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Abstract

To be autonomous, intelligent robots must learn the fouadatof commonsense knowledge from
their own sensorimotor experience in the world. We desdidle recent research results that contribute
to a theory of how a robot learning agent can bootstrap froen‘tthkboming buzzing confusion’ of the
pixel level to a higher-level ontology including distingi states, places, objects, and actions. This is not
a single learning problem, but a lattice of related learrimgks, each providing prerequisites for tasks
to come later. Starting with completely uninterpreted sessd motor vectors, as well as an unknown
environment, we show how a learning agent can separateriBe sector into modalities, learn the structure
of individual modalities, learn natural primitives for theotor system, identify reliable relations between
primitive actions and created sensory features, and canedafieful control laws for homing and path-
following.

Building on this framework, we show how an agent can use @gi&nizing maps to identify useful
sensory featurs in the environment, and can learn effebtli«elimbing control laws to define distinctive
states in terms of those features, and trajectory-follgwgantrol laws to move from one distinctive state
to another. Moving on to place recognition, we show how amagean combine unsupervised learning,
map-learning, and supervised learning to achieve higfepaance recognition of places from rich sensory
input. And finally, we take the first steps toward learning atotogy of objects, showing that a bootstrap
learning robot can learn to individuate objects throughiomtseparating them from the static environment
and from each other, and can learn properties useful fosifileetion. These are four key steps in a larger
research enterprise on the foundations of human and robohcmsense knowledge.
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1 Introduction

Commonsense knowledge is a bottleneck problem on the watitifwial intelligence [McCarthy, 1968].
Common sense, and hence most other human knowledge, i®buittowledge of a few foundational do-
mains, such as space, time, objects, action, causalitysamc [Piaget and Inhelder, 1967, Minsky, 1975].
Spatial knowledge is arguably the most fundamental of tfrmsedational domains [Lakoff and Johnson, 1980].
We are investigating how the foundations of spatial knogtedan be learned from unsupervised sensorimo-
tor experience.

We have done extensive work on human and robot knowledgegdscale space (the cognitive map),
leading to the Spatial Semantic Hierarchy [Kuipers, 20@mnRlina and Kuipers, 2004, Kuipers et al., 2004].
The multiple levels of the SSH demonstrate how higher leviispresentation can be based on lower, simpler
levels. The SSH Control level, the lowest, makes a good téogbootstrap learning.

The basic idea behind bootstrap learning is to reach a legugoal by composing multiple simple ma-
chine learning methods, using weak but general learnindghadstto create the prerequisites for applying
stronger but more specific learning methods. The resultagtia¢ of learning methods that collectively learn
the desired knowledge.

We assume that a learning agerttuman or robot, starts with a low-level ontology for delsicry its
sensorimotor interaction with the world. William Jamedelthis the “blooming buzzing confusion” that
confronts the infant from its unfamiliar senses. From a tmsoperspective, we call it the “pixel level”,
referring to the individual pixels of a camera image, thevithial measurements in a laser range scan, the
incremental motions caused by motor signals, the indiJidelds of an occupancy grid map, and so on. The
learning task is to create useful higher-level represemstfor space, time, objects, actions, etc, to support
effective planning and action in the world, bootstrappipgnem experience at the pixel level.

In the remainder of this paper, after discussing the metlogitzal framework for learning without prior
domain-specific knowledge, we describe four recent rebeasuilts that carry us significantly further toward
autonomous learning of the foundational representationsdmmonsense knowledge.

Section 3 describes a method for starting with a completeiytarpreted sensorimotor system, applying
a hierarchy of learning methods to define sensor modalitiéstiaeir structures, primitive actions, sensory
features and how they are affected by actions, control lagdsdsstinctive states. Section 4 re-examines how
sensory features and control laws are learned, providingnanpervised method based on self-organizing
maps. This method, SODA, uses self-organizing maps to ks&abstraction from “pixel-level” sensor in-
puts and motor outputs to perceptual features, distinstigtes, and hill-climbing and trajectory-following
control laws. Section 5 shows how highly reliable place geition can be learned through a bootstrap learn-
ing process, combinging unsupervised learning, map-iegrand supervised learning. Section 6 describes
how an ontology ofobjectscan be learned from pixel-level experience. These areairsteps toward a
foundational theory of how commonsense knowledge is plessib

2 A Methodological Framework

There are some serious questions about how one even begivestigate the problem of learning founda-
tional representations from uninterpreted sensors aedteffs.

