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Abstract

Time-domain limitations due to right half-plane zeros and poles in linear multivariable control systems are studied. Lower bounds on
the interaction are derived. They show not only how the location of zeros and poles are critical in multivariable systems, but also how the
zero and pole directions in4uence the performance. The results are illustrated on the quadruple-tank process, which is a new multivariable
laboratory process. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

When designing technical systems, it is useful to know
what characteristics that limit the performance. In many
situations this is a nontrivial task. Recently there has been
increased interest in fundamental limits for the achievable
performance in feedback systems (Stein, 1990; :Astr;om,
1997; Goodwin, 1997). One reason for this is new possi-
bilities for integrated process and control design in many
applications. Without having to specify a certain control
implementation or carry out the actual control design, it is
possible early in the development to answer structural ques-
tions, for instance, about number and location of sensors
and actuators.
Many of the existing results on feedback performance lim-

itations are in the frequency domain (Bode, 1945; Horowitz,
1963; Zames, 1981; Francis, 1987; Freudenberg & Looze,
1988; Skogestad & Postlethwaite, 1996; Seron, Braslavsky,
& Goodwin, 1997). However, in many cases time-domain
bounds are more natural, for example, to answer questions
about minimum rise time and settling time for a system
(Boyd & Barratt, 1991). Such results were derived in Mid-
dleton (1991) for SISO systems. For example, Middleton’s
results gave a bound on the undershoot of the set-point
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response in nonminimum-phase systems and a bound on the
overshoot in unstable systems.
The main contribution of this paper is to generalize the

time-domain results in Middleton (1991) to multivariable
systems. This gives new insight into the limitations mul-
tivariable zeros have on closed-loop responses. In contrast
to scalar systems with right half-plane (RHP) zeros, a mul-
tivariable system must in general not have an inverse re-
sponse. Instead there is a trade-oI between the response time
and the interaction. The trade-oI depends both on the loca-
tion of the zero and the zero direction. This paper presents
time-domain results that support these facts. Counterparts in
the frequency domain are presented in GJomez and Goodwin
(1996) and Seron, Braslavsky, and Goodwin (1997).
The outline of the paper is as follows. Some notation

is introduced in Section 2. In Section 3 the main result of
the paper on trade-oI between settling time and interaction
in nonminimum-phase systems is given. Section 4 presents
a similar result for unstable systems. The results are illus-
trated on a new laboratory process in Section 5. The process
is called the quadruple-tank process (Johansson, 2000) and
has a zero that can be placed in either the right or the left
half-plane by simply adjusting a valve. The paper is con-
cluded in Section 6.

2. Preliminaries

Much of the notations and deKnitions in this paper
are borrowed from the textbook (Seron, Braslavsky, &
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Fig. 1. DeKnition of settling time ts1, settling level �, rise time tr1,
overshoot yo

1, undershoot y
u
1 , and interaction ŷ 21 in a 2× 2 system with

reference step r̂ in r1.

Goodwin, 1997). Let

Y (s) = G(s)U (s);

U (s) = C(s)(R(s)− Y (s)); (1)

represent a stable closed-loop system with zero initial condi-
tions. The process G and the controller C are m×m transfer
function matrices. The variables Y , U , and R are Laplace
transforms of the output y, the control signal u, and the ref-
erence signal r, respectively, that is, Y (s)=

∫∞
0 e−sty(t) dt,

etc. Throughout the paper we make the assumptions that G
is strictly proper and has full normal rank.

De�nition 1 (Zeros and poles). z ∈C is a zero of G
with zero direction  ∈Cm; | | = 1; if  ∗G(z) = 0;
where the asterisk denotes conjugate transpose. Similarly;
p∈C is a pole of G with pole direction �∈Cm; |�| = 1;
if G−1(p)�= 0.

We assume that G(s) looses only rank one at s = z and
that G−1(s) looses only rank one at s=p. Furthermore, it is
assumed that the set of poles and the set of zeros of GC are
disjoint and that the closed-loop system imposes no unstable
cancellations.
We make the following deKnitions for a step response,

see Fig. 1.

