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Abstract

A framework for types of logic programs, in particular, those embodying lazy computation and infinite
objects, is proposed. Examples are given to illustrate the need. Starting with two methodological views,
Types As Sets (subsets of the Herbrand Universe) and Types for The Prolog Computational Model,
we give a simple monomorphictype structure and extend it with principles of polymorphism and homogeneity.
The SVP model of Parker, Simon and Valduriez is given a detailed type analysis as an application of this
framework. Common logic programs serve as other instances of application. Directions for enriching the
type structure {Herbrand Type Universe) are discussed.
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1 Introduction

As a doctrine of first order logic, expressions are naturally classified into three categories, namely, terms,
predicates and sentences. By this, the objects of discourse, namely, (logical) terms, are simply treated as
symbolic objects. They bear no meaning, except denoting themselves, a string from a given alphabet. The
question of classifying or structuring the set of all terms does not carry much significance theoretically,
since it amounts to straightforward restriction in the category of well-formed formulas, including predicates
and sentences. However, in practice, as notations do carry pragmatic significance, we do want to impose
structure, particularly that under the umbrella of types, directly on the terms. In addition, types help not
only to correct reasoning, say, Russell’s paradox, but in practice, serve as an indispensable part of program
specification and correct implementation in programming. It is important to have a type scheme for any
logic-based system, in particular, the Logic Programming paradigm [SS 87).

Many approaches have been proposed to deal with the issues of types in Logic Programming, [YS 91,
XW 88, GM 84, Mi 84]. In this article, we focus on the issue of types for lazy computation and uninstantiated
logical variables, which we think has not yet been satisfactorily resolved. For the study, we take two
methodological stands, Types As Sets and Types for The Prolog Computational Model, due to the
framework and applications we have in mind. These issues have direct implications for stream processing in
Logic Programming.

This article is organized in five sections. Section 2 gives examples of our interests, and argues for the
need of a type scheme different from those commonly borrowed from functional programming. In section 3,
by respecting the dynamic nature of computation and adapting existing theoretical framework on semantics
of Logic Programs, we propose a type scheme built on a Herbrand Value Universe, similar in nature
to the Herbrand Universe. We also discuss extensions with polymorphism and homogeneity to the simple
monomorphic type structure, the Herbrand Type Universe, an instance of the type scheme. In section
4, we apply the framework to a type analysis of a particular intended domain, the SVP model [SVP 92].
The analysis also gives concrete illustration of the ideas and technique behind the general framework. We
also apply it to the problems raised in section 1. In the final section, we give conclusions of the study and
directions for further research.

2 Types in Logic Programs

As its underlying foundation is untyped, Logic programming suffers an obvicus inherent disvantage of being
prone to type errors. As a frequently offered example :

Example. 1

append([}, L, L) i —  true.
append([X|Xs],Ys,[X|XsYs]) :— append(Xs, Ys, XsYs).

The case in point is when the goal, 7 — append([], a, X), is invoked, a non-list binding of X is returned
successfully, which conflicts with the intension of this program. In general, such cases of unintended binding
of incorrect type will occur as long as there are two or more kinds, or types in formal terms, of atomic
constants. Unfortunately, there is no way to prevent this from happening, as Logic programs are inherently
untyped, with computations on a nominal canonical first order term universe, the Herbrand universe,
where all values are of the single type Terms.

As another example, the logical variable X of the first clause below, could be instantiated with any term
denoting a non-natural number, and yet still attain successful execution with a correct answer substitution
that respects the formal semantics of the program.



Example. 2

plus(0, X, X) i —  true.
plus(suce(X), Y, suce(Z)) :— plus(X,Y,Z).

To avoid these unwanted pitfalls, conventional type methods for logic programs usually introduce decla-
rations of type scheme or type predicates to enforce type consistency, for instance, list(L) and nat(X) for
the two examples, respectively.

Plausible as these methods are, we don’t think they give a satisfactory solution, in particular for Logic
Programs per se, for the following reasons :

¢ While these type predicates are primarily introduced to enforce a static type discipline, they are
added to the body of original programs. So, in effect, run-time checking is still performed. Although
they do enforce disciplined programming, these type predicates add more computational cost, as they
themselves are described as logic programs, indistinguishable from other clauses to the Prolog engine.
This drawback is due to the direct adoption of type methods used in common procedural or functional
programiming languages. While it appears as a necessary evil due to the first-order nature of logic
programs, the price is high enough to the lose distinctive features of the Logic Programming paradigm.
We shall elaborate on this point later.