There are four different nested learning problems, wheeh dafines the learning target for its predeces-
sor.

1We use the term “robot” to refer to the physical system andétssors and effectors. The “learning agent” is the comiputat
process observing and learning to control the robot. Bodyraimd, if you wish.



1. As human researchers with limited resources of variondskiwe need to develop a suitable research
strategy and research methodology to allow this overa#éaesh enterprise to be broken down into
projects of manageable size. This research enterpriseolfegtive and extended search for . ..

2. ...alearning algorithm that takes as input a set of dofiralapendent statistical learning methods and
an uninterpreted set of sensors and effectors allowingoeafury behavior in the environment, and
eventually learns ...

3. ...ahigher-level ontology for commonsense knowledg#uding such foundational concepts as space,
time, motion, objects, actions, causality, etc, along wiference methods for abduction and planning,
inorderto...

4. ...build higher-level models (“maps”) that describe &m¥ironment in terms of the concepts in the
learned high-level ontologies, to explain the observatibe agent obtains during exploratory behavior.
The quality of such a “map” is determined by its utility forrgrating effective predictions and plans.

Our own extensive work on learning cognitive maps of unknemwironments through exploration is a
contribution to problem 3, devising an appropriate ontglfoy knowledge of large-scale space, and problem
4, the task of building the maps given that ontology. Theltefuhis work is the Spatial Semantic Hierarchy
(SSH), which we use to define the target ontology for boqgtskearning of spatial knowledge as part of
problem 2.

Our own work on bootstrap learning (summarized in this pagamtributes in various ways to problem 2.
Continuing progress in our map-learning research makeS#t¢a moving target. Nonetheless, we believe
that the progress we have made so far on bootstrap learnihigave sufficient generality and robustness to
survive changes in the target ontologies it is intendedacire

Problem 2 is itself an enormous problem, with many divergeeis, so it must be solved by the research
community over an extended period of time, which raises titategjic questions of problem 1.

Problem 1 is how to break the overall research enterpriseaiflem 2 into manageable pieces. Each
piece necessarily makes assumptions about what otherecbseaults, some to be created in the future, will
provide. Ideally, as the individual pieces are created; wi# fit together into a larger intellectual structure,
the assumptions of each piece being satisfied by the resoitsdome pieces it rests on. In reality, we don’t
always guess right in making those assumptions or decidingth break the large problem into manageable
pieces, so some work will inevitably need to be modified oorexd

One research strategy that we have adopted is to avoid glagmior constraint on the set of domain-
independent statistical learning methods to be used inrgpproblem 2. We are pragmatic in our choice of
methods, driven by the needs of the research problem at hdmilg, attempting to ensure that the statistical
learning methods chosen are as general as possible, willbbawdin-specific assumptions. After we have
discovered sets of learning methods sufficient to providetiems for problem 2, then we can begin to
identify minimal subsets of those methods compatible wéttiipular implementation technologies, including
biological ones.

Another research strategy we have adopted is to place sagointbortance on the question of whether
a particular learning problem is solved by the species (evetutionary time) or by the individual (over
developmental time). In our work, we frame the learning peobas a problem for the individual, but this
is a gedankenexperimemwr “intuition pump” to help us develop useful insights atstl@arly stage of our
research enterprise. Eventually, we will need to consideetter particular kinds of learning take place
during evolution, embryogeny, development, or mature Wieinan the biological world, the answers clearly
vary from species to species.



The underlying hypothesis behind problem 2 is that the sjghited higher-level ontology of human
commonsense knowledge can arise from an undirected bapistarning search through a space of repre-
sentations. In the end, a solution to problem 2 in its entinetist be evaluated according to the ability of the
learning process to construct a useful higher-level ogtpfor a complex world, without external direction.
Our hypothesis is that the learning process is directed égtifucture of the knowledge that is being learned,
not by external supervision based on explicit goals.

