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Abstract—In this paper, image compression utilizing visual
redundancy is investigated. Inspired by recent advancements in
image inpainting techniques, we propose an image compression
framework towards visual quality rather than pixel-wise fidelity.
In this framework, an original image is analyzed at the encoder
side so that portions of the image are intentionally and auto-
matically skipped. Instead, some information is extracted from
these skipped regions and delivered to the decoder as assistant
information in the compressed fashion. The delivered assistant
information plays a key role in the proposed framework because it
guides image inpainting to accurately restore these regions at the
decoder side. Moreover, to fully take advantage of the assistant
information, a compression-oriented edge-based inpainting algo-
rithm is proposed for image restoration, integrating pixel-wise
structure propagation and patch-wise texture synthesis. We also
construct a practical system to verify the effectiveness of the
compression approach in which edge map serves as assistant in-
formation and the edge extraction and region removal approaches
are developed accordingly. Evaluations have been made in com-
parison with baseline JPEG and standard MPEG-4 AVC/H.264
intra-picture coding. Experimental results show that our system
achieves up to 44% and 33% bits-savings, respectively, at similar
visual quality levels. Our proposed framework is a promising
exploration towards future image and video compression.

Index Terms—Edge extraction, image compression, image
inpainting, structure propagation, texture synthesis, visual
redundancy.

I. INTRODUCTION

OVER THE LAST two decades, great improvements have
been made in image and video compression techniques

driven by a growing demand for storage and transmission of
visual information. State-of-the-art JPEG2000 and MPEG-4
AVC/H.264 are two examples that significantly outperform their
previous rivals in terms of coding efficiency. However, these
mainstream signal-processing-based compression schemes
share a common architecture, namely transform followed by
entropy coding, where only the statistical redundancy among
pixels is considered as the adversary of coding. Through two
decades of development, it has been becoming difficult to con-
tinuously improve coding performance under such architecture.
Specifically, to achieve high compression performance, more
and more modes are introduced to deal with regions of different
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properties in image and video coding. Consequently, intensive
computational efforts are required to perform mode selection
subject to the principle of rate-distortion optimization. At the
same time, more and more memory-cost context models are
utilized in entropy coding to adapt to different kinds of correla-
tions. As a result, small improvements in coding efficiency are
accomplished with great pain of increased complexity in both
encoder and decoder.

Besides statistical redundancy, visual redundancy in videos
and images has also been considered in several works. They
are motivated by the generally accepted fact that minimizing
overall pixel-wise distortion, such as mean square error (MSE),
is not able to guarantee good perceptual quality of reconstructed
visual objects, especially in low bit-rate scenarios. Thus, the
human vision system (HVS) has been incorporated into com-
pression schemes in [1] and [2], trying to remove some visual
redundancy and to improve coding efficiency as well as visual
quality. Moreover, attempts have been made to develop com-
pression techniques by identifying and utilizing features within
images to achieve high coding efficiency. These kinds of coding
approaches are categorized as “second-generation” techniques
in [3], and have raised a lot of interest due to the potential of
high compression performance. Nevertheless, taking the seg-
mentation-based coding method as an example, the develop-
ment of these coding schemes is greatly influenced by the avail-
ability as well as effectiveness of appropriate image analysis
algorithms, such as edge detection, segmentation, and texture
modeling tools.

Recently, technologies in computer vision as well as com-
puter graphics have shown remarkable progress in hallucinating
pictures of good perceptual quality. Indeed, advancements in
structure/texture analysis [4], [5] and synthesis are leading to
promising efforts to exploit visual redundancy. So far, attractive
results have been achieved by newly presented texture synthesis
techniques to generate regions of homogeneous textures from
their surroundings [6]–[14]. Furthermore, various image in-
painting methods have been presented, aiming to fill-in missing
data in more general regions of an image in a visually plausible
way. In fact, the word inpainting was initially invented by mu-
seum or art restoration workers. It is first introduced into digital
image processing by Bertalmio et al. [15], where a third order
partial differential equation (PDE) model is used to recover
missing regions by smoothly propagating information from the
surrounding areas in isophote directions. Subsequently, more
models are introduced and investigated in image inpainting,
e.g., total variation (TV) model [16], coupled second order
PDE model taking into account the gradient orientations [17],
curvature-driven diffusion (CDD) model [18], and so on. All
these approaches work at pixel level and are good at recovering
small flaws and thin structures. Additionally, exemplar-based
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approaches have been proposed to generate textural coarse-
ness; by augmenting texture synthesis with certain automatic
guidance, edge sharpness and structure continuity can also
be preserved [19]–[21]. Combining PDE diffusion and ex-
emplar-based synthesis presents more encouraging inpainting
results in [24]–[26]. Moreover, inpainting capability is further
improved by simple human interactions when human knowl-
edge is borrowed to imagine what unknown regions should be,
so that the restoration results look natural to viewers [22], [23].

Due to its potential in image recovery, image inpainting
likewise provides current transform-based coding schemes
another way to utilize visual redundancy in addition to those
that have been done in [1]–[3]. This inference has been suc-
cessfully exemplified in error concealment when compressed
visual data is transmitted over error-prone channels [26], [27].
Moreover, it has been reported that improvement is achieved by
employing image inpainting techniques in image compression
even though in a straightforward fashion [26]. Besides, image
compression also brings new opportunities to image inpainting,
as we have pointed out in [32]. Since the complete source
images are available, many kinds of assistant information can
be extracted to help inpainting deal with complex regions that
contain structures or other features and which are unable to be
properly inferred from the surroundings. Thus, inpainting here
becomes a guided optimization for visual quality instead of
a blind optimization for image restoration. Accordingly, new
inpainting techniques may be developed to better serve image
compression.