¢ Even in the above two examples, as commonly typed by list/1 and nat/1 respectively, there is a
difference from functional implementationsin LISP. For example, rat/1, or the type of natural numbers,
is homogeneous and monomorphic globally. That is, we would expect any value and its subcomponents
thus typed would be the same everywhere. On the other hand, this is not quite the case with list/1.
In LISP, we are allowed to have cons{a, X), where X is an arbitrary atom other than nil, []. Of course,
we can have this in Prolog, but this is not captured in the common type predicate-based methods and
it could be arguable if this is still a ”list”. Furthermore, [] is actually a constant of polymorphic type
list(T), while the atom, 0, is of monomorphic type nat. This particularly deviates from the essence
of nominal term models where each ground term denotes a value (itself). The ground term [] is now
treated as an infinite scheme of ground terms, for example, the integer list [], rational list [], character
list ], etc.

o In addition to these problems with polymorphic ground terms, lists also demonstrate the difficulties
when logical variables are used, especially, when uninstantiated variables corresponding to laziness in
computation or placeholders are used. There doesn’t appear to exist any reasonable way to assign a
type to an uninstantiated logical variable, based on commonly-used type systems, without introducing
a great deal of complication or losing the intuition provided by logical variables per se.

o In actual programming, some instances of values and operators are indeed less sensitive to type con-
straints, such as sets of entities {of arbitrary types), operators like dequeue() and enqueue() of entities
(of arbitrary types). While it is arguable whether powerful type schemes, e.g. the second order A-
calculus [Mi 90], can be employed to cope with type constraints, they pose no problem for the Logic
Programming paradigm. Furthermore, it doesn’t appear that a powerful type scheme, such as the
second order A-calculus and its variants, is needed for logic programs implementing real applications.
For instance, function types are not (commonly) used in Logic programs, as functions are modeled as
predicates.

In the above discussion, we emphasize the use of logical variables, allowance of lazy computation and a certain
degree of heterogeneously typed or untyped terms as distinct features of logic programs in comparison with
conventional procedural and functional paradigms. These are also features we want to maintain, after
types are introduced. And applications requiring such features are not uncommon, for example, difference
lists, infinite objects, stream processing [SVP 92], where logical variables are incrementally but never fully
instantiated.
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As the aim is set, we find there are two issues anchored on the notion of Logic Programming as a paradigm
with Prolog as a key instance.

As often condensed in the slogan Algorithm = Logic 4+ Control, declarativeness is emphasized as a
key advantage over proceduralness. And Logic Programming bears both declarative and procedural readings
in a modular style. As operational semantics, model theoretic semantics and denotational semantics can be
identified for logic programs, the procedural and declarative distinction no longer exists, at least theoretically.
However, SLD resolution is used as a computational counterpart for declarative logic expressions, and many
extralogical mechanisms are embodied in Prolog. We have to ask a question again, in the context of Lypes,
as follows :

Is the notion of type intended for ‘Prolog as a (logic) programming language’

or for ‘Prolog as a computational model’ ?

The issue of course resembles Logic vs. Control, or Declarative vs. Procedural. The former seems
to make the notion of types static, while the latter dynamic. Logical variables and lazy evaluation are
more dynamic in essence and in practice; and untyped terms are both static and dynamic in the context of
Herbrand models and related identification theorems about semantics. Without detailed elaboration, simiply
as a commitment, we choose to deal with types in the context of ‘Prolog as a computational model’,
in brief, Types for The Prolog Computational Model. This implies we are interested in how types
interact and evolve from a procedural perspective, in short, the dynamic aspects of objects in computations.
Doubtless, this will affect our methods for inquiry. So far, we would only justify this commitment by the
results and applications we are pursuing, but we do believe this is a direction worth pursuing within the
Logic Programming community.

