastCar);

void printSerial_nbr(unsigned long nbr, char lastCar);

A-5 PC serial capture code

This C# code was used to do all of the serial data capture. The radio buttons
allow the selection of capturing integer values from the raw output code or
floating point data from the full INS code.

Form1.cs

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using System.IO.Ports;
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using System.IO;

using System.Threading;

namespace RawIMU

{

public partial class Form1 : Form

{

private SerialPort com;

private List<dataline> data;

private List<INSdataline> INSdata;

private Thread rxThread;

private int logtime;

public Form1()

{

InitializeComponent();

radioButton_raw.Checked = true;

com = new SerialPort("COM1", 57600);

data = new List<dataline>();

INSdata = new List<INSdataline>();

timer1.Enabled = true;

}

~Form1() {

com.Close();

com.Dispose();

}

private void OpenButton_Click(object sender, EventArgs e)

{

if (!this.com.IsOpen) {

data.Clear();

INSdata.Clear();

com = new SerialPort("COM1", 57600,Parity.None,8,StopBits.One);

rxThread = new Thread(new ThreadStart(Receive));

rxThread.Start();

try {

com.Open();

}

catch {

MessageBox.Show("Could not open serial port");

rxThread.Abort();

return;

}

logtime = 0;

((Button)sender).Text = "Close Port";

}

else {

com.Close();

rxThread.Abort();

((Button)sender).Text = "Open Port";

}

}

void Receive() {

try {

byte[] buf=new byte[1024];

byte[] buf2 = new byte[1024];

int bufptr = 0;

while (true) {

if (!com.IsOpen)

continue;

try {

while (true) {

buf[bufptr++] =(byte) com.ReadByte();

if (bufptr == 1024) {

bufptr = 0;

break;

}

}

}

catch (IOException) {
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continue;

}

int mark=-1;

for (int i = 3; i < 1024; i++) {

if ((buf[i - 1] == 10) && (buf[i - 2] == 0) && (buf[i - 3] == 13)) {

if (mark != -1) {

if (radioButton_raw.Checked)

data.Add(new dataline(buf2, i - mark - 3));

else if (radioButton_ins.Checked)

INSdata.Add(new INSdataline(buf2, i - mark - 3));

}

mark = i;

}

if (mark != -1)

buf2[i - mark] = buf[i];

}

buf = buf2;

}

}

catch (ObjectDisposedException) {

if (rxThread != null)

rxThread = null;

}

}

SaveFileDialog dlg;

private void savebutton_Click(object sender, EventArgs e) {

dlg = new SaveFileDialog();

dlg.FileOk += new CancelEventHandler(dlg_FileOk);

dlg.ShowDialog();

}

void dlg_FileOk(object sender, CancelEventArgs e) {

string name = dlg.FileName;

using (StreamWriter sw = new StreamWriter(name)) {

for (int i = 0; i < data.Count; i++) {

sw.WriteLine(data[i].ToString());

}

for (int i = 0; i < INSdata.Count; i++) {

sw.WriteLine(INSdata[i].ToString());

}

}

}

private void timer1_Tick(object sender, EventArgs e) {

if (com.IsOpen) {

logtime++;

logtimelabel.Text = logtime.ToString();

if(radioButton_raw.Checked)

loglengthlabel.Text = data.Count.ToString();

else if(radioButton_ins.Checked)

loglengthlabel.Text = INSdata.Count.ToString();

}

}

}

public struct dataline {

public int ind;

public int a1;

public int a2;

public int a3;

public int r1;

public int r2;

public int r3;

public int temp;

public dataline(byte[] data,int length) {

ind = (int) System.DateTime.Now.Second;

a1 = -1;

a2 = -1;

a3 = -1;

r1 = -1;

r2 = -1;

r3 = -1;
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temp = -1;

int i = 0;

if(length < 3) return;

while (i <= (length-3)) {

int val = data[i] + (data[i + 1] << 8);

switch (data[i + 2]) {

case 1:

temp = val;

break;

case 2:

r1 = val;

break;

case 3:

r2 = val;

break;

case 4:

r3 = val;

break;

case 5:

a1 = val;

break;

case 6:

a2 = val;

break;

case 7:

a3 = val;

break;

}

i += 3;

}

}

public override string ToString() {

string str = "";

str += ind.ToString();

str += ",";

str += a1.ToString();

str += ",";

str += a2.ToString();

str += ",";

str += a3.ToString();

str += ",";

str += r1.ToString();

str += ",";

str += r2.ToString();

str += ",";

str += r3.ToString();

str += ",";

str += temp.ToString();

return str;

}

}

public struct INSdataline {

public int ind;

public double v1;

public double v2;

public double v3;

public double r1;

public double r2;

public double r3;

long v1_;

long v2_;

long v3_;

long r1_;

long r2_;

long r3_;

double bin2float(long bla) {

int offset = 8388608;

double mant = ((double)(bla & 0x7FFFFF)) / offset;

long exp = ((bla & 0x7F800000) >> 23) - 127;

int sgn = (bla & 0x80000000) == 0 ? 1 : -1;

return sgn * (1 + mant) * Math.Pow(2, exp);

}
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public INSdataline(byte[] data,int length) {

v1_ = 0;

v2_ = 0;

v3_ = 0;

r1_ = 0;

r2_ = 0;

r3_ = 0;

ind = (int) System.DateTime.Now.Second;

v1 = double.NaN;

v2 = double.NaN;

v3 = double.NaN;

r1 = double.NaN;

r2 = double.NaN;

r3 = double.NaN;

int i = 0;

if(length < 3) return;

while (i <= (length-3)) {

int val = data[i] + (data[i + 1] << 8);

switch (data[i + 2]) {

case 1:

v1_=val;

break;

case 2:

v1_+=val << 16;

v1=bin2float(v1_);

break;

case 3:

v2_=val;

break;

case 4:

v2_ += val<<16;

v2=bin2float(v2_);

break;

case 5:

v3_=val;

break;

case 6:

v3_+=val<<16;

v3=bin2float(v3_);

break;

case 7:

r1_=val;

break;

case 8:

r1_+=val<<16;

r1=bin2float(r1_);

break;

case 9:

r2_=val;

break;

case 10:

r2_+=val<<16;

r2=bin2float(r2_);

break;

case 11:

r3_=val;

break;

case 12:

r3_+=val<<16;

r3=bin2float(r3_);

break;

}

i += 3;

}

}

public override string ToString() {

string str = "";

str += ind.ToString();

str += ",";

str += v1.ToString();

str += ",";

str += v2.ToString();

str += ",";
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str += v3.ToString();

str += ",";

str += r1.ToString();

str += ",";

str += r2.ToString();

str += ",";

str += r3.ToString();

return str;

}

}

}
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