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Separation of Bones From Chest Radiographs
by Means of Anatomically Specific Multiple

Massive-Training ANNs Combined With
Total Variation Minimization Smoothing

Sheng Chen* and Kenji Suzuki, Senior Member, IEEE

Abstract—Most lung nodules that are missed by radiologists as
well as computer-aided detection (CADe) schemes overlap with
ribs or clavicles in chest radiographs (CXRs). The purpose of this
study was to separate bony structures such as ribs and clavicles
from soft tissue in CXRs. To achieve this, we developed anatomi-
cally specific multiple massive-training artificial neural networks
(MTANNs) combined with total variation (TV) minimization
smoothing and a histogram-matching-based consistency improve-
ment method. The anatomically specific multiple MTANNs were
designed to separate bones from soft tissue in different anatomic
segments of the lungs. Each of the MTANNSs was trained with the
corresponding anatomic segment in the teaching bone images. The
output segmental images from the multiple MTANNs were merged
to produce an entire bone image. TV minimization smoothing was
applied to the bone image for reduction of noise while preserving
edges. This bone image was then subtracted from the original
CXR to produce a soft-tissue image where bones were separated
out. This new method was compared with conventional MTANNSs
with a database of 110 CXRs with nodules. Our new anatomically
specific MTANNS separated rib edges, ribs close to the lung wall,
and the clavicles from soft tissue in CXRs to a substantially higher
level than did the conventional MTANNS, while the conspicuity of
lung nodules and vessels was maintained. Thus, our technique for
bone-soft-tissue separation by means of our new MTANNs would
be potentially useful for radiologists as well as CADe schemes in
detection of lung nodules on CXRs.

Index Terms—Chest radiography, computer-aided detection,
lung nodules, pixel-based machine learning, virtual dual-energy.

I. INTRODUCTION

HE PREVALENCE of chest diseases has been increasing
over a long period of time. Every year, more than nine
million people worldwide die from chest diseases [1]. Chest
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radiography (chest X-ray: CXR) is by far the most commonly
used diagnostic imaging technique for identifying chest diseases
such as lung cancer, tuberculosis, pneumonia, pneumoconioses,
and pulmonary emphysema. This is because CXR is the most
cost-effective, routinely available, and dose-effective diagnostic
tool, and has the ability to reveal certain unsuspected pathologic
alterations [2]. Among different chest diseases, lung cancer is
responsible for more than 900 000 deaths each year, making it
the leading cause of cancer-related deaths in the world. CXRs
are regularly used for detecting lung cancer [3]-[5] as there is
evidence that early detection of the tumor can result in a more
favorable prognosis [6]-[8].

Although CXR is widely used for the detection of pulmonary
nodules, the occurrence of false-negatives for nodules on CXRs
is relatively high, and CXR is inferior to CT with respect to
the detection of small nodules. This failure to detect nodules
has been attributed to their size and density and to obscuring by
structures such as ribs, clavicles, mediastinum, and pulmonary
blood vessels. It has been well demonstrated that the detection
of lung cancer at an early stage using CXRs is a very diffi-
cult task for radiologists. Studies have shown that up to 30%
of nodules in CXRs could be missed by radiologists, and that
82%—-95% of the missed nodules were partly obscured by over-
lying bones such as ribs and clavicles [9], [10]. However they
would be relatively obvious on soft-tissue images if the dual-en-
ergy subtraction technique was used [11]. Therefore, a com-
puter-aided detection (CADe) scheme [12], [13] for nodule de-
tection on CXRs has been investigated because the computer
prompts indicating nodules could improve radiologists’ detec-
tion accuracy [14]-[16]. A major challenge for current CADe
schemes is the detection of nodules overlapping with ribs, rib
crossings, and clavicles, because the majority of false positives
(FPs) are caused by these structures [17], [18]. This leads to
a lower sensitivity as well as specificity of a CADe scheme.
In order to overcome these challenges, Kido et al. developed
a CADe scheme based on single-exposure dual-energy com-
puted radiography [19], [20]. A dual-energy subtraction tech-
nique [21], [22] was used for separating soft tissue from bones
in CXRs by use of two X-ray exposures at two different energy
levels. The technique produces soft-tissue images from which
bones are extracted. By using these images, the performance of
their CADe scheme was improved. In spite of its great advan-
tages, a limited number of hospitals use the dual-energy radi-
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Fig. 1. Tllustration of (a) an original standard chest radiograph and (b) the cor-
responding VDE soft-tissue image by use of our original MTANN method.

ography system because specialized equipment is required. In
addition, the radiation dose can, in theory, be double compared
to that for standard CXR.