De�nition 2 (Set-point response). For the closed-loop sys-
tem (1); consider a step in reference signal i∈{1; : : : ; m};
so that ri(t) = r̂ and rj(t) = 0 for all j �= i and t ¿ 0. The

settling time tsi ∈ (0;∞) is deKned as

tsi = max
k∈{1;:::;m}

inf
�¿0

{�: |yk(t)− rk(t)|6 �; t ¿�};

where �¿ 0 is a predeKned settling level. The rise time is

tri = sup
�¿0

{�: yi(t)6 r̂t=�; t ∈ (0; �)}:

The overshoot in output i is denoted yo
i ¿ 0 and is deKned as

yo
i = sup

t¿0
{yi(t)− ri(t); 0}

and the undershoot yu
i ¿ 0 is deKned as

yu
i = sup

t¿0
{−yi(t); 0}:

The interaction from ri to output k �= i is denoted ŷ ki¿ 0
and is deKned as

ŷ ki = sup
t¿0

{|yk(t)|}:

By introducing coprime factorizations of G, it is
straightforward to show that the sensitivity function
S=(I +GC)−1 and the complementary sensitivity function
T =GC(I +GC)−1 satisfy S(p)�=0 and  ∗T (z) = 0, re-
spectively, where p is a pole of G and z is a zero, see Seron,
Braslavsky, and Goodwin (1997).

3. Right half-plane zeros

In this section a lower bound is derived on the undershoot
and the interaction for a set-point step in one of the reference
signals. A crucial observation is that if z¿ 0 is a real RHP
zero of G, then

 TT (z) =  TG(z)C(z)(I + G(z)C(z))−1 = 0

and therefore

 T
∫ ∞

0
e−zty(t) dt =  TY (z) =  TT (z)R(z) = 0: (2)

There is thus a trade-oI between the output responses
y1; : : : ; ym that is determined by the zero direction. The
trade-oI becomes more severe if the zero is located close
to the origin. This is formalized in the following result.

Theorem 3. Consider the stable closed-loop system (1)
with zero initial conditions at t=0 and let r(t)=(r̂; 0; : : : ; 0)T

for t ¿ 0. Assume that G has a real RHP zero z¿ 0 with
zero direction  ∈Rm and  1 ¿ 0. Then; the set-point
response satis3es

 1yu
1 +

m∑
k=2

| k |ŷ k1¿
1

ezts1 − 1

[
 1(r̂ − �)− �

m∑
k=2

| k |
]
;
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where yu
1 is the undershoot; ŷ k1 the interaction; � the

settling level; and ts1 the settling time; all as given in
De3nition 2.

Proof. Eq. (2) gives
m∑

k=1

 k

∫ ∞

0
e−ztyk(t) dt = 0;

which is equivalent to

−
∫ ts1

0
e−zt

m∑
k=1

 kyk(t) dt =
∫ ∞

ts1
e−zt

m∑
k=1

 kyk(t) dt:

The left- and the right-hand sides satisfy

−
∫ ts1

0
e−zt

m∑
k=1

 kyk(t) dt

6
∫ ts1

0
e−zt dt[ 1yu

1 + | 2|ŷ 21 + · · ·+ | m|ŷ m1]

and∫ ∞

ts1
e−zt

m∑
k=1

 kyk(t) dt

¿
∫ ∞

ts1
e−zt dt[ 1(r̂ − �)− | 2|�− · · · − | m|�];

respectively. From∫ ts1

0
e−zt dt =

1− e−zts1

z

and∫ ∞

ts1
e−zt dt =

e−zts1

z
;

it now follows that

e−zts1 [ 1(r̂ − �)− | 2|�− · · · − | m|�]
6 (1− e−zts1 )[ 1yu

1 + | 2|ŷ 21 + · · ·+ | m|ŷ m1];

which gives the result.