3 The Herbrand Value Universe and Herbrand Type Universe

We assume some familiarity with notions and terminologies of logic programming [SS 87] and its foundations
[L1 87]. As for the general question about What Is A Type, we take A Type Is A Set, rather than others
like Type as Formula, Type as Propositions, [Ho 80, FLO 83, CW 85, Mi §0]. This is due to our
applications where no function space is required and consequently there are no concerns of self-reference and
impredictability, on the one hand, and has the foundational advantage that a canonical semantic model of
the Herbrand Universe is given as a common domain to build type schemes, on the other. In particular, the
subsets of the Herbrand Universe can serve as a meaning of Type, and thus A Type Is A Set. Also, we
”

don’t have to worry about whether the set of types is a type, namely, TYPE € TYPE. It is obvious that
the set of all types need not be a type in our framework. This approach is in line with the ideas of general
models for higher order logic £,,, by Hintikka as explained in the survey [BD 83]. In that framework, a type
structure is imposed over a first order siructure, by interpreting higher order terms and variables as higher
order functions over the first order structure. Thought similar in terms of idea, our structure, Herbrand
Type Universe over Herbrand Value Universe, is much simpler, since function space is not of concern here,

3.1 Type Structure

Definition. 1 (Herbrand Value Universe) The Herbrand Value Universe, Hvgiue, is defined as the set
of value lerms inductively constructed from :

e any O-ary constent symbol is a value term.



e if fis an n-ary value constructor and {1, --,t, are value terms, then f{t;, - 1) is a value term.

Remark 1. Essentially, the Herbrand Value Universe is the usual Herbrand Universe constructed from
functors, so-called term constructors. The difference is the restriction to a special subset of functors, called
value constructors, interpreted as data constructors. This is only a slight deviation from term models of
Logic Programs, where each functor is treated as a value constructor. Here, general functors, other than
value constructors, are uninterpreted, sharing the same status as Skolem constants. Qur approach would
require a restoration of interpretation of these functors as denoting functions on the Herbrand Value Universe.
Interpretations, both of value constructors and functors, are of course application-dependent. On the other
hand, we can think of these functors as interpreted as functional predicates, having a type distinct from
terms. Qur method is to downgrade them back into terms, specifically into value terms.

Definition. 2 (Herbrand Type Universe) The Herbrand Type Universe, Hyype, is defined as the union
of, the set of type terms inductively constructed from :

» the symbol atom is a type lerm.

» if fis an n-ary lype constructor and 11, -, b, are type terms, then f(ty,---,1,) is also a type term,

and, the singleton set {Utype}, where Utype is the type of all Herbrand Value Universe.

Remark 2. Intuitively, we use a two-level approach to impose a type structure over values, by classifying
the common Herbrand Universe into subsets. The type atom contains all primitive constants, and usually
this is referred to as a basic type. There actually could be many basic types. The Utype embodies all values,
with denotation the whole Herbrand Value Universe. One of the import of Utype is to wrap up terms which
is correct with respect to Prolog model-theoretic semantic yet eluded from proper type assignment.

Remark.3. While we leave open non-value-constructing functors as interpreted domain-specific functions
defined over value terms, we don’t have function abstraction in our framework, in general. So overali, so far,
ours is a fragment of the simple type theory [Ch 40]. However, as we shall show, this simple basis can be
enriched with other concerns, such as polymorphism, homogeneity, type unification, ete, to serve our goal of
modeling uninstantiated logical variables and lazy evaluation. To be precise, uninstantiated logical variables
are modeled as being of type Utype, i.e., as being unrestricted with respect to the Herbrand Value Universe,
Lazy computation is captured in incremental type and value instantiation of logical variables, corresponding
to the typed place holders and value assignment of conventional variables.

Note there is a correspondence between type structure and value structure. Precisely, we have the
following formal results.

Proposition. 1 There is a homomoerphic mapping from the Herbrand Value Universe to the Herbrand Type
Universe, defined as :

H P Hyglye — HType

H(a) = atom if a € atom
H{de (X1, - Xn)) d-type(H(X1), -, H(XL)) dn is n-ary and

type-consirain(d, , H(X1), - -, H(X.))
H{d,(X1,---,Xz)) = Utype otherwise

The type — constrain() represents further constraints among constituent types. In its simplest case, the
constraint is just a matech with the (type) signature of functor d,. In most of our intended applications.
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the constraint would be H(X;)} = --- = H{X,) encoding the homogeneity of the constituents, common
to aggregation object. Such application specific constraints would simplify the formulation of above-posed
mapping. For instance, the list concatenation operator, ++, has a constraint over its two constituent
operands to be lists with same elementary type, T say. So the value term (+ +3 (Ly, L)) would be type-
assigned with list(H(L1)) = list(T), with type constraint H({L;) = H(Lz), and Utype otherwise. Other
kinds of constraints and formulations, such as {ist(H{L; )NH(L2)) if exists w.r.t. underlying type structure,
further points to interesting aspects enabled in the extension of the Herbrand Type Universe. In general we
call the mapping ‘H a value/type assignment.