Suzuki et al. first developed a supervised image-processing
technique for separating ribs from soft tissue in CXRs by means
of a multi-resolution massive-training artificial neural network
(MTANN) [23], [24] which is a class of pixel-based machine
learning [25] and is considered a supervised highly nonlinear
filter based on artificial neural network regression. Real dual-en-
ergy images were used as teaching images for training of the
multi-resolution MTANN. Once the multi-resolution MTANN
was trained, real dual-energy images were no longer necessary.
An observer performance study with 12 radiologists demon-
strated that the suppression of bony structures in CXRs im-
proved the diagnostic performance of radiologists in their detec-
tion of lung nodules substantially [26]. Ahmed et al. presented
a technique based on independent component analysis for the
suppression of posterior ribs and clavicles in order to enhance
the visibility of nodules and to aid radiologists during the di-
agnosis process [27]. Loog et al. proposed a supervised filter
learning technique for the suppression of ribs [28]. The proce-
dure is based on K-nearest neighbor regression, which incorpo-
rates knowledge obtained from a training set of dual-energy ra-
diographs with their corresponding subtraction images for the
construction of a soft-tissue image from a previously unseen
single standard chest image. The MTANN [23], [24] was able
to separate ribs from soft tissue in CXRs; however, rib edges,
ribs close to the lung wall, and clavicles were not completely
suppressed (Fig. 1). The reason for this is that the orientation,
width, contrast, and density of bones are different from loca-
tion to location in the CXR, and the capability of a single set of
multi-resolution MTANNS is limited.

The purpose of this study was to separate rib edges, ribs close
to the lung wall, and clavicles from soft tissue in CXRs. To
achieve this goal, we newly developed anatomically specific
multiple MTANNS, each of which was designed to process the
corresponding anatomic segment in the lungs. A composite vir-
tual dual energy (VDE) bone image was formed from multiple
output images of the anatomically specific multiple MTANNSs
by using anatomic segment masks, which were automatically
segmented. In order to make the contrast and density of the
output image of each set of MTANNSs consistent, histogram
matching was applied to process the training images. Before a
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Fig. 2. Main diagram of our approach to bone separation from CXR.
(a) Training phase. (b) Application phase.

VDE bone image was subtracted from the corresponding CXR
to produce a VDE soft image, a total variation (TV) minimiza-
tion smoothing method was applied to maintain rib edges. Fig. 2
shows the main diagram of our approach to bone separation
from CXR. Our newly developed MTANNs were compared
with our conventional MTANNS.

II. MATERIALS AND METHOD

A. Database of CXRs

The database used in this study consisted of 119 posterior—an-
terior CXRs acquired with a computed radiography (CR) system
with a dual-energy subtraction unit (FCR 9501 ES; Fujifilm
Medical Systems, Stamford, CT, USA) at The University of
Chicago Medical Center. The dual-energy subtraction unit em-
ployed a single-shot dual-energy subtraction technique, where
image acquisition is performed with a single exposure that is
detected by two receptor plates separated by a filter for ob-
taining images at two different energy levels [29]-[31]. The
CXRs included 118 abnormal cases with pulmonary nodules
and a “normal” case (i.e., a nodule-free case). Among them,
eight nodule cases and the normal case were used as a training
set, and the rest were used as a test set. The matrix size of the
chest images was 1760 x 1760 pixels (pixel size, 0.2 mm; gray
scale, 10 bits). The absence and presence of nodules in the CXRs
were confirmed through CT examinations. Most nodules over-
lapped with ribs and/or clavicles in CXRs.
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B. Multi-Resolution MTANNSs for Bone Suppression

For bone suppression, the MTANN [32] consisted of a ma-
chine-learning regression model such as a linear-output multi-
layer ANN regression model [33], which is capable of operating
directly on pixel data. This model employs a linear function
instead of a sigmoid function as the activation function of the
unit in the output layer. This was used because the characteris-
tics of an ANN have been shown to be significantly improved
with a linear function when applied to the continuous map-
ping of values in image processing [33], [34]. Other machine-
learning regression models can be used in the MTANN frame-
work (also known as, pixel-based machine learning [25]) such
as support vector regression and nonlinear Gaussian process re-
gression models [35]. The output is a continuous value.