However, Problem 1 recognizes that human research effantsat be undirected. A particular research
project, intended to be accomplished by a few researcheéhémva year or two or three, must have an ex-
plicit target for the learning process to be developed. isiticonsistent with the overall goal of undirected
learning? No.

We attempt to define manageable projects directed as partaspects of successful human common-
sense knowledge. If we are successful in defining a projdbtavi initial set of assumptions and a learning
target along the path that human learning followed, thenahget should be reachable by some undirected
learning method. If the project succeeds, our confidenckdrselection of the initial assumptions and the
learning target, not to mention the learning method thatdissovered, are all increased. If the project fails,
it could be due to insufficient cleverness in finding a leagmmethod, but it also could be due to poor choice
of initial assumptions or learning target.

Considered within the context of a larger research entepan individual research project can succeed,
not only by solving a stated problem, but by modifying theegiyproblem into one that has a good solution.
Such a problem-solution pair must interact well with itsgidiors, in the sense that the initial assumptions
are satisfied by some prior process, and the target of thisitepprocess is useful to other processes.

Thus, we can resolve the apparent paradox of a directed-obgg@ject to develop an undirected learning
method. Each individual research project is a part of thgelaresearch enterprise. Each explicit learning
targetis a working hypothesis about how the solution to trezall research enterprise will look. The methods
used in each project must be undirected, encoding no dospaaiic knowledge about the learning target.
The solution to the overall enterprise is obtained if theichof intermediate learning targets leads to a set
of compatible undirected learning methods that, togetieach the overall goal. (Figure 2 is a preliminary
example of this.)

3 Learning from Uninterpreted Sensors and Effectors

The lowest level problem is faced by a learning agent in amank environment with unknown sensors and
effectors. Our goal is to learn the foundation for the Sp&@mantic Hierarchy [Kuipers, 2000]. The SSH
rests on a set of hill-climbing and trajectory-followingrtml laws and the knowledge of the sensorimotor
interface to support them. How can this knowledge be leafireed unsupervised experience?

Pierce and Kuipers [Pierce and Kuipers, 1997] answeredjthéstion in the context of a simulated mo-
bile robot with unknown sensors and effectors. The learaipgnt conducted a variety of experiments and
analyzed the data, building a hierarchy of representatbhsth the sensory and motor systems, and even-
tually creating control laws that could define distinctivates (Figure 1). The experiment had the following
steps.

1. Gather observations during random sequences of actinss, coarsely cluster the sensors according
to the qualitative properties of a histogram of values retdrby each sensor. Then, within appropriate
clusters, compute pairwise correlations among sensoesand interpret them as similarity measures.



Figure 1: Exploring a simple world at three levels of competence. (s Tobot wanders randomly while learning a
model of its sensorimotor apparatus. (b) The robot explbyesandomly choosing applicable homing and open-loop
path-following behaviors based on the static action modelenearning the dynamic action model (see text). (c) The
robot explores by randomly choosing applicable homing doskd-loop path-following behaviors based on the dynamic
action model

2. Assign the sensors in a cluster to positions in a high-dgiomal space reflecting their pairwise sim-
ilarities. Project to a low-dimensional subspace (2D in examples) that best accounts for most of
the variance in the cluster. Once sensor values have alspatigell as temporal dependence, we can
calculate spatial as well as temporal derivatives, anddlefise motion fields.

3. The motion fields corresponding to different motor sigreale analyzed using principal component
analysis to determine the most significant motion effects @ motor signals that correspond to
them. These signals are used as the natural primitiveséantitor space.

4. Higher-level sensory features are proposed, based ospti@l and temporal attributes of the field
of primitive sensory values. These include features suatis®ntinuities, local minimum and local
maximum, with magnitude, position, and scope. Proposddifesiare evaluated according to stability,
predictive power, and extensibility.

5. Evidence is collected of the effects of primitive motonwoands on higher-level features, searching
for motor commands that change features in predictable whygal state variables” are defined for
particular neighborhoods in the environment. Trajectmtiewing and hill-climbing control laws are
defined according to which local state variables corresgorfdatures that are both observable and
controllable.

6. Open-loop control laws are defined by identifying comnsatindit reliably change one feature while
keeping another one relatively constant. Closed-looprobtdaws are defined by searching for and
identifying commands that can reduce deviations in thetivelg constant feature, actively keeping
it close to a desired setpoint. (Think of moving along a walining slightly to maintain a desired
distance from it. Compare figures 1(b,c).)