When image inpainting and image compression are jointly
considered in an integrated coding system, two main problems
need to be addressed. The first: What should be extracted from a
source image as assistant information to represent important vi-
sual information? The second: How to reconstruct an image with
this assistant information? On the one hand, it has been reported
that using different image analyzers, various kinds of assistant
information can be extracted, including edge, object, sketch [5],
epitome [29], [30], and so on, to represent an image or portion
of an image. Then, given a specific kind of assistant informa-
tion, the corresponding restoration method should be developed
to complete a desired reconstruction by making full use of it. On
the other, from the compression point of view, the effectiveness
of restoration methods as well as the efficiency of the compres-
sion of assistant information would also influence the choice
of assistant information. Such dependency makes the problems
more complicated.

In this paper, we propose an image coding framework in
which currently developed vision techniques are incorporated
with traditional transform-based coding methods to exploit
visual redundancy in images. In this scheme, some regions are
intentionally and automatically removed at the encoder and are
restored naturally by image inpainting at the decoder. In addi-
tion, binary edge information consisting of lines of one-pixel
width is extracted at the encoder and delivered to the decoder
to help restoration. Techniques, including edge thinning and
exemplar selection are proposed, and an edge-based inpainting
method is presented in which distance-related structure prop-
agation is proposed to recover salient structures, followed
by texture synthesis. The basic idea of this paper has been

discussed in our conference papers [31] and [32]. However,
some problems have not been investigated carefully in those
papers, including questions such as why the edges of image are
selected as assistant information, or how to select the exemplar
blocks automatically, and so on.

The remainder of this paper is organized as follows. In
Section II, we introduce the framework of our proposed coding
scheme. We also discuss on the necessity and importance of the
assistant edge information via image inpainting models. The
key techniques proposed for our coding approach are described
in Sections III and IV. Specifically, Section III shows the edge
extraction and exemplar selection methods, and the edge-based
image inpainting is proposed in Section IV. Section V presents
experimental results in terms of bit-rate and visual quality. In
Section VI, we conclude this paper and discuss future work.

II. FRAMEWORK OF OUR PROPOSED IMAGE

COMPRESSION SCHEME

As the basic idea of “encoder removes whereas decoder re-
stores” has been mentioned in literature for image compression
[26], [28], we would like to point out the novelties of our pro-
posed method here. First, in our approach, the original image
is not simply partitioned into two parts: one is coded by con-
ventional transform-based approach, and the other is skipped
during encoding and restored during decoding. Instead, tech-
niques for image partition, block removal, and restoration in our
proposed scheme are carefully designed towards compression
rather than straightforward adoption. Furthermore, skipped re-
gions will not be completely dropped at the encoder side if they
contain portion of information that is difficult to be properly
recovered by conventional image inpainting methods. In fact,
assistant information is extracted from the skipped regions to
guide the restoration process and further induce new inpainting
techniques.

The framework of our proposed compression scheme is de-
picted in Fig. 1. In this scheme, an original image is first an-
alyzed at the encoder side. The “image analysis” module au-
tomatically preserves partial image regions as exemplars and
sends them to the “exemplar encoder” module for compression
using conventional approaches. Meanwhile, it extracts desig-
nated information from skipped regions as assistant information
and sends it to the “assistant info encoder” module. Then, the
coded exemplars and coded assistant information are banded to-
gether to form final compressed data of this image. Correspond-
ingly, at the decoder side, exemplars and assistant information
are first decoded and reconstructed. Then, the regions skipped
at the encoder are restored by image inpainting based on the
twofold information. At the end, the restored regions are com-
bined with the decoded exemplar regions to present the entire
reconstructed image.

Fig. 1 shows a general framework of the proposed compres-
sion scheme that does not constrain which kind of assistant in-
formation should be used there. Since source image is always
available at the encoder side, there are many choices of assis-
tant information extracted from the skipped regions, e.g., se-
mantic object, visual pattern, complete structure, simple edges,
and so on. Here we start from the mathematical models in image
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Fig. 1. The framework of our proposed image compression scheme.

Fig. 2. Illustration of image inpainting, where the gray region is to be restored.

inpainting to discuss what on earth the assistant information
should be.

As shown in Fig. 2, suppose that we are given an image func-
tion , , where is a square region in . , depicted
as the gray region in Fig. 2, is an open bounded subset of
with Lipschitz continuous boundary. It is just the region to be
restored by image compression, image inpainting, or a combi-
nation of them. This restoration problem can be generalized as

(1)

Here, is the original image function in , where it should
satisfy for any . is a reconstruction
of at decoder. is a Lagrange factor. Clearly, (1) is to find
the optimal function by minimizing the joint cost con-
sisting of reconstructed distortion and coding bits for .
Thus, image compression and image inpainting can be viewed
as two extreme cases of (1). Specifically, in traditional image
compression, is directly coded and sent to the decoder,
where many bits may be needed to represent ; whereas in
image inpainting, there is no bit to represent since
is inferred from . However, our proposed method, which
is quite different from compression or inpainting, can be granted
as a combination of them.

In typical inpainting scenarios, the restoration of is
usually an ill-posed problem because information in is totally
unknown. Fortunately, an image is a 2-D projection of the 3-D
real world. The lost region often has similar statistic, geometric
and surface reflectivity regularities as those in the surround-
ings. It makes the above ill-posed problem possible to be solved.
Therefore, some models are introduced in image inpainting to
characterize statistic, geometric and surface regularities. These
models should employ generic regularities, rather than rely on

a specific class of images so that model-based inpainting can be
applied in generic images.

