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Abstract— We develop a framework for analog-to-information
conversion that enables sub-Nyquist acquisition and processing of
wideband signals that are sparse in a local Fourier representation.
The first component of the framework is a random sampling
system that can be implemented in practical hardware. The
second is an efficient information recovery algorithm to compute
the spectrogram of the signal, which we dub the sparsogram. A
simulated acquisition of a frequency hopping signal operates at
33x sub-Nyquist average sampling rate with little degradation
in signal quality.

I. INTRODUCTION

Sensors, signal processing hardware, and algorithms are un-
der increasing pressure to accommodate ever faster sampling
and processing rates. In this paper we study the acquisition
and analysis of wideband signals that are locally Fourier
sparse (LFS) in the sense that at each point in time they are
well-approximated by a few local sinusoids of constant fre-
quency. Examples of LFS signals include frequency hopping
communication signals, slowly varying chirps from radar and
geophysics, and many acoustic and audio signals.

LFS signals are sparse in a time-frequency representation
like the short-time Fourier transform (STFT). In discrete time,
the STFT corresponds to a Fourier analysis on a sliding
window of the signal
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that is, S(r,w) is the Fourier spectrum of the signal s
localized around time sample 7 by the N-point window w.
The spectrogram is the squared magnitude |S(7,w)|?. The
defining property of an LFS signal is that S(7,w) =~ 0 for
most 7 and w.

While LFS signals are simply described in time-frequency,
they are wideband when there is no a priori restriction on the
frequencies of the local sinusoids. Hence, the requirements of
traditional Nyquist-rate sampling at two times the bandwidth
can be excessive and difficult to meet. As a practical exam-
ple, consider sampling a frequency-hopping communications
signal that consists of a sequence of windowed sinusoids with
frequencies distributed between f; and fo Hz. The bandwidth
of this signal is fo — f; Hz, which dictates sampling above
the Nyquist rate of 2(f — f1) Hz to avoid aliasing. However
the description of the signal at any point in time is extremely
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simple: it consists of just a single sinusoid. Surely we should
be able to acquire such a signal with fewer than 2(fy — f1)
samples per second.

Fortunately, the past several years have seen several ad-
vances in the theory of sampling and reconstruction that
address these very questions. Leveraging the theory of stream-
ing algorithms, we introduce in this paper a new framework
for analog-to-information conversion that enables sub-Nyquist
acquisition and processing of LFS signals. Our framework has
two key components. The first is a random sampling system
that can be implemented in practical hardware. The second
is an efficient information recovery algorithm to compute the
spectrogram of LFS signal, which we dub the sparsogram.

This paper is organized as follows. We review the requisite
theory and algorithms for random sampling in Section II and
develop two implementations of random samplers in Section
III. We conduct a number of experiments to validate our
approach in Section IV and close with a discussion and
conclusions in Section V.

II. RANDOM SAMPLING AND INFORMATION RECOVERY

To set the stage for the random sampling and information
recovery algorithm, we start with a description of the problem
in the discrete setting. Let s be a discrete-time signal of length
N (not discrete samples of an analog signal but simply a vector
of length N). We know that s is perfectly represented by its
Fourier coefficients or spectrum. Suppose that we wish to use
only m Fourier coefficients to represent the signal or spectrum.
To minimize the MSE in our choice of m coefficients, the
optimal choice of Fourier coefficients is the m largest Fourier
coefficients in magnitude. Denote the optimal m-term Fourier
representation of a signal s of length N by rq,. We assume
that, for some M, we have

(1/M) < I8 = ropsly < lIsll < M.

Gilbert et. al [1] have developed an algorithm that uses at
most m - (log(1/6),log N,log M,1/¢)®() space and time and
outputs a representation r such that

Is = x5 < (1+e)lls — ropel3,

with probability at least 1 — 9.
The algorithm is randomized and the probability is over
random choices made by the algorithm, not over the signal.



That is, it is a coin-flipping algorithm that uses coin-flips to
choose the sample set upon which we observe the signal. For
each signal, with high probability, the algorithm succeeds.

As a bonus, the running time of the algorithm is much less
than N, the length of the signal. This is exponentially faster
than the running time of FFT (which is O(N log N)). One
reason the algorithm is so much faster is that it does not read
all the input; we sample exponentially fewer positions than the
length of the signal and we assume that our algorithm can read
s[t] for a t of its choice in constant time. The set of samples
t where the algorithm observes the signal is chosen randomly
(from a non-uniform distribution), and the set does not adapt
to the signal.

Let us describe the distribution on sample points before
we discuss how the information recovery algorithm uses these
signal samples. Let us assume for simplicity that NV is a prime
number. We generate two uniformly random integers r and s
from [0,..., N — 1] with the stipulation that s is non-zero.
For input parameter m, we generate the set A = r + k- s
mod N where & = 0,...,4m. The set A is a random
arithmetic progression of length 4m. For each point p in the
arithmetic progression, we also sample at (p + 2!) mod N
where [ = 0,...,log, N. For example, we observe the signal
at a point p and at p + N/2. Thus, our sample set is

S={(p+2) mod Nlpe A,1=0,...,log, N}

where A is a random arithmetic progression. To meet the
accuracy and success probability guarantees stated above,
we take multiple independent sample sets drawn from this
distribution. The number of independent sample sets depends
on the desired accuracy and success probability. Note that with
low probability, this distribution generates samples points that
are separated by distance 1. In other words, the probability
that we choose consecutive sample points is low and can be
kept under control.