Remark 4. For a small settling level �; it follows from The-
orem 3 that approximately

 1yu
1 +

m∑
k=2

| k |ŷ k1¿
 1r̂

ezts1 − 1
:

So under the assumption that the right-hand side is larger
than the sum on the left-hand side; we have a lower bound
on the undershoot in y1. The bound suggests that the un-
dershoot will be large if the zero is close to the origin.
Furthermore; it also suggests that if the interaction is small
(ŷ k1 ¿ 0 is small); the undershoot has to be large. There is
hence an immediate trade-oI between the undershoot in the

considered set-point response loop and the interaction to the
other loops.

Remark 5. Theorem 3 illustrates the importance of zero di-
rections. A RHP zero in a SISO system is known to impose
inverse set-point response. For MIMO systems; however;
we see from Theorem 3 that it is only if all but one ele-
ment of the zero direction  are zero that a RHP zero must
give an inverse set-point response. Such zero is related to
only one input–output pair and implies in that sense similar
restrictions to the response for that loop as RHP zeros in
scalar systems. This was illustrated in the frequency domain
in GJomez and Goodwin (1996).

Remark 6. It is possible in many cases to show that the
inequality in Theorem 3 is actually tight; that is; that there
exists a controller giving a response arbitrarily close to
equality. For example; in the scalar case (m=1); following
the discussion in Section 12:4 of Boyd and Barratt (1991);
we see that such a controller can be found using Ritz ap-
proximation and linear programming. Two drawbacks with
a controller close to the performance limit is that it tends to
have high order and to give large control signals. To com-
plement the result in Theorem 3; it would be useful to have
bounds on achievable performance for low-order controllers
and for limited actuation. Future work include deriving an
approximate bound that can be used as a rule of thumb
in process and control design. Time-domain performance
bounds have recently been derived for simple scalar pro-
cesses with actuator constraints (Glad & Isaksson; 1998).

Remark 7. In the SISO case Theorem 3 reduces to Lemma 4
in Middleton (1991) or Corollary 1:3:6 in Seron; Braslavsky
and Goodwin (1997). Note that all these results are de-
rived for control systems of one-degree of freedom. It is
well-known that a two-degree of freedom controller can
improve the set-point responses considerably. Theorem 3
suggests when such an increased controller complexity is
desirable for multivariable systems.

4. Right half-plane poles

In this section systems with RHP poles are considered.
It is shown that such poles imply constraints on interaction
similar to RHP zeros. If p¿ 0 is a real RHP pole of G, then

S(p)�= (I + G(p)C(p))−1�= 0:

Considerm responses to set-point steps r̂ in reference signals
r1 to rm, respectively. They give the control error matrix
E = RR− RY = S RR, where

RR(s) =



r̂=s 0 : : : 0
0 r̂=s 0
...

...
...

0 0 : : : r̂=s



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and RY is the corresponding output responses. The control
error satisKes

E(p) =
∫ ∞

0
e−pte(t) dt;

so that

E(p)�= S(p) RR(p)�= S(p)�=p= 0: (3)

There is thus a trade-oI between the errors that arise in
a given output, when input steps are applied at diIerent
references. The trade-oI is determined by the pole direction.

Theorem 8. Consider the stable closed-loop system (1)
with zero initial conditions at t = 0. Assume that G has
a real RHP pole p¿ 0 with pole direction �∈Rm and
�1 ¿ 0. Consider m independent set-point responses with
ri(t) = r̂ for t ¿ 0. Then; these responses satisfy

�1yo
1 +

m∑
k=2

|�k |ŷ 1k ¿
r̂ptr1
2

�1 − (eptr1 − 1)
m∑

k=2

|�k |ŷ 1k ;

where yo
1 and tr1 are the overshoot and the rise time for

set-point response in r1; respectively; and ŷ 1k is the inter-
action to y1 with set-point response in rk ; all as given in
De3nition 2.