One such model, TV model, is presented in [16] for image
inpainting, in which the variation regularity is first introduced.
Since local statistical correlation usually plays an more impor-
tant role than the global one, as shown in Fig. 2, instead of

is used to infer the regularities in , where is a band
around . Then, the TV model is to find a function on
the extended inpainting region such that it minimizes the
following energy function:

(2)
The first term in (2) is to measure local homogeneity of image

function in the region , and the second term, called as fi-
delity term, is the sum of squared difference (SSD) between the
reconstructed in and the original in . Equation
(2) can be solved by the Euler–Lagrange method described in
[16]. Accordingly, TV inpainting is good at restoring homoge-
nous regions. But, if the lost region contains rich structures, it
does not work well, especially when structures are separated far
apart by the lost region.

To solve it, another parameter is introduced in the inpainting
model [17]. Let be the vector field of normalized gradient of

. is the corresponding parameter to be restored on .
With the new parameter of gradient directions, the inpainting
problem is posed as extending the pair of functions on
to a pair of functions on . It is completed by mini-
mizing the following function:

(3)

The first term presents smooth continuation demand on ,
where and are positive constants, and is a smoothing
kernel. It is the integral of the divergence (in function space)
of the vector field , with respect to the gradients of the
smoothed . The second term is an constraint between
and , where is a positive weighing factor. should be
related to by trying to impose . The
use of the vector field is the main point of the model given in
(3). Thus, it enables image inpainting to restore missing regions
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Fig. 3. Comparison with baseline JPEG on test image Lena. (a) Original image. (b) Edge map (blue curves). (c) Removed blocks (black blocks) and assistant
edge information (blue curves), note that the assistant edge information is a subset of the entire edge map. (d) Reconstructed image after structure propagation.
(e) Reconstructed image after texture synthesis. (f) Reconstructed image by baseline JPEG.

by continuing both the geometric and photometric regularities
of images.

However, the model in (3) assumes that the parameter can
be inferred from under a certain smooth constraint. But this
assumption is not always true for nature images. Taking Fig. 2
as an example, the area to be restored consists of two homoge-
nous regions divided by an edge denoted by the solid curve. The
dashed curve is the inferred edge in according to (3), which
is quite different from the actual one. This problem is hard to be
solved in conventional inpainting scenarios even using human
intelligence as proposed in [23]. Therefore, in our proposed
coding framework, assistant information should be used to cor-
rectly infer on . As we have discussed, is the vector
field of normalized gradient and is independent from the abso-
lute magnitudes of gradients. It contains two parts of informa-
tion: where exists and what its direction is. Commonly, it
can be simply represented by binary edges of one-pixel width
for the purpose of efficient compression.

Consequently, edge information is selected as assistant infor-
mation for image inpainting in this paper. With assistant infor-
mation, we could remove more regions in an image. Thus, it
greatly enhances the compression power of our method. Since
edges are low-level features in image, there are some mature
tools available to automatically track them in an image. More-
over, edge information is concise and easy to describe in com-
pressed fashion. Therefore, the employment of edge informa-
tion can, on the one hand, help preserving good visual quality
of the reconstructed image. On the other, it enables high com-
pression performance by removing some structural regions and
efficiently coding edge information.

Accordingly, an overview of our approach is exemplified in
Fig. 3. In this figure, (a) is the input original image Lena. After
image analysis, an edge map [denoted by blue curves in (b)] is
generated, based on which the exemplars [denoted by the non-
black blocks in (c)] are selected. Consequently, the exemplars
and the needed edge information [shown as blue curves in (c)]

will be coded into bit-stream. Then, at the decoder side, the edge
information is utilized to guide the structure propagation for the
recovery of edge-related regions. The corresponding result is
given in (d). The remainder unknown regions will be restored
by texture synthesis. The final reconstructed image after region
combination is given in (e).

In the following two sections, we will explain the modules in
our framework in detail, especially on the two most important
modules, namely image analysis and assisted image inpainting.
Here, we would like to emphasize that the introduction of as-
sistant edge information raises different demands on both the
encoder and decoder. We deal with them comprehensively in
this paper.

III. EDGE EXTRACTION AND EXEMPLAR SELECTION

The image analysis module at the encoder side consists of
two sub-modules: The first is to extract edge information from
image and the second is to select exemplar and skipped regions
at block level according to available edge information. They are
discussed in the following two subsections.

A. Edge Extraction

As discussed in Section II, edge information plays an impor-
tant role in the proposed coding scheme. It assists the encoder to
select exemplar and skipped regions and the decoder to restore
skipped regions with our proposed edge-based inpainting. Ex-
tracted edges do not need to represent complete and continuous
topological properties of an image because our purpose is not to
segment or restore an object. Discontinuous edges can likewise
play the role of assistant information in the proposed scheme.
But taking the topological properties into account in edge ex-
traction will make edges more meaningful in terms of low-level
vision.

Therefore, though there are many mature tools available
to extract edges from images, the topology-based algorithm
presented in [33] is adopted in our system to extract assistant
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Fig. 4. Step-wise results of our scheme on test image Lena, zoomed-in parti-
tion. (a) Original image with detected edge pixels (blue curves). (b) Thinned
edges (blue curves). (c) Chosen necessary structural blocks. (d) Chosen addi-
tional structural blocks. (e) Chosen necessary textural blocks. (f) Chosen ad-
ditional textural blocks. (g) Structure propagation result. (h) Texture synthesis
result.

information. The algorithm presents good results especially
on extracting intersection edges. According to this method, an
input image is first smoothed by a two-dimensional isotropic
Gaussian filter so as to avoid noise. Second, and are
calculated on the filtered image for each pixel . If is
the local maximum gradient along the direction and larger
than a threshold, then pixel belongs to an edge. At last,
the pixels with non-maximum gradients are checked by spa-
tially-adapted thresholds to prevent missing edges caused by
the unreliable estimation of .