Figure 1 shows exploration traces at three stages of theihgaprocess. The analysis uses a variety of
mathematical methods, but only ones that can be applieda@lwterpreted data, using local computations
such as neural networks. The sequencing of the learning atéges because later learning methods depend



on prerequisites learned by earlier ones. Figure 2 showlattiige of learning methods that supported these
conclusions.

One lesson from this work is that learning even an appareitiyple sensorimotor skill such as wall-
following, starting from a pixel-level ontology, requiradarge number of distinct learning algorithms, con-
structing a lattice of different representations of thessey and motor capabilities of the robot.

4 Learning Distinctive States

The learning of high-level sensory features and hill-clingband trajectory-following control laws in Pierce
and Kuipers [Pierce and Kuipers, 1997] made use of certatkgraund knowledge about sensors and con-
trol, albeit of an abstract and domain-independent kindrtter to eliminate this use of background knowl-
edge, Provost, et al [Provost et al., 2006] use more gerggiming methods such as self-organizing maps
and reinforcement learning to achieve the same goals.

Modern robots are endowed with rich sensory systems, inlwaibigh-dimensional sense vector pro-
vides a high-bandwidth stream of information about a cattirs environment. In addition, many important
real-world robotic tasks haveigh diameterthat is, their solutions require a large number of prineitac-
tions by the robot, for example, navigating to distant lama using primitive motor control commands.
Reinforcement learning (RL) methods show promise for aatisearning of robot behavior, but extending
these methods to high-dimensional, continuous, high-dianproblems remains a major challenge. Thus,
the success of RL on real-world tasks still depends on humalysis of the robot, environment, and task to
provide a useful set of perceptual features and an apptemtéaomposition of the task into subtasks. Our
goal is to create autonomous learning agents, relying orefsumptions about the nature of the robot and
its world.

Self-Organizing Distinctive-state Abstracti®@ODA) is a new method for automatic discovery of high-
level perceptual features and large-scale actions fofm@iement learning in continuous environments [Provost.e2006].
A distinctive statas the isolated local maximum of a selected measure definedtbe local neighborhood,
so that a hill-climbing control law can bring the robot to thistinctive state from any point in its neighbor-
hood.

In SODA, we use a version of self-organizing maps (SOMs) [¢dwdn, 1995] called the Growing Neu-
ral Gas (GNG) [Fritzke, 1995] to learn a small and generab$gtrototype units to represent the sensory
experience available in the domain. Unlike the original S@& GNG allows the number of units and the
topology of the mesh to adapt to the properties of the dom@aindefine distinctive states, we define the
activation level of the leading GNG unit to be the target edior hill-climbing. The activation levels of the
GNG units therefore serve as the perceptual features atient.

As the agent moves around the environment, different GN@& wvill have the leading activation level,
and will thus define distinctive states based on differetitclimbers. Motion from one distinctive state
neighborhood to another is done using trajectory-follgvaontrol laws. In this preliminary version of
SODA, these are simply repetitions of particular primitaetions until the dominant GNG unit changes,
so they correspond to open-loop path-following controplem [Pierce and Kuipers, 1997] (Figure 1(b)).

Thus, without prior knowledge of the robot’s sensorimotatem or its environment, SODA does several
distinct types of abstraction. It dopgrceptual abstractioby abstracting a high-bandwidth sense vector to
a small set of GNG units, which serve as perceptual featutetoesstate abstractiorby defining locally
distinctive states to represent large portions of the ocootiis state space. And it ddesporal abstractioty
defining higher-level actions that take the agent from os#rditive state to the next, combining the effect of
a trajectory-following control law to take the agent to a mezighborhood, and a hill-climbing control law to
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reach the distinctive state itself within that neighborthobhese abstractions reduce both the dimensionality
and the diameter of the robot'’s tasks.

Given high-dimensional, continuous-valued sensory i@gmat continuous motor output, SODA works as
follows.

1. Explore the environment with primitive4’) actions, using a Growing Neural Gas [Fritzke, 1995] self-
organizing feature map to learn a set of high-level percdgtatures that define distinctive states in
the environment. Figure 3(bottom) shows examples of théshperceptual features.