Proof. Let e1k be the response in the Krst error signal for a
set-point step in rk(t)= r̂ ¿ 0 for k=1; : : : ; m. Eq. (3) gives

m∑
k=1

�k

∫ ∞

0
e−pte1k(t) dt = 0;

which is equivalent to

−
∫ ∞

tr1
e−pt

m∑
k=1

�ke1k(t) dt =
∫ tr1

0
e−pt

m∑
k=1

�ke1k(t) dt:

The left- and the right-hand sides satisKes

−
∫ ∞

tr1
e−pt

m∑
k=1

�ke1k(t) dt

6
∫ ∞

tr1
e−pt dt[�1yo

1 + |�2|ŷ 12 + · · ·+ |�m|ŷ 1m]

and∫ tr1

0
e−pt

m∑
k=1

�ke1k(t) dt

¿
∫ tr1

0
e−pt

[
�1r̂

(
1− t

tr1

)

− |�2|ŷ 12 − · · · − |�m|ŷ 1m

]
dt

=
ptr1 − 1 + e−ptr1

p2tr1
�1r̂

− 1− e−ptr1

p
[|�2|ŷ 12 + · · ·+ |�m|ŷ 1m];

respectively. From this together with

(ptr1 − 1)eptr1 + 1
ptr1

¿
ptr1
2

;

the result now follows.

Remark 9. Note that in Theorem 8we consider the set-point
response in y1 for r1 together with the responses in y1 for
set-point steps in r2; : : : ; rm.

Remark 10. Theorem 8 suggests that if the pole direction
is such that �1�|�k | for k =2; : : : ; m; then a real RHP pole
far from the origin must necessarily give a large overshoot if
the rise time is long. In general; however; the pole direction
gives freedom in the design to improve the performance. In
the SISO case Theorem 8 reduces to Lemma 3 in Middleton
(1991) or Corollary 1:3:5 in Seron; Braslavsky and Goodwin
(1997).

5. Example

Consider the quadruple-tank process (Johansson, 2000)
shown in Fig. 2. This laboratory process has two inputs and
two outputs, as illustrated in Fig. 3. The inputs are voltages
to the pumps and the outputs are the levels in the lower
two tanks. The quadruple-tank process has two valves that
are set prior to an experiment. They are used to make the
process more or less diScult to control. How the valves are
set deKnes the values of the parameters �1; �2 ∈ [0; 1]. The
4ow to Tank 1 is proportional to �1 and the 4ow to Tank 4
is proportional to 1 − �1. This means that if, for example,
�1 =1 all 4ow from Pump 1 goes to Tank 1 and if �1 =0 all
4ow goes to Tank 4. The 4ows to Tanks 2 and 3 are deKned
similarly.

Fig. 2. The experimental set-up for the quadruple-tank process.
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Fig. 3. The quadruple-tank process. The water levels in Tank 1 and Tank
2 are controlled by two pumps. When changing the position of the valves,
the location of a multivariable zero for the linearized model is moved.

It is possible to show that the linearized dynamics of the
quadruple-tank process have no RHP zeros if �1+�2 ∈ (1; 2)
and one RHP zero if �1+�2 ∈ (0; 1), see Johansson (2000). In
the following we study two particular settings of the valves:
the minimum-phase setting (�1; �2) = (0:70; 0:60) and the
nonminimum-phase setting (0:43; 0:34). System identiKca-
tion experiments give the following two models:

G−(s) =


 3:11

1+95:57s
2:04

(1+32:05s)(1+95:57s)

1:71
(1+38:90s)(1+98:67s)

3:24
1+98:67s




and

G+(s) =


 1:69

1+76:75s
3:33

(1+52:30s)(1+76:75s)

3:11
(1+56:36s)(1+111:55s)

1:97
1+111:55s


 :