As shown in Fig. 4(a) by blue curves, edges extracted with
the above algorithm (or most of the existing methods as well)
are often of more than one-pixel width. This causes ambiguous
directions in guiding the restoration at the decoder side and
also increases the number of bits to code the edge informa-
tion. Although [33] also proposes a thinning method, it does not
satisfy the special requirement in our proposed edge-based in-
painting. It is because that pixel values on edges are not coded
but rather inferred from connected surrounding edges in our pro-
posed scheme. Thus, a new thinning method is proposed here by
taking into account the consistence of pixel values on edges as
well as the smoothness of edges.

Here, we present the details of our proposed thinning method.
Given the detected edge pixels, we first group them into eight
connective links and each edge-link (also known as a connected
component in the graph that is made up by edge pixels) is
thinned independently. Complying with the terminologies
defined in Section II, our goal is to find a one-pixel-width line
which contains pixels, i.e., for ,
yielding the minimal energy

(4)

where , and are positive weighting factors. The energy
function (4) consists of three terms. The first term is the
Laplacian of each edge pixel. The second term is the constraint
on pixel values of all edge pixels. After thinning, remaining
edge pixels should have similar values. To make this constraint
as simple as possible, only the difference among eight neigh-
boring pixels are considered, and the function is defined as

if
otherwise

(5)
denotes the 8-neighbor of . The last term of (4) evalu-

ates the curvature of the edge at each pixel. Similar to [17], [18],
is defined as

(6)

In addition, we want to emphasize that the thinning process
should not shorten the edge, thus only redundant pixels on the
edge can be removed.

The optimal thinning solution for each edge-link is obtained
through dynamic programming algorithm. Given a start point of
each edge-link, the energies of all possible paths, linked in eight
connective manner, are calculated according to (4). Referring
to the width of the initial edge-link, several paths with smaller
energies are recorded in the dynamic programming. Then, each
recorded path is extended consequently by adding one neighbor
pixel which results in the minimal energy. Note that the thinning
algorithm can be performed in parallel manner for all edge-links
in an image, because they are independent in terms of thinning
process. Fig. 4(b) presents the corresponding thinning results
using our proposed method.

B. Exemplar Selection

After edges are extracted, exemplar selection is performed
based on these available edges. Here, for simplicity, the ex-
emplar selection process is performed at block level. Specif-
ically, an input image is first partitioned into non-overlapped
8 8 blocks, and each block is classified as structural or tex-
tural according to its distance from edges. In detail, if more than
one-fourth of pixels in a block are within a short distance (e.g.,
five-pixel) from edges, it is regarded as a structural block, oth-
erwise a textural one. Then, different mechanisms are used to
select the exemplars for textural blocks and structural blocks.
Blocks that are not selected as exemplars will be skipped during
encoding. Moreover, exemplar blocks are further classified into
two types, the necessary ones and the additional ones, based on
their impacts on inpainting as well as on visual fidelity. Gener-
ally, one image can not be properly restored without necessary
exemplar blocks, whereas additional blocks help to further im-
prove visual quality.

1) Textural Exemplar Selection: Fig. 5(a) illustrates the
process of exemplar selection for textural blocks. In this figure,
edge information is denoted by thickened lines, based on which
the image is separated into structural regions (indicated by
gray blocks) and textural regions (indicated by white and black
blocks).

It is generally accepted that pure textures can be satisfactorily
generated even given a small sample. However, in practice,



1278 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 10, OCTOBER 2007

Fig. 5. An example of necessary exemplar selection in which curves denote edges and black blocks denote skipped regions. (a) Textural exemplar selection in
which white blocks are necessary textural exemplars; (b) structural exemplar selection in which white blocks are necessary structural exemplars, four types of
edges are also distinguished in (b). Also see Fig. 4 for a practical example.

image regions are often not pure textures, but rather contain
kinds of local variations, such as lighting, shading, and gradual
changing. Furthermore, exemplar-based texture synthesis is
sensitive to the chosen samples. In image inpainting, a common
solution to unknown textural regions is to synthesize them from
samples in their neighborhood.

In our scheme, the necessary textural exemplars are selected
in the border of textural regions. That is, as shown in Fig. 5(a),
denoted by white blocks, if a textural block is next to a structural
one, along either horizontal or vertical direction, it is consid-
ered as necessary. Such blocks are selected because they contain
the information of transitions between different textural regions,
which are hard to be restored by inner samples. Besides, prop-
agation of these blocks, from outer to inner, can reconstruct the
related textural regions.

To further improve visual quality of reconstructed images,
additional blocks can be progressively selected to enrich ex-
emplars. In this process, we consider additional blocks as rep-
resentatives of local variations. On the one hand, if a block
contains obvious variation, it should be preserved in advance.
On the other, because the variation is a local feature, removing
large-scale regions should be avoided in exemplar selection.
Thus, each non-necessary textural block is related to a vari-
ation parameter defined as

(7)

Here and are positive weighting factors. indicates
4-neighbor of a certain block. The functions and are
the variance and mean value of the pixel values in a block, re-
spectively. In our system, according to an input ratio, the blocks
with higher variation parameters will be selected, during which
we also check the connective degree of each block so that the
removed blocks do not constitute a large region.

2) Structural Exemplar Selection: Fig. 5(b) shows the exem-
plar selection method for structural blocks. In this figure, edges
are represented by lines with indicated different types, and struc-
tural regions are indicated in white and black blocks, whereas
all textural regions in gray.