Proposition. 2 All type terms in the Herbrand Type Universe are ground, representing monomorphic lypes,
and their denotations are mutually exclusive subsels in the Herbrand Value Universe. Furthermore, lhe union
of denotations of non-Utype Iypes is a proper subset of Herbrand Value Universe. In short, every type is a
subfype of Utype.

In summary, we have a basic type structure on the Herbrand Type Universe as depicted in the figure :

Utype

atom Ci(atom)

Figure 1: Structure of The Herbrand Type Universe

(In fig. 1, Ci{) stands for a type constructor.)

As easily seen, this type structure is in fact a complete join semilattice with ordering as set inclusion,
though not richly structured, say, in comparison with the full type structure for second order A-calculus.
This granted, and given familiarity with Prolog and its foundations, in the discussion in later sections, we will
simply assume trivial lattice operators and properties and take a degree of freedom with related terminology
(for example, ordering, notion of subsumption, and greatest lower bound as unification).

3.2 Principle of Polymorphism and Homogeneity

So far, we have imposed a basic type structure over objects of computation in the Logic Programming
paradigm. Yet, it is only monomorphic and only for ground terms, corresponding to a fragment of simple
type theory [Ch 40] for functional programming. In the following, we will introduce polymorphism which
takes logical variables into consideration.

Basically, polymorphism refers to the case where a single operator can be applied to multiple types
of objects. Moreover, polymorphism could refer to objects which can belong to multiple value domains.
Whereas there is no need of such a distinction in functional programming, due to the inclusion of higher
order functions as objects, having nominal terms as values in logic programming does raise such minor
distinctions as those shown by the term nil, []. Furthermore, as a consequence of Prolog Computational
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Model, type-unrelated or type-incorrect terms can be computed dynamically even in a typed context. And
with the position that A Type Is A Set of terms, in addition set-theoretic level of being typed, we need a
constraint of homogeneity, capturing the ideas of uniformity of constituents at the elementary (value) level,
over these sets, to enforce a structure on the set denoted by a type. Later examples will clarify this point
make the notion of polymorphism and homogeneity concrete in terms of the type system we have proposed
so far.

In general, polymorphism of transducers and mappings is surely a desirable feature, for computational
models like that in [SVP 92]. At the same time we want the notion of homogeneity for values and mappings.
Intuitively this would prevent us from having either complicated mapping or synchronizing some type infor-
mation in the specification or actual codes and computations, but homogeneity is a natural and assumption
for most practical logic programs, especially those bearing a sense of aggregation in their underlying domain
and major operations, such as lists.

The introduction of polymorphism naturally brings with it the notion of quantified type variables, and
thereby, quantified type expressions. In other words, polymorphism can be easily modeled with (meta-)
logical /type variables ranging over all possible elements of the Herbrand Type Universe. As an obvious
consequence, the notion of ordering of polymorphism, issues of subsumption and instantiation can be mod-
eled as unification on the Herbrand Type Universe. But the issue of quantification is tricky, in particular
regarding its scope, which potentially leads to a spectrum of notions of polymorphism. In our framework,
we would characterize our notion of polymorphic types in this type system with prenex normal form type
expressions whose type variables are all universally quantified. By this, we disregard the issue of whether
existential variables are allowed, which is considered important for the account of abstract data types. For
theoretical concerns about such design choices, see related discussions in [CW 85, Mi 90]. Not to exclude
other alternatives, we state our choice as a Principle of Polymorphism and Homogeneity. We clarify
the ideas and considerations by some examples.

The polymorphic type, ¥T.List(T) is homogeneous as it instantiates all elements in a list with same
type. On the other hand, List(¥T) could instantiate each element with different types, and then give us a
heterogeneous, if not chaotically typed, list. Both instances have their applications, for example, the former
is commonly used in most list processing, and the latter can be used to model sets or bags of objects. As
another example, the type prescription of list concatenation, append(} in our first example, usually is typed
as VT . List(T) x List(T) — List{T), though VTy.List(Tn) x VT1.List(T1) — ¥Ty.List(Ty) would do too.