The transfer function matrix G− has zeros in −0:012 and
−0:045, while G+ has zeros in 0:014 and −0:051. Hence,
G− has no RHP zeros, but G+ has one in z = 0:014. Note
that the linear models are suitable approximations of the real
nonlinear system, since the vector Keld of the system is pro-
portional to the square root of the state (i.e., approximately
linear about the equilibrium points).
Because G− is stable and minimum phase, theoretically

it can be arbitrarily tight controlled (Zames & Bensoussan,
1983; Johansson & Rantzer, 1999). This is not the case
for G+. Theorem 3 gives a trade-oI between settling time,
undershoot, and interaction for a set-point response. The
zero z = 0:014 of G+ has zero direction  = ( 1;  2)T =
(0:64;−0:77)T. With settling level � = 0, Theorem 3 gives
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Fig. 4. Responses for decentralized PI control of the quadruple-tank
process in minimum-phase setting. The input is a unit reference step in r1.

that

 1yu
1 + | 2|ŷ 21¿

 1

ezts1 − 1
;

for a unit step in r1. So the trade-oI can be written as

yu
1 + 1:20ŷ 21¿

1
e0:014ts1 − 1

:

For a settling time of ts1 = 100, we get

yu
1¿− 1:20ŷ 21 + 0:32:

Therefore, a suSciently small interaction imposes an under-
shoot of at least 0:32.
Two decentralized PI controllers were manually tuned for

the two process settings. The experimental results for the
minimum-phase setting are shown in Fig. 4, where a unit
reference step in r1 is applied. The settling time with settling
level � ≈ 0 is approximately 60 s.
The responses for the nonminimum-phase setting are

shown in Fig. 5. The settling time is about 600 s, which
is ten times longer than for the minimum-phase case. The
interaction in Fig. 5 is much worse than predicted from the
linear model G+ and Theorem 3. This may indicate that a
much better performance can be achieved with a central-
ized controller. Centralized multivariable control has also
been tested on the quadruple-tank process (Grebeck, 1998).
These experiments indicate that for the minimum-phase
system it is not possible to achieve much faster response
than with the decentralized PI controller in this section. For
the nonminimum-phase case, however, a multivariable con-
troller based on H∞ design methods gave 30–40% faster
settling time than the responses shown here. Note that this
is still several times slower than the response time of the
minimum-phase system. An interesting property of the H∞
controller for the nonminimum-phase system is that it has a
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Fig. 5. Responses for decentralized PI control of the quadruple-tank
process in minimum-phase setting. The input is a unit reference step
in r1. Note that the settling time is about 10 times longer than for the
minimum-phase setting shown in Fig. 4.

dominating anti-diagonal structure, contrary to the diagonal
controller described in this section. This is intuitive and
agrees also with RGA analysis (Johansson, 2000), which
suggests a permutation of y1 and y2 .
The obtained experimental responses in both the

minimum-phase and the nonminimum-phase cases shown
in Figs. 4 and 5 are quite far from the fundamental bounds.
This has many reasons including that the implementation
imposes low-order controllers, actuator limitations, unmod-
eled dynamics, etc. In the minimum-phase case, we know
that theoretically the responses can be arbitrarily tight
(Zames, 1981). See Remark 6 for further discussion.

6. Conclusions

Performance limitations in linear multivariable systems
with controllers of one degree of freedom were discussed.
It was shown that there is trade-oI for nonminimum-phase
systems between the closed-loop output responses and the
zero direction of the open-loop system. The trade-oI be-
comes more severe if the RHP zero is close to the origin.
Similar results for unstable open-loop systems were also
derived. The results were illustrated on the quadruple-tank
process. The process has an adjustable zero, which can be
located in either the left or the right half-plane. It was shown
that the control performance of the nonminimum-phase set-
ting with a decentralized controller was much worse than
the performance of the minimum-phase setting.
Choosing control structure is a diScult problem, but of

large interest to process industry (Skogestad & Postleth-
waite, 1996). There exist, however, only few results on when
a centralized controller is dramatically better than a decen-

tralized. Results on when decentralized control is suScient
is given in Zames and Bensoussan (1983) and Johansson
and Rantzer (1999). The bounds derived in this paper can
be used to judge how much can be gained by applying cen-
tralized control.
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