As we have discussed, besides many textural blocks, some
structural blocks are also skipped at the encoder side and re-
stored at the decoder side by the guidance of edge informa-
tion. Therefore, necessary and additional structural exemplars
are also selected based on available edges. To better introduce
the method, edges are categorized into four types according to
their topological properties, as indicated in Fig. 5(b): “isolated”
edge traces from a free end (i.e., an edge pixel connected with
only one other edge pixel) to another free end; “branch” edge
traces from a free end to a conjunction (i.e., an edge pixel con-
nected with more than three other edge pixels); “bridge” edge
connects two conjunctions; and, “circle” edge gives a loop trace.

Commonly, edge acts as the boundary of different region par-
titions. For the sake of visual quality, in image inpainting, two
textural partitions along both sides of an edge should be re-
stored independently. The tough problem here is how to restore
the transition between two partitions. We may use a model to
interpolate the transition from textures of two partitions, but
usually the results look very artificial and unnatural. Therefore,
the blocks containing the neighborhood of free ends should be
selected as exemplar so that the transitions of textural parti-
tions can be restored by propagating information in these blocks
along the edges. Conjunction blocks of edges are also selected as
exemplar for similar reason because there are transitions among
more than three textural regions. For circle edges, a circle com-
pletely divides the image into two partitions—inner part and
outer part—so we choose two blocks as necessary exemplars,
which contain the most pixels belonging to inner region and
outer region of a circle edge, respectively. In a few words, by
necessary exemplars, we provide not only samples for different
textures separated by an edge, but also the information of the
transitions between these textures, and thus the decoder is able
to restore the structural regions.

Additional structural blocks can also be selected as exem-
plars to further improve visual quality. Given an input ratio, the
process is quite similar to that for textural blocks. Each non-nec-
essary structural block is also related to a variation parameter,
which can be calculated by (7). Here, the different partitions sep-
arated by the edges are independently considered in calculating
the mean value as well as the variance, and resulting parameters
of different partitions are summed up to get the total variation
parameter of a block.
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Fig. 6. Pixel-wise structure propagation. (a) A piece of edge and its influencing region, with arrowed dash-dot lines and dash lines showing the propagation
directions. (b) Restoration of influencing region in which each generated pixel is copied from one of two candidate pixels.

In Fig. 4, we present the step-wise results of the exemplar
selection method. Based on the edge information shown in (b),
the selected necessary and additional structural exemplars are
shown in (c) and (d) gradually. Similarly, in (e) and (f) we add
the necessary and additional textural exemplars, as well.

IV. EDGE-BASED IMAGE INPAINTING

Based on the received edges and exemplars, we propose an
edge-based image inpainting method to recover the non-exem-
plar regions at the decoder side. Different from the encoder,
the inpainting algorithm is not block-wise but rather designed
to deal with arbitrary-shaped regions. Still, the non-exemplar
regions are classified into structures and textures according to
their distances to the edge as the encoder. Generally, structures
are propagated first, followed by texture synthesis [as shown in
Fig. 3(d) and (e)]. A confidence map, similar to that in [20],
[21], is constructed to guide the order of structure propagation
as well as texture synthesis. Specifically, at the very beginning,
known pixels (pixels in decoded exemplars) are marked with
confidence 1 and unknown pixels (pixels in removed blocks)
are marked with confidence 0. Afterwards, each generated pixel
is related with a confidence value between 0 and 1 during the
inpainting process. Besides, known pixels as well as generated
pixels are all called “available” ones in this section.

In the literature, exemplar-based inpainting methods can
be roughly classified into two types, i.e., pixel-wise schemes
and patch-wise schemes. Pixel-wise methods are suitable for
restoration of small gaps, but may introduce blurring effects or
ruin texture pattern while dealing with large areas. Patch-wise
methods, on the contrary, are good at keeping texture pattern,
but may introduce seams between different patches, which are
quite annoying. In our scheme, these two strategies are adapted
for different circumstances.

A. Structure Propagation

A sketch map of structure propagation is shown in Fig. 6.
The gray block in Fig. 6 indicates an unknown structural block;
the black curve with circle points represents an edge piece and
related pixels; and four dash-dot lines restrict a region, namely

influencing region, including unknown pixels within a short dis-
tance (e.g., ten-pixel) from the edge. Notice that it is the edge
piece together with the influencing region, rather than a struc-
tural block, is treated as a basic unit in the structure propagation.
Since the free ends and conjunctions of edges are all selected as
exemplars, the textural regions along an edge can be readily di-
vided and independently generated in inpainting process.

To recover a basic unit, the unknown pixels belonging to the
edge piece are firstly generated. As shown in Fig. 6(a), the un-
known pixels (denoted by black points) are generated from the
known pixels (indicated by white points) using linear interpola-
tion, i.e.,

(8a)

where if is known
otherwise

(8b)

where, similar to (4), gives the number of pixels in this edge
piece and and index different pixels.

After the edge restoration, neighboring structure as well as
texture within the influencing region will be filled-in with re-
gard to the recovered edge. The inpainting method for comple-
tion of influencing region is designed concerning the following
facts. First, pixel-wise approach is preferred since narrow re-
gions along edge pieces are to be handled. Second, edges are ex-
pressed by one-pixel-width curves, which can be quite different
in geometric shapes among exemplar and non-exemplar regions,
so we have to wrap the edges to reconstruct the unknown struc-
ture. Finally, the widths of structures are local variant, which
means that it is hard to tell the exact boundary between structure
and texture in an influencing region. Therefore, in our scheme,
each pixel in the influencing region will have two candidates:
one is treated as a structural pixel to be propagated parallel along
the edge; the other is regarded as a textural pixel to be gener-
ated from the neighboring available pixels. Then, the one that
makes a smooth transition from structure to texture will be se-
lected to fill-in the unknown pixel. Moreover, as the decision
making on candidate pixels is highly relevant to its available
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Fig. 7. Pair matching in our structure propagation algorithm.

neighbors, the order for pixel completion is another important
issue that should be considered. Thus, we also construct a con-
fidence map, as mentioned at the beginning of this section, to
control the generation order. For the unknown pixel, the higher
the neighboring confidence is, the earlier it will be generated.