Sorting is another example frequently referred to for illustrating the idea of pelymorphism in homogeneous
mode. In general, a sorting algorithm will work for any type of objects. Usually, values from a common
monomorphie set are stored and referenced indirectly by pointers, and comparisons between these values
are emploved to decide the order of values and to rearrange their pointers accordingly. Here the ordering
is homogeneous, and is the only necessary information, shared between values. The essence is that all
objects to be sorted are related, in the sense that they are not only elements of a common set, but also are
homogeneously related by a partial ordering.

On the other hand, there are computations which are really fully heterogeneous; that is, they are not
dependent on the common structure or value domain of the processed objects. For instance, cardinality or
counting processes care only about the number of occurrences, whichever domains they are from. In the
most general case, they can be specified as finite-set(VT") +— A, where the type variable quantifier is not in
prenex norimal form.

Though these examples of heterogeneity can be homogenized through an implicit type coercion process,
such an interpretation would imply extra program code and type notation for ‘Prolog as a (logic) pro-
gramming language®, and this does not respect the dynamic process of The Prolog Computational
Model.

As a remark, we notice that the noticns of polymorphism and homogeneity are closely related, though



not identical in the context of logic programming, and both depend on the data representation and the
operations to be applied. As a result, any scheme of type assignment should take such pragmatic aspects
into account. Lazy computations and infinite objects require such considerations.

In summary, we take the view that polymorphism corresponds to the introduction of type variables in
the type specification, and aspects of homogeneity enforce the range of possible types semantically and
universally quantified prenex normal form for type expressions syntactically. Furthermore, the underlying
type universe is the Herbrand Type Universe with Utype capturing heterogeneity. The result is also a
predicative type system, in addition to being complete join semilattice depicted in fig. 1, like Martin-Lof’s
type systemn [Ma 73], excluding the type of all types from its type structure.

4 Applications

In this section, we apply the type framework to a stream processing model, SVP [SVP 92], in particular,
type analysis of the general scheme of SVP-transducers. This application covers most of our intent for
developing the type scheme for lazy computation and infinite objects in logic programming. Additional
concerns in this application would be formalized and added as type constraints. We detail an example to
further illustrate the ideas and notions in our type framework discussed above. A second application deals
with the type assignment of our first example, the logic program append/3.

The type inference scheme we use is much simpler than the implicit typing in section 4.6.2 of [Mi 90].
This is because we don’t need rules of abstraction and application, since there is no use of function spaces
in this application yet. In accordance with the Herbrand type framework, the principle of polymorphism
and homogeneity is assumed. So every type variable is universally quantified in prenex normal form, and
ranges over the Herbrand Type Universe generated from basic types and type constructors. Furthermore,
any solution type assignment is based on unification of type terms positionally, postulated as type equations.
As aresult, uninstantiated type variables can be assigned to any term, and type constraints can be solved as
incremental instantiation of type variables over the monomorphic complete join semi-lattice Herbrand Type
Universe,

4.1 Type Specification of SVP Transducer Scheme
4.1.1 The SVP Model in The Herbrand Type Framework

SVP is a data model, capturing both set and stream data, and is designed to model parallelism in bulk
processing. The principle data construction is collection, of which the set and stream are special cases.
It also allows parallelism of many database queries to be captured in the format of divide-and-conquer
mappings, when specified using collections.

The collection data model and associated general scheme for SVP-transducers fit very well in our scheme,
And we also find the type analysis helps not only validate claims but also refine specifications.

In SVP, the corresponding Herbrand Value Universe is the set of SVP values, constructed from basic
values and value constructors, fuples() and collection(). Formally, SVP values are recursively defined as :

e Any atom is SVP value. We call these as SVP basic values.

¢ Any finite tuple (v1, -, vn) of SVP values vy, -, v, is a SVP value.

+ Any collection is a SVP value.
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The value of collection is defined as :

s <> is the empty collection.
e < v > 18 a unit collection if v is a SVP value.

e 5] 05, is a collection if 5; and S2 are nonempty collections,

Note, in effect, the Herbrand Value Universe contains some non-SVP values according to the definition.
They are terms corresponding to the third clause for collection, where either §; or Sz could be empty
collection. This can be easily trimmed by being type-assigned into Utype in the type/value assignnient
mapping H. Also, the above definition automatically makes the empty collection, <>, as a polymorphic
constant.