2. Learn a set of high-level{*) actions in the form of control laws that carry the robot frone distinc-
tive state to another. Each action consists of a trajedmigwing control law that repeats a primitive
action until a new perceptual feature becomes dominarnviedd by a hill-climbing control law that
maximizes the new dominant feature.

3. Use reinforcement learning in the abstracted space bfleigel distinctive states and actions to learn
a policy for the same high-diameter task, which now has maalet diameter with respect to thé
actions.

Each distinctive state created by SODA is characterizeth®yaNG unit whose activation is maximized
at that state. Different underlying states may be aliasedrding to this criterion, leading to an action model
that is non-deterministic due to state aliasing. In futuoekywe plan to draw on our methods for learning
causal and topological maps [Remolina and Kuipers, 2004garn when distinctive states are and are not
aliased, and to create a deterministic map. Nonetheless, with a non-deterministic state-action map,
reinforcement learning on the abstracted states and adsaery successful.

An experiment on a simulated robot navigation task (Figyret®ws that the agent using SODA can
learn to perform a task requiring 300 small-scale, localoastusing as few as 9 autonomously-learned,
temporally-extended, abstract actions. The learning tinsebstantially improved (Figure 4).

The methods discussed so far can learn the properties obxblel@vel sensorimotor system well enough
to support autonomous learning of control laws and distiecitates suited to the environment the robot is
embedded in. These distinctive states and the actions ctingéhem are the first steps toward a higher-level
ontology for describing the robot’s world. We now turn to tiearning scenarios that build further on this
higher-level ontology. First we look at the problempdéce recognition overcoming the variability of the
pixel-level sensory image to recognize the current distincstate directly and correctly from sensory input.
And second, we take an important step toward learning theegutrof object a higher-level explanatory
concept that makes it possible to learn useful causal ragetaabout the world.

5 Bootstrap Learning for Place Recognition

It is valuable for a robot to know its position and orientatisith respect to its map of the environment. This
allows it to plan actions and predict their results, usiagrap. Kuipers and Beeson [Kuipers and Beeson, 2002]
applied the bootstrap learning approach to the problemashlag to recognize places that may have origi-
nally been perceptually aliased.

We defineplace recognitioras identifying the current position and orientation in ayéascale space, a
task sometimes called “global localization” [Thrun et aD01]. However, not every location in the environ-
ment is a “place”, deserving of independent recognitionmdns tend to remember places which are distinc-
tive, for example by serving as decision points, better thtermediate points during travel [Lynch, 1960].
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We assume that the world and the agent’s sensors are bothalergo distinguishing information exists,
but is hard to find. Real sensors are imperfect, so importarsubtle image features may be buried in sensor
noise. Two complementary problems stand in the way of ridiptace recognition.

¢ Perceptual aliasingdifferent places may have similar or identical sensorygesa

e Perceptual variability the same position and orientation may have different sgrismages on different
occasions, for example at different times of day.

These two problems trade off against each other. With velgtimpoverished sensors (e.g., a sonar ring)
many places have similar images, so the dominant problerarteptual aliasing. With richer sensors such
as vision or laser range-finders, discriminating featuresnaore likely to be present in the image, but so
are noise and dynamic changes, so the dominant problemdogné&ion becomes image variability. For
this research, we use only real sensors in real environgiardsder to avoid assumptions that restrict us to
certain types of sensors or make it difficult to scale up tgdanvironments.

When unigue place recognition cannot be done using therisemsory image alone, active exploration
will provide history information that can localize the ralamd determine the correct place. However, when
subtle features, adequate for discriminating betweermifft places, are buried in the noise due to image
variability, we want to recover those features.

We build on the abstraction of the continuous environmeatddscrete set afistinctive state¢dstates),
provided by theSpatial Semantic Hierarch{sSH) [Kuipers, 2000]. We assume that the agent has prdyious
learned a set of features and control laws adequate to mroelble transitions among a set of distinctive
states in the environment [Pierce and Kuipers, 1997, Pt@tad., 2006]. The steps in our solution to the
place recognition problem apply several different leagnmimethods (Figure 5).

1. Restrict attention to recognizimfistinctive state¢dstates). Distinctive states are well-separated in the
robot’s state space.