Accordingly, the recovery of influencing region is performed
as follows. Here, unknown pixels to be recovered in the in-
fluencing region are called target pixels. They are denoted by
black points in Fig. 6(b). For each target pixel, two candidate
pixels are searched out from the surrounding available pixels.
The structural candidate (S-candidate) of the target pixel, which
lies within the influencing region, is indicated by horizontal
striped point in Fig. 6(b); whereas the textural candidate (T-can-
didate) of the target pixel is denoted by vertical striped point,
which locates within a short distance from the target pixel de-
spite whether it is within the influencing region or not.

A pair matching method, similar to that in [8], is utilized
to generate both the S-candidate and the T-candidate. As illus-
trated in Fig. 7, for each assistant pixel, also known as any avail-
able pixel belonging to the 8-adjacent neighborhood of the target
pixel, we will search for its match pixel(s) with the most similar
value to it. Then, complying with the spatial relation between
the assistant pixel and the target one, a pixel adjacent to a match
pixel in the same relative spatial position is selected as a source
pixel. As indicated in Fig. 7, an assistant pixel may correspond
to several match pixels and gives several source pixels; mean-
while, several assistant pixels in 8-adjacent neighborhood may
generate the same source pixel, as well.

After obtaining several source pixels, we propose to use a
weighted-SSD (sum of squared difference) criterion to choose
the S-candidate, as given in

(9)
where and are corresponding, the th pixel in the neigh-
borhood of the S-candidate and the target pixel, respectively, and

indicates the distance from each pixel to the edge, , as
used before, is the reconstructed image. By minimizing (9), we
can find the S-candidate from the obtained source pixels, which
is situated in a similar relative position to that of the target pixel
with respect to the edge, thus ensure the parallel diffusion of
structural information.

Differently, since no direction information involved in tex-
tural region, only the ordinary SSD between the neighborhood
of source pixels and target pixel is considered as the criterion to
choose the T-candidate,

(10)

Similar to that in (9), here represents the th pixel in the
neighborhood of the T-candidate. Thus, the source pixel that
has the most similar neighboring values to the target one will be
selected as the T-candidate.

In fact, the two diffusions, or S-candidate selection and
T-candidate selection, are simultaneous and competitive. These
two candidates have to compete with each other and only one of
them will be chosen to fill-in the target pixel. Normally, if target
pixel nears edge, the choice will bias to the S-candidate. In
addition, it can be observed that long-distant parallel diffusion
of structural information often leads to blurring artifacts. Thus,
the determination is made by comparing and which are
defined in (10) and (11), respectively

(11)

Here and are constants and stands for the
distance from the target pixel to the edge and indicates the
distance from the target pixel to the S-candidate, as shown in
Fig. 6(b). If is less than , then the T-candidate is chosen
to fill-in the target pixel, otherwise the S-candidate is selected.
In this way, all unknown pixels within the influencing region of
an edge are generated.

B. Texture Synthesis

The edges as well as their influencing regions are readily re-
stored by structure propagation. Then, in this subsection, the
remainder unknown regions are treated as textural regions, so
texture synthesis is employed to fill-in these holes.

For textural regions, we prefer patch-wise algorithms be-
cause they are good at preserving large-scale texture pattern.
We choose square patches as the fundamental elements while a
confidence map is introduced to guide the order of synthesis.
Unknown textural regions are progressively restored during
texture synthesis by first reconstructing the prior patches and
then the others that remain. The priority of a patch is determined
by calculation of confidence and the distance from the edge.
As shown in Fig. 8, for each patch centered at a marginal pixel
of unknown regions (denoted by target patch), we calculate the
average confidence value of all pixels in this patch, as well as
the average distance of all pixels from the edge. Then the patch
with the highest confidence rating and the greatest distance
from the edge will be synthesized first.

Afterwards, a source patch, which is most similar to the target
patch, will be searched out from the neighborhood of the target
patch. Here, the similarity of two patches is measured by the
SSD of pixel values between overlapped available pixels of two
patches. A patch that results in the least SSD will be chosen
as the source patch. Notice that the filling-in process is not as
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Fig. 8. Patch-wise texture synthesis in our scheme.

simple as copy-paste work, we have to deal with overlapped re-
gions as well as seams. In our algorithm, the graph-cut method
proposed in [12] is used to merge the source patch into the ex-
isting image, and the Poisson editing [34] is utilized to erase the
seams. After one patch is restored, the confidence map is up-
dated. All newly recovered pixels are treated as available pixels
in the following synthesis steps. Then, the next target patch is
searched and processed until no unknown pixel exists.

V. EXPERIMENTAL RESULTS

A. Implementation

Our presented approach can be integrated with the state-of-
the-art coding schemes to enhance compression performance.
In our experiments, two compression standards, JPEG and
MPEG-4 AVC/H.264 (referred to simply as H.264 hereafter),
are adopted. Thus, two fully automatic image coding systems,
based on JPEG and H.264 respectively, have been constructed
to evaluate the effectiveness of our proposed compression
approach. In this subsection, we would like to clarify several
implementation details of the systems.