As the value consiructors are also type constructors, it is easily to have SVP-types :

¢ atom.
o tuple(T1, -, T,), where each Tj is a SVP type.
o collection(T) if T is a SVP type.

We note as a result of the principle of polymorphism where each type variable is universally quantified,
homogeneity is automatically enforced as desired in the original definition.

Due to the fact that values of all those types are SVP-values, we add a universal type, namely SVP-
Utype. Altogether, we have the Herbrand Type Universe as the set of SVP types together with the
SVP-Utype. SVP-Utype is the least upper bound of the Herbrand Type Universe, and all non-SVP-
Utype types are mutually disjoint in their denoted set of values. However, there is a slight pitfall due to the
polymorphism of <>, since {<>} is in the intersection of all types, namely, the greatest lower bound. As a
common practice, we can address this by supposing that there are monomorphic incarnations of <> in each
type, and the polymorphic <> is a shorthand without type subscript. Note this is necessary not only for
theoretical simplicity, but also for securing the notion of homogeneity, since otherwise, <> would be typed
as SVP-Utype and collection(T) would contain a non-universally quantified instance and thus no longer
be polymorphic nor homogeneous. It would then contradict the original design. An alternative remedy is to
restrict the empty collection, <>, from being a SVP value syntactically, while keeping it as a semantically
polymorphic shorthand.

Another related observation is that type variables in the definition of SVP types can only range over SVP
types, excluding SVP-Utype. This restriction is due to the introduction of SVP-Utype as a completion
of SVP types. This has the effect on the unit collection < v >, since v would be only typed as a non-
SVP-Utype. Otherwise, a pitfall would follow regarding collection(SVP-Utype), in which homogeneity
of elements no longer holds. Homogeneity becomes meaningless if every value is possible. Note this is the
case for any untyped system where all values constitute a single type.

Meanwhile, we note that the set of all elements of non-SVP-Utype does not exhaust the Herbrand
Value Universe. This means SVP-Utype is not redundant, and certain aspects of heterogeneity are en-
capsulated in SVP-Utype. To illustrate, notice we could have a set of SVP values, which is modeled as
collection(SVP-Utype), for instance, < 1 > ¢ <2>0<a>o<b>0<(g,1)>0<<b> o< (2,¢c) >>
. These are intuitively not hotnogeneous collections, though useful in practice. While maybe of some gener-
ality, such collections suffer from badly behaved polymorphism due to use of SVP-Utype as a constituent
type. This is of course a design choice.
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4.1.2 Types of SVP Transducers

With the above understanding in mind, and also with the definition of SVP transducer and the requirement
of compositionality, we can proceed to the type specifications of functions involved in the general forin of
SVP transducer.

Since the function composition of SVP-transducers is beyond the original consideration of type structure,
we have adopted conventions on type inference and specification, as in simple type theory.

¢ The type specification for transducers determines their argument and resultant types. N-ary functions
are made positionwise type correspondent. This is implied by the requirement of compositionality.

o Each arm of a casewise definition reccives the same type, and the condition receives type Bool This
is just a consistency condition for type specification.

¢ Since polymorphism is allowed, we extend simple type matching to type unification.

¢ Since there is no function abstraction, we can neglect rules for abstraction.

In section 3 of [SVP 92}, SVP-transducers are characterized as the composition of one or more functions,
each of which can be written in the following divide-and-conquer form :

) F(Qu, p(5))

F(Q,<>) idg

F(Q,<x>) = hi(Q,x)

F(Q,S5105:) = F(Q,p(S)) 0 F(6(Q,51),p(S52))

where Qg is an arbitrary fixed value, 7 is either the identity mapping or an SVP-transducer, and A,#, and
& are arbitrary SVP mappings of two arguments.

i

RO SR

Along with the composition requirement and input specification, we have the initial type assignment 2.