10
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2. Apply an unsupervised clustering algorithm to the sengoages obtained at the dstates in the envi-
ronment. This reduces perceptual variability by mappirfecént images of the same dstate into the
same cluster, even at the cost of increasing perceptualraidy mapping images of different states
into the same cluster. We define each cluster to e in the sense of the SSH [Kuipers, 2000].

3. Build the SSH causal and topological maps — symbolic di@sons made up of dstates, views,
places, and paths — by exploration and abduction from therobd sequence of views and actions
[Kuipers, 2000, Remolina and Kuipers, 2004]. This providesunambiguous assignment of the cor-
rect dstate in the map to each experienced image, whichdb&ek path (a) in Figure 5.

4. The correct causal/topological map labels each image thié correct dstate. Apply a supervised
learning algorithm to learn a direct association from sensoage to dstate. The added information
in supervised learning makes it possible to identify subiseriminating features that were not distin-
guishable from noise by the unsupervised clustering atyori This is feedback path (b) in Figure 5.

We evaluated this method in experiments in two different-vezld environments, one constructed to
have a subtle distinguishing feature in an otherwise siraptksymmetrical environment, and the other the
main corridor in an office building. In both cases, unsupdiclustering produced significant amounts of
perceptual aliasing, but with the help of the learned togigkal map, supervised learning was able to converge
rapidly to 100% accurate place recognition.

This is a paradigm example dbotstrap learning A weak learning methodk¢means clustering) pro-
vides the prerequisites for an abductive method (topoddgiap-building), which in turn provides the labels
required by a stronger supervised learning method (neasgghbor), which finally achieves high perfor-
mance.

6 Bootstrap L earning of Object Representations

The blooming buzzing confusion of the pixel-level world é®tvariable to contain meaningful causal reg-
ularities useful for prediction and planning. Among the manportant achievements in early childhood
development is learning the higher-level concepblgiect which along with the higher-level conceptad-
tion is capable of supporting learning of causal regularitiefuldor understanding and manipulating the
world [Spelke, 1990].

In recent work toward this goal [Modayil and Kuipers, 2004 have shown how an agent can au-
tonomously learn an ontology objectso explain many aspects of its sensor input from an unknowachjc
world. For an agent to learn about an unknown world, it mustrig¢o identify the objects in it, what their
properties are, how they are classified, and how to recogiméza.

The robot’s sensorimotor system provides time-varyingseimputs and motor outputs. From this, we
assume that it can construct a description of the local enmiient in the “pixel-level” ontology of occupancy
grid models?> The learning scenario described here takes place in “ssnale space”, the space within the
immediate sensory surround of the agent where it can rgllabalize itself [Kuipers et al., 2004].

The occupancy grid representation for local space doesoltde the concept afbject The occupancy
grid representation assumes that the robot’s environnanbe divided into cells that are empty and those
that are occupied. Evidence provided by range sensorsdstosgdate the probability of occupancy of each

2The learning methods in Pierce and Kuipers [Pierce and Ksji®97] can learn the properties of sensors and effectors f
experience. We assume that the occupancy grid representatd inference method can be learned in a similar way. We aaketch
of such a learning scenario, but it is outside the scope sfrédsearch on objects.
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cell. Simultaneous localization and mapping (SLAM) altlams can efficiently construct an occupancy grid
map and maintain accurate localization of a mobile robdhiwiit using range sensor data [Moravec, 1988,
Thrun et al., 2000].

In this bootstrap learning scenario, the learning agentiiaes| a working knowledge adbjectsfrom
unsupervised sensorimotor experience. We begin by usigtbperties of occupancy grids to classify
individual sensor readings as static or dynamic. A cell ia ¢titcupancy grid is considerethtic if it is
labeled occupied with high confidence, and has never beateldifree with high confidence. A cell is
consideredlynamicif it has ever been labeled free with high-confidence, evérnlater becomes occupied.
An individual sensor reading is labeled static or dynamimading to the label of the cell it falls in. Static
readings are considered to be explained by the structudeedfixed environment, and are not considered
parts of objects.