First, in both systems, the one-pixel-width edge information
is coded using JBIG method. Note that the edge information
coded into final bit-stream is only a subset of the entire edge
map. In other words, the edges that are fully covered by ex-
emplar regions will not be coded [it can be observed by com-
paring the edges in Fig. 4(b) and (f)]. Second, in the JPEG-based
system, the exemplar locations are denoted at block level by a bi-
nary map, in which 1 stands for a removed block and 0 for an ex-
emplar block, and the map is coded by an arithmetic coder. The
original image is then coded by JPEG coding method, during
which the removed blocks will be skipped in encoding but to be
filled with the DC values copied from previous blocks, so that
the DC prediction in JPEG can still be performed in exemplar
block compression. Third, in the H.264-based system, since the
basic coding unit is macro-block 16 16, we consider two in-
stances: if a macro-block is totally removed, then a new macro-
block type I_SKIP is coded; otherwise, the macro-block has a
new element called block removal pattern (BRP) for indicating
which of the four 8 8 blocks is removed, and the BRP is later
coded by the arithmetic coder, too. Similar to the JPEG-based

method, the exemplar blocks are coded using H.264 scheme and
DC values from previous blocks are filled to the removed blocks
to enable the intra prediction of H.264 scheme.

In addition, there are some predefined parameters in both en-
coder and decoder. To test the robustness of our system, we fix
these parameters as follows for all test images. At the encoder
side, the weighting factors are defined as , ,
and (suggested by [17]) for (4) in edge thinning, while

for (7) in exemplar selection. At the decoder
side, structure propagation works on pixels that have less than
ten-pixel distances from edges. The search range for T-candi-
date is 9 9, and the S-candidate is found in the entire influ-
encing region. The search range and patch size for texture syn-
thesis are 11 11 and 7 7, respectively. The parameters
and in (11) are set to 5. We would like to remark that the
weighting factors for edge thinning have been carefully tuned
using our test images, while the other parameters are just empir-
ically selected with consulting the existing systems (e.g., [23]).
However, it should be noticed that the parameters can greatly
influence the computational complexity of both encoder and de-
coder, which will be further analyzed in the following. At last,
the only two flexible parameters in our experiments are the addi-
tional block ratios for structural exemplar and textural exemplar;
actually, they act as quality control parameters in our system.

B. Test Results

We test our compression systems on a number of standard
color images from the USC-SIPI image database1 and the
Kodak image library.2 Some results are presented here to
evaluate the compression ratio as well as reconstructed quality
of our scheme. In all tests, the quality parameter (QP) of JPEG
coding method is set to 75, while the QP of H.264 intra coding
is set to 24. Bit-rate savings are listed in Table I.

Fig. 3 shows test image Lena and corresponding results of
our JPEG-based system. As mentioned before, the coded exem-
plars and the edge information are denoted in (c). In this test,
10% additional structural blocks as well as 50% additional tex-
tural blocks are preserved. Based on the preserved blocks and
assistant edge information, our presented structure propagation
gives inpainting results in (d), and the final reconstructed image
after texture synthesis is shown in (e). Compared with the re-
constructed image shown in (f) by baseline JPEG, our scheme
saves 20% bits (as given in Table I) but presents similar visual
quality. More comparison results in visual quality concerning
standard images can be found in Fig. 9. It shows that up to 44%
bits-saving (shown in Table I) is achieved by our scheme at the
similar visual quality levels, compared to baseline JPEG.

In Fig. 10, our proposed structure propagation method is eval-
uated. In this test, we remove only structural blocks and use dif-
ferent approaches to recover them. The details of partial images
together with the assistant edge information are given in the
first column. Then, results generated by the PDE-based diffu-
sion [35], which is the traditional solution to structural regions,
are shown in the second column. This method works well only

1http://sipi.usc.edu/services/database/
2http://r0k.us/graphics/kodak/
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TABLE I
BIT-RATE SAVINGS OF OUR SCHEME COMPARED TO JPEG (QP IS SET TO 75) AND H.264 (QP IS SET TO 24)

Fig. 9. Comparisons with baseline JPEG on test images Jet, Milk, and Peppers. From left to right: removed blocks (black blocks) and assistant edge information
(blue curves); reconstructed image by our scheme; reconstructed image by baseline JPEG.



LIU et al.: IMAGE COMPRESSION WITH EDGE-BASED INPAINTING 1283

Fig. 10. Comparisons of different structure propagation approaches, zoomed-in partitions. From left to right: removed blocks (black blocks) with assistant edge
information (blue curves); inpainting result by PDE-diffusion [35]; inpainting result by patch-wise synthesis [23]; inpainting result by our scheme. Note that only
our scheme takes advantage of the edges.

for smooth regions and certain simple structures. In addition,
image completion method presented in [23] is also tested in the
third column, only the user interaction is omitted. Since no edge
information is utilized, these two methods result in annoying
distortion in most of the structural regions. In the last column,
we give our results that are accomplished by the help of edge
information. It is clearly demonstrated that the assistant edges
help greatly in structure restoration, and thus empower the en-
coder to remove more blocks.

Furthermore, our JPEG-based system is also tested using the
images in the Kodak image library, which contains photographs
of natural scenes at high resolution. The comparison results on
visual quality are shown in Fig. 11 in which the top row shows
our results whereas the bottom row presents baseline JPEG re-
sults. It can be observed that the visual quality of our resulting
image is very similar to that of JPEG. The bits-saving of our
JPEG-based system is indicated in Table I. Our method aver-
agely saves 27% bits for the five images shown in Fig. 11 at the
similar visual quality levels.

To investigate the detailed bit-rate cost in our scheme, we
list the percentage of different coded elements in Table II, from
which we notice that even different images will lead to different
allocations of coded elements, the exemplar location informa-
tion as well as the edge information still costs only a little over-
head. Commonly, the bits used to code the exemplar blocks oc-
cupy more than 90% of total bits cost. However, it is still pos-
sible to further reduce the bits cost on edge information, taking
into account the exemplar locations, or skipping those edges that
can be inferred from the exemplar blocks.