S —  collection(Tp)
idg — S

f collection(Ty) —  collection(S))
F Too x collection(Ts) —  collection(Ss)
p collection(T3) —  collection(Ss)
h To1 x Ty — collection(S,)
6 Tqa X collection(Ts) — Tga

g collection(T;) x collection(Tg) —  eollection(T7)

We come up with following constraints by type unification :

2The initial type specification of f, F,h,# is due to the fact that all SVP-transducers are to be composable, This is & design
principle, slightly different from the composion constraint within the equations. This design choice may be dropped in some
SVP applications. But the solution would go through, except the more general type specification, T, instead of collection(T),
is enought for f, F,k, 8. Together with the input being collections, both the domain and codomain receive the same type
collection(T). See also summary in the following subsection.
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1) collection(Ty) collection(T3) Input

2) S = collection(5) idg, f, b.
3)  collection(S;) = collection(5y) f.F a.
4)  collection(T3) = collection(S5) g, F a.
5) collection(Ty) = collection(T3) fipa.
6) collection(53) = collection(Ty) pFa.
7 T = Ty h, F, collection, c.
8 5 = 5 F h,c
9) Tp = 5 F.8.d.
10) T = 5 8, F.d.
11) Ty = T 5 F,d.
12) T3 = 83 p, F.d
13) Togo = T c.Identity
14) Tgo = T d.Identily
15) Toa = Tgo d.Qutput

We have a consistent solution, namely, all collection type variables are identified with the same type
Ty, except Sp with collection(Tp) and all Tg,’s are all identified too. In fact, this is the most general
type, or principal type in some literature, compatible with the specification. Namely, other consistent type
assignment defined over the Herbrand Type Universe, satisfying the specification, would be an instance of,
or less general (or less polymorphic) than, Tj .

As a result, we have not only validated that the proposed polymorphic scheme for SVP transducers is
indeed well-defined, but also that it allows maximal polymorphism as long as it is homogeneous. As a matter
of fact, since the type for @ ( parameter or state variable) of the scheme is never constrainted except for type
identification. This means an implication that, if we allow the type variables Ty; of @ to range over higher-
order transducers or mappings, there is still a consistent solution, as far as type consistency is concerned.
A way to incorporate this observation is to extend the Herbrand Type Universe, argument positionally or
by cartesian product with other higher-order iype structures, say second order lambda calculus. This is a
direction worth further inquiry.

4.1.3 Summary

We can summarize some of the results of applying type analysis to the SVP model so far, and suggest possible
future modifications.

® We have at least validated the scheme of SVP transducer and its generality, based on the requirement
of polymorphism and homogeneity together with principle of function composition from simple type
theory applied on a generic Herbrand Type Universe.

e As a result, we have to restrict the type of & to be
collection(T) x collection(T') — collection(T).

Namely, # has to be applied to and produce collections of homogeneous SVP values. This is in fact
consistent with intuition about SVP transducers, As the solution indicates, this is all due to the design
principle of composibility of SYP-transducers, rather than type constraints.

« On the other hand, we have to either revise some of the rows of instances of  as listed in the article
[SVP 92]. This is no problem at all even as a result of design choice, as we can just add a layer of
collection construction and use unilcollectionvalue() to retrieve it. For instances, min, maz, sum as
uniteollectionvalue o min, unitcollectionvalue ¢ mazr and uniteollectionvalue o sum respectively.
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o The type specification of k also requires an output type of collection{T’). This is certainly proper, and
cause no problem to adapt, similar to the case with 8.

o With these observation, along with the fully unconstrainted type specification of ¢, the extension of
function space in the type structure has its proper demand. Yet, it could be an independent dimension
as far as the type specification of SVP-transducers is concerned.

4.2 Another Application

Following the same method, we can derive the type assignment for :

append([}, L, L) :— true.
append([A|As], Bs,[A|AsBs]) :— append(As, Bs, AsBs).

with corresponding type signature :

append(X1,Y1,Z1) i —  true.
append(X x X2,Y2, X x Z2}) :— append(X2,Y2,22).

by solving the following type equations :

fegpe = X1
X1 = X x X2
X2 = Xl
Y1 = Y2
Y1 = Z1
Z1 = X xZ2
zZ2 = Z1
We have the solution :

X1l = X*(/Y)

X2 = x*X)

Y1 = Y2
= Z1
= Z2

x*(X)UUtype

= Utype

This matches our intuition, and justifies the type assignment of Utype to uninstantiated logical variables
and typed use of cons(). Here from the solution, the second argument of append/3 could be an arbitrary
value, including an infinite list, while the first argument has to be a finite list.