Once we have specified the sample set, our algorithm
proceeds in a greedy fashion. Given a signal s, we set the rep-
resentation r to zero and consider the residual s —r. We make
progress on lowering ||s — r|| by sampling from the residual,
identifying a set of “significant” frequencies in the spectrum
of the residual, estimating the Fourier coefficients of these
“significant” frequencies, and subtracting their contribution,
thus forming a new residual signal upon which we iterate.
Below, we sketch each iteration of our algorithm. The details
may be found in [1].

Each iteration of our algorithm proceeds as follows:

e SAMPLE from s — r in K ~ m correlated random

positions, where r has L terms, in total time (K +
L) log® Y (N). We take the given samples from the signal
s on the sample set and sample from the representation
r by performing an unequally-spaced fast Fourier trans-
form.

o IDENTIFY a set of “significant” frequencies in the spec-

trum of s —r.
— ISOLATE one or more modes of s —r. We generate
aset {F : k < K} of K new signals from s — r

where K < O(1/n) is sufficiently large, so that each

w that is 7-significant in s —r is likely to be (1 —-y)-

significant in some F; for some small constant ~.

To do this, we

* PERMUTE the spectrum of s — r by a random
dilation o, getting permo (s —r). Observe that we
can sample from the signal perms(s —r) by mod-
ulating the (time-domain) samples of this signal
thus keeping our time and memory requirements
low.

* FILTER permo(s — r) by a filterbank of ap-
proximately m equally-spaced frequency-domain
translations of the Boxcar Filter with bandwidth
approximately N/m and approximately m com-
mon taps. Again, this procedure can be done on
the the (time-domain) samples within the adver-
tised time and memory constraints. We obtain
m new signals, some of which have a single
overwhelming Fourier mode, ow, corresponding
to significant mode w in s —r.

* We undo the above permutation, thereby making
w overwhelming instead of ow.

— GROUP-TEST each new signal to locate the one
overwhelming mode, w. Learn the bits of w one at

a time, least to most significant. For example, to

learn the least significant bit, we project each Fy

onto the space of even frequencies and the space of
odd frequencies. Next, we estimate (via our samples)
the energy of each projection and learn the least
significant bit of w. Observe that we have can carry
out this projection as we have sampled our signal at

a random point p and at p + N/2.

o ESTIMATE the Fourier coefficients of these “significant”
frequencies by computing the Fourier coefficients of the
sampled residual using an unequally-spaced fast Fourier
transform algorithm and normalizing appropriately.

e ITERATE in a greedy pursult.

The above discussion assumes that the signal s is a discrete
vector of length N. A naive use of this algorithm would
sample a wideband analog signal at Nyquist rate and then
input this vector of discrete samples to the random sampling
algorithm. This naive use, however, does not take advantage
of the strength of the algorithm, namely that we do not need
to use all of the samples to recovery information about the
signal. Instead, the algorithm and its analysis suggest that we
can subsample the wideband analog signal at an average rate
that is significantly lower than the Nyquist rate and use those
samples to recover significant information about the spectrum
of the signal in considerably less time than it would take to
perform an FFT on all of the samples (taken at Nyquist rate).
Application of the algorithm on local (Boxcar) windows of
the signal yields the sparsogram coefficients.

III. IMPLEMENTATION

The random sampling algorithm of Section II suggests that
we can build a Random Analog to Digital Converter (RADC)
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Fig. 1.

Random Analog to Digital Converter (RADC) system.

Fig. 2. First implementation of a RADC.

for analog-to-information conversion that recovers significant
information about LFS wideband signals from just a few mea-
surements and with low computational complexity. There are,
however, considerable practical challenges to implementing
this vision. The RADC system shown in Figure 1 consists
of a random sampler followed by a low-rate analog-to-digital
converter (ADC). The random sampler is a challenging block
to design, since the sampling pattern may call for consecutive
samples that are closely space in time and almost at the
Nyquist rate. In this section, we discuss two prototype im-
plementations of the random sampler and discuss the different
design issues and challenges in each implementation.

Our first prototype RADC implementation uses a parallel
bank of low-rate ADCs that have equal shifts between their
starting conversion points. This creates a shift in the samples
that are produced from each of the parallel ADCs. We then
control the switching mechanism among their outputs pseudo-
randomly as shown in Figure 2. However, this approach
would occupy a large chip area for the many ADCs. This
implementation also faces the challenge of minimizing the
jitter effect when controlling the switches [2]. The aperture
jitter is the uncertainty in the switching time of the sampling
switches, which typically leads to uncertainty in the instances
of the time samples. Therefore, the time between consecutive
samples in converting the analog to digital bits must be long
enough to cover the aperture jitter. This in turn poses a limit
on the maximum clock frequency as well as the maximum
data rate [3]. For typical designs, the clock jitter should not
exceed 10% of the clock period.