In Fig. 12 we show the reconstructed images by our H.264-
based system in comparison with standard H.264 intra coding.
Both results show similar visual quality to each other, as in the
JPEG comparisons. The bit-rate saving is also noticeable, shown
in Table I, but not as much as the comparison with JPEG. This is
caused by two reasons. On the one hand, the H.264 intra coding
is more efficient than JPEG in coding performance, so the non-
exemplar blocks, especially the textural ones, will cost fewer
bits in standard H.264 than in baseline JPEG, but in our scheme
the edge information still cost the same bits in either realiza-
tion. On the other, due to the complicated spatial predictions per-
formed in the H.264 intra coding, the filling of only DC values
for removed blocks is proved not good enough, since it breaks
the original spatial relations between neighboring blocks, but for
JPEG this filling of DC values seems enough since JPEG only
conduct DC prediction. Nevertheless, our scheme can still ac-
quire up to 33% bit-rate saving compared to the state-of-the-art
H.264 intra coding.

C. Discussion

It can be observed that the ratio of additional textural exem-
plar has a big effect on visual quality of the reconstructed im-
ages. As given in Table I, for homogeneous textural regions,
such as the red wooden door in kodim02 [Fig. 11(a)], low exem-
plar ratio is used to pursue high compression ratio; whereas for
complex and irregular textural regions, e.g., flowers and leaves
in kodim07 [Fig. 11(d)], high ratio is preferred to ensure good
visual quality. However, thanks to the given edge information,
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Fig. 11. Comparisons with baseline JPEG on the Kodak Image Library. (a) kodim02; (b) kodim03; (c) kodim05; (d) kodim07; (e) kodim19. The top row shows
the reconstructed images by our scheme and the bottom row shows the reconstructed images by baseline JPEG.

TABLE II
PERCENTAGE OF DIFFERENT CODED ELEMENTS IN OUR JPEG-BASED SYSTEM (QP IS SET TO 75)

the reconstructed quality of structural regions is less sensitive to
the additional structural exemplar ratio.

In addition, the improvement of our scheme in terms of com-
pression ratio is various for different images. Commonly, the
more complicated the image is, the less gain we can provide. It
is because that when coding images with lots of details [such as
kodim05, Fig. 11(c)], the extracted edge map usually contains
miscellaneous edges which makes many blocks as necessary ex-
emplars. Thus, only a limited number of regions can be removed
at encoder. However, in this case, 15% bits-saving is still pro-
vided by our JPEG-based system without noticeable visual loss,
as shown in Table I.

The computational complexity of our scheme is relatively
higher than that of the traditional coding schemes, since at the
encoder side we perform extra edge extraction and exemplar se-
lection, and at the decoder side we add the inpainting process. In

particular, the computation of the decoder is greatly related with
the parameters used in the inpainting, such as search range and
patch size, which determine the necessary number of SSD cal-
culations. There are several previous work proposed to reduce
the computations of SSD, so as to accelerate the image synthesis
[7], [11], [20], and those methods can be adopted in our system
as well.

The visual quality assessment is highly related to our work,
that is, if we have a good metric used to measure visual quality,
we are able to not only better evaluate our scheme, but also fur-
ther improve the performance by rate-“distortion” optimization,
where “distortion” measures the perceptual quality in addition
to the statistical fidelity. Unfortunately, we have not yet found
such a good metric for our purposes. Thus, for visual quality
comparisons in our experiments, we always set the same quality
parameters for both the standard compression scheme and our
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Fig. 12. Comparisons with standard H.264 intra picture coding. (a) Jet. (b) Lena. (c) Milk. (d) Peppers. (e) kodim11. (f) kodim20. (g) kodim23. The top row shows
the reconstructed images by our scheme and the bottom row shows the reconstructed images by standard H.264 intra coding.

inpainting-based scheme. Thus, the exemplar regions will have
the same quality (both subjectively and objectively). Addition-
ally, the restored regions still have acceptable visual quality. Ac-
cordingly, in this paper, the “comparable quality” or “similar
visual quality levels” indicates visually similar qualities, which
are examined by human observations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present an image compression framework
that adopts inpainting techniques to remove visual redundancy
inherent in natural images. In this framework, some kinds of dis-
tinctive features are extracted from images at the encoder side.
Based on the obtained features, some regions of an image are
skipped during encoding, only to be recovered by the assisted
inpainting method at the decoder side. Due to the delivered as-
sistant information, our presented framework is able to remove
enough regions so that the compression ratio can be greatly in-
creased. Our presented inpainting method is capable in effec-
tively restoring the removed regions for good visual quality, as
well.

Moreover, we present an automatic image compression
system, in which edge information is selected as the assistant
information because of its importance in preserving good visual
quality. The main techniques we proposed for this compression
system, i.e., edge thinning, exemplar selection and edge-based

inpainting, are also addressed in this paper. Experimental
results using many standard color images validate the ability
of our proposed scheme in achieving higher compression ratio
while preserving good visual quality. Compared to JPEG and
H.264, at the similar visual quality levels, up to 44% and 33%
bits-saving can be acquired by our approach, respectively.

Further improvements of current scheme are still promising.
First, the assistant information as well as the selected exem-
plars can be described and compressed into bit-stream in more
compact fashion. Second, extraction of the distinctive features
can be more flexible and adaptable. Besides edge information,
there are other candidates, such as sketch [5] and epitome [29],
[30], which could be derived from source images to assist the
vision technologies and the compression methods as well. Fur-
thermore, image inpainting is still a challenging problem when
some kinds of assistant information are provided, into which we
need to put more effort in the future.
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