5 Conclusion and Further Research

Inspired by applications in stream processing, and lazy computation and infinite objects commonly seen in
Logic Programming, we started out with points of dissatisfaction with conventional type schemes. Taking the
position of Types for The Prolog Computational Model, aiming toward a type account of the dynamic
essence of lazy computation and infinite objects by uninstantiated logical variables, we classified the Herbrand
Value Universe into subsets, and designated them as denotations for types. We then formalized the notion,
and went further to introduce notions of polymeorphism and homogeneity into the apparently simple and
monomorphic, yet complete join semilattice, the Herbrand Type Universe. Aspects of heterogeneity were
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also discussed, with the coarsest heterogeneity being captured by the universal type Utype. This universal
type not only greatly enriches the type structure, but also provide insights for its power and applications.

We then applied the framework to an analysis of the SVP model, a typical stream processing model with
parallelism. This example illustrates notions and terms of our type framework. The framework also helped
us to resoive initial questions on some Logic programs.

Looking back upon what the issue was and how we accounted for it, the problem could be phrased
as finding a suitable type discipline for a nominal Herbrand Universe of constructors and functors. As
nominal as it is, this universe itself is a class of values, where every term combination is a value. While
it is useful for first order application, many troubles arise when we want to classify this universe into well
behaved subclasses, namely to impose a type structure over it. The only inherent structure is how a term
is constructed symbolically. Other than that, there is no domain-specific relation between terms. Of course,
those relations are formulated in a different syntactic category, namely, predicates. However, most of the
time, we would like to work on some domain with meanings whose value terms do relate. Among others, type
related properties are natural and prominent ones. Polymorphism and homogeneity are the two additional
principles preventing us from overrestriction, while admitting useful and general applications. This article
serves as a try, and so far, it is successful as far as our application is concerned.

There are a couple of directions for further research :

First is to exploit the Herbrand Type Universe. Obviously the semi-lattice type structure is kind of
simple, though, as it shows, it does allow study and applications of a broad spectrum, e.g. polymorphism,
homogeneity, function composition, unification-based type inference, etc. As remarked, there is no type
construction for function abstraction, which is a marked disadvantage with respect to common type systenis,
such as various second order A-calculi. Also, our type system in use excludes almost any possibility of het-
erogeneity. In addition, type variables are only universally quantified and placed in prenex form. The lack
of existential quantification leads to the difficulties for abstract data type and related notions as represen-
tation independence, and separation of specification and implementation. The followings are some ideas in
extending our type scheme :

o We can permit a constructor to be both a value constructor and type constructor, as is the case in the
SVP model. By doing this we gain the edge of isomorphism between type structure and value structure.
However, blindly doing this may actually push us back into an untyped system, since everything would
be of a single type. We need to restrict the extension only for major value constructions, and keep
functors as interpreted or defined functions over value universe, yet not reduced to predicators.

¢ There could actually be more types than those in the Herbrand Type Universe, such as the first
order Utype or other higher order types or the type of all types and etc. We may just need some
means to denote and harness them into the established segment. This generalization suggests making
a distinction between deep and shallow (or global and local) polymorphism. Roughly speaking, sone
function may only depend on a few layers of type construction, not down to the very bottom atomic
values, as long as the computation can proceed. This is often the situation for lazy evaluation paradigm,
where only certain layers of type inforination are concerned rather than whole type information of each
value. For example, some processing can be specified as of type list(list(X)) — nat, where X is
don’t-care type variable independent of any type structure, signifying that only two layers of list
structure is necessary sufficient for its correctness. We refer to the polymorphism in such cases as
shallow polymorphism, while in conventional cases as deep polymorphism where either ground type or
underlying type structure matters.

¢ In responding to the fact that all type expressions denotes disjoint SVP-value subsets, we can in fact
introduce type constructors for disjoint union among these types, say, to allow degrees of heterogencity.
Proper injectors and categorical accounts may be used too.
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Second, as a companion of richer type structure, we may like to consider the type inference rules. For
now, the type inference is very simple, needing only unification. Richer structure certainly leads to more
complicated type inference. Also, the Types Is Sets position leaves open other methods. It would be
interesting to examine if, say, A Type is A Formula, could be combined with Logic Programming.
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