The representation of objects is constructed from dynaemisar readings in four steps: Individuation,
Tracking, Image Description, and Categorization. Dynaméalings are clustered and the clusters are tracked
over time to identify objects, separating them both fromlibekground of the static environment and from
the noise of unexplainable sensor readings. Once trackhisters of sensor readings (i.e., objects) have been
identified, we build shape models when shape is a stable argistent property of these objects. However,
the representation can tolerate, represent, and trackdumos objects as well as those that have well-defined
shape. The shape models are classified, so that instanche e&ine type of object can be categorized
together.

In Modayil and Kuipers [Modayil and Kuipers, 2004], we derstrate this learning process using a mo-
bile robot equipped with a laser range sensor, experieratingdoor environment with significant amounts
of dynamic change. The agent learned to individuate an#ét ttmoamic objects in the scene, acquired shape
models where the shape was stable, and created a cateigorizbshape models. The scene could then be
described in terms of the static environment (groundedécsthtic portions of the occupancy grid), and the
dynamic objects (whose identities and trajectories coelddscribed symbolically, grounded to the tracked
objects in the scene). Figure 6 shows selected steps letadihiz result.

By this process, the agent has learned substantial portibtiee concept obbject It has learned to
separate objects from the background environment, désgribas an individual that has a spatial extent
and persists over time. Some individual objects have a stargishape, which can be used to categorize
individual objects into object types. A straight-forwardnsequence of this, but one not explored yet in
this paper, is the ability to identify new individual elentgof the object type, which might not have been
identified using previous methods, perhaps because it has neoved, or perhaps because its image has
always been entangled with other objects or the environm®&ve are also investigating the learning of
appropriate actions for interacting with object indivitkiand types.

7 Conclusions

To be autonomous, a robot must be able to learn its own ontatédpigher-level concepts from its own
pixel-level experience with the world, rather than obtainit from an external programmer. We have
described recent research that shows how the structurekofoum sensors and effectors can be learned
[Pierce and Kuipers, 1997]; how high-level perceptualifezd and actions can be learned and used to define
distinctive states [Provost et al., 2006]; how high perfante place recognition can be learned by bootstrap-
ping unsupervised learning, map-building, and supendisagahing [Kuipers and Beeson, 2002]; and how an
ontology of objects can be learned from low-level experiganith a dynamic world [Modayil and Kuipers, 2004].
There are many other aspects of commonsense knowledge plfiyisecal world still to be learned. We
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Figure 6: Multiple representations of a scene. The robo¢nes is the small round robot in the foreground.
The larger ATRV-Jr is used as a non-moving obje@): A photograph of the scendb): A range image
of the scene at approximately the same tif®: An occupancy grid representation of the sce(@®: An
iconic representation of the scene. This is a symbolic d&smn of the robot’s environment enabled by the
learned object ontology. The location of the observing tébindicated by a small trianglex). A moving
object (pedestrian) of amorphous shape is shown with ijsdi@y. A non-moving object (ATRV-Jr) has
been classified, and is shown by the convex hull of its shapgeind@he permanently occupied cells in the
occupancy grid represent the static environment.
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have already mentioned the need to learn the occupancyapidgentation, or more generally, a local per-
ceptual map representation of the immediate sensory suatfdduipers et al., 2004]. We are also extending
the learned theory of objects with the actions that affecs¢hobjects, along with their preconditions and
postconditions [Modayil and Kuipers, 2004]. Another imiamit research direction will be learning to use
vision as a sensory modality. Naturally, this kind of leamiwill straddle the evolutionary/developmental
boundary.

Bootstrap learning of foundational representations mag &k an important part of developing a sci-
entific theory of consciousness [Kuipers, 2005]. One of sEhaspects of consciousness is a property that
philosophers caihtentionality the referential connection from concepts in the mind t@otsgjin the external
environment [Searle, 2004]. Critics of “strong Al” claimatrobots can never have “original” intentionality
(instrinsic to itself), but can only have “derived” intemtiality (from the mind of a human author or pro-
grammer). However we have seen, albeit in very simple fobuststrap learning of concepts pfaceand
object complete with referential connections to individual g@aa@and objects in the world through the causal
properties of the sensorimotor system. The ability of a tébdearnits ownhigher-level concepts frorits
ownlow-level experience is the foundation for havitgjownoriginal intentionality.
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