The second prototype implementation employs an ana-
log register (a group of capacitors) and an analog demulti-
plexer/multiplexer (digitally controlled commutators) as shown
in Figure 3. This implementation for the random sampler
requires a successive low-rate ADC. This implementation
focuses on eliminating the unnecessary storage of the analog
signal. The demultiplexer (input commutator) is controlled
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Fig. 3. Second implementation of a RADC.

by a pseudo-random digital control signal with average rate
corresponding to the measurement rate, while the output
multiplexer is controlled by a periodic signal with the same
rate (measurement rate). The storage control signal is pseudo-
random in order to sample the signal at pseudo-random time
instances. The read signal is periodic to give the ADC enough
time to complete its process. The length (storage capacity) of
the analog register is a function of the probability of having
close sampling times and the average rate of the measurement.
We need the highest frequency of the pseudo-random clock to
be greater than or equal to the Nyquist rate of the signal to
be able to capture very close samples (although, these close
samples occur with low probability).

Maximal-Length Linear Feedback Shift Registers (MLFSR)
are good candidates for generating the pseudo-random control
sequences for the input commutator [4]. The MLFSR has the
benefit of providing a random sequence of Os and ls with
balanced average, while offering the possibility of regenerating
the same sequence knowing its initial seed. This feature allows
the decoder to re-generate the pseudo-random sequence in
order to use it for the information recovery of the sparsogram.
The MLFSR is reset to its initial state every time frame, which
is the period of time that is captured from the simulations and
fed to the frame-based reconstruction algorithm.

IV. EXPERIMENTAL RESULTS

In our first experiment, we consider a frequency-hopping
signal submerged in additive white Gaussian noise (AWGN).
We make a small number of samples in each window and
return the frequency present (and its negation since the signal
is real-valued). Figure 4 shows the sparsogram generated by
our algorithm. For the sake of comparison, we also use FFTW
3.1 [5] to produce the spectrogram using Nyquist-rate samples
(FFTW 3.1 is the state-of-the-art FFT implementation). This
approach needs 100% of the Nyquist samples and runs in
time O(Nlog N). In contrast, the RADC/sparsogram needs
only 3% as many samples; in other words, we are sampling
at an average of 33x sub-Nyquist. Furthermore, the sampling
algorithm runs in comparable time to FFTW 3.1.

Next, we generate 1000 instances of signals of the form
s = ., +v where ¢, is a single unknown frequency and v is
AWGN. We vary the signal SNR and the number of samples
(or percentage) we use to recover the unknown frequency.
Since the RADC/sparsogram is a randomized algorithm, there
is some probability that it will fail; we cannot guarantee that
the algorithm succeeds with probability one but we can control
its success probability by increasing the average sampling rate.
In Figure IV, we show how the sampling rate determines the
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Fig. 4. Sparsogram of a frequency hopping signal in noise. (a) Test
signal. (b) FFTW-based spectrogram. (c) Random sampling sparsogram. (d)
Difference between (b) and (c).

probability of correctly identifying the unknown frequency.
Figure IV(a) shows that the number of samples we need does
not depend linearly on the length of the signal (for fixed
SNR). As we increase the signal length or increase the band
of the signal, the number of samples grows sublinearly with
the highest frequency. Figure IV(b) shows, for a fixed signal
length and SNR, how the sampling rate affects the success
probability. For this bandwidth and SNR, a sampling rate
of roughly 2% is sufficient to guarantee finding the uknown
frequency 90% of the time. With 3% sampling rate, we recover
the unknown frequency all of the time.

(@) (b)

Fig. 5. (a) Success probability vs. sample rate for varying bandwidth, fixed
SNR signal. (b) Success probability vs. sample rate for fixed bandwidth, fixed
SNR signal.

While these sampling rates are impressive, the algorithm
is also computationally efficient. Figure IV shows that the
run time of the algorithm varies linearly with the number
of samples and not with the Nyquist rate, while any FFT
algorithm must grow (essentially) linearly with the Nyquist
rate.

Run time of AAFFT as a function of the number of samples used
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Fig. 6. Run time (y-axis) of the RADC/sparsogram algorithm grows
sublinearly with the number of samples (x-axis).

V. CONCLUSIONS

In this paper we have taken some significant steps towards
moving beyond Nyquist-rate analog-to-digital conversion by
developing a new scheme for analog-to-information conversion
of locally Fourier sparse signals. The performance of our
system (sub-Nyquist sampling and linear information recov-
ery) definitely motivates further study. Some of the many
avenues for continued research, include sparsograms with
smoother time windows (Hamming, Hanning, etc.), sampling
schemes for signals sparse in the wavelet domain, and actual
implementations of the RADCs.
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