The MTANN involves training with massive sub-re-
gion-pixel pairs, which we call a massive-sub-regions training
scheme. For bone suppression, CXRs are divided pixel by
pixel into a large number of overlapping subregions (or image
patches). Single pixels corresponding to the input subregions
are extracted from the teaching images as teaching values.
The MTANN is massively trained by using each of a large
number of the input subregions (or patches) together with each
of the corresponding teaching single pixels. The inputs to the
MTANN are pixel values in a subregion (or an image patch),
R extracted from an input image. The output of the MTANN is
a continuous scalar value, which is associated with the center
pixel in the subregion, represented by

Oz, y) = ML{I(z — 1,y — j)|(i, ) € R} (1)
where M L( - ) is the output of the machine-learning regression
model, and I (z, y) is a pixel value of the input image. The error
to be minimized by training of the MTANN is represented by

PSS ot

¢ (z,y)ERT

2

where ¢ is the training case number, O, is the output of the
MTANN for the cth case, 7, is the teaching value for the
MTANN for the cth case, and P is the number of total training
pixels in the training region for the MTANN, I27.

Bones such as ribs and clavicles in CXRs include various spa-
tial-frequency components. For a single MTANN, suppression
of ribs containing such variations is difficult, because the ca-
pability of a single MTANN is limited, i.e., the capability de-
pends on the size of the subregion of the MTANN. In order to
overcome this issue, multi-resolution decomposition/composi-
tion techniques were applied.

First, input CXRs and the corresponding teaching bone im-
ages were decomposed into sets of images of different resolu-
tion and these were then used for training three MTANNSs in
the multi-resolution MTANN. Each MTANN is an expert for
a certain resolution, i.e., a low-resolution MTANN is respon-
sible for low-frequency components of ribs, a medium-resolu-
tion MTANN is for medium-frequency components, and a high-
resolution MTANN for high-frequency components. Each reso-
lution MTANN is trained independently with the corresponding
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Fig. 3. Architecture and training of our new anatomically specific MTANNS.
(a) Training phase. (b) Execution phase.

resolution images. After training, the MTANNSs produce im-
ages of different resolution, and then these images are com-
bined to provide a complete high-resolution image by use of the
multi-resolution composition technique. The complete high-res-
olution image is expected to be similar to the teaching bone
image; therefore, the multi-resolution MTANN would provide
a VDE bone image in which ribs are separated from soft tissues.

C. Anatomically Specific Multiple MTANNs

Although an MTANN was able to suppress ribs in CXRs [23],
the single MTANN did not efficiently suppress rib edges, ribs
close to the lung wall, and the clavicles, because the orientation,
width, contrast, and density of bones are different from location
to location, and because the capability of a single MTANN is
limited. To improve the suppression of bones at different loca-
tions, we extended the capability of a single MTANN and de-
veloped an anatomically specific multiple-MTANN scheme that
consisted of eight MTANNS arranged in parallel, as shown in
Fig. 3(a). Each anatomically specific MTANN was trained in-
dependently by use of normal cases and nodule cases in which
nodules were located in the corresponding anatomic segment.
The lung field was divided into eight anatomic segments: a left
upper segment for suppression of left clavicles and ribs, a left
hilar segment for suppression of bone in the hilar area, a left
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middle segment for suppression of ribs in the middle of the
lung field, a left lower segment for suppression of ribs in the
left lower lobe, a right upper segment, a right hilar segment,
a right middle segment, and a right lower segment. For each
anatomically specific MTANN, the training samples were ex-
tracted specifically from the corresponding anatomic segment
mask [the training region in (2)]. The masks used in the training
phase shown in Fig. 3(a) were segmented manually.

After training, each of the segments in a nontraining CXR was
inputted into the corresponding trained anatomically specific
MTANN for processing of the anatomic segment in the lung
field, e.g., MTANNSs No.1 was trained to process the left-upper
segment in the lung field in which the clavicle lies; MTANNSs
No.2 was trained to process the left hilar segment, etc, as il-
lustrated in Fig. 3(b). The eight segmental output sub-images
from the anatomically specific multiple MTANNs were then
composited to an entire VDE bone image by use of the eight
anatomic segment masks. To blend the sub-images smoothly
near their boundaries, anatomic segmentation masks smoothed
by a Gaussian filter were used to composite the output sub-im-
ages, represented by

8
folz,y) = _Z Oi(x,y) X fa[Mi(z.y)] 3)

where fi,(z, i) is the composite bone image, O; is the ith trained
anatomically specific MTANN, f(-) is a Gaussian filtering
operator, and M; is the ith anatomic segmentation mask. In our
experiment, the parameter of sigma for the Gaussian filtering
was determined to be 10.0 and the size of the template was 9 x 9
pixels.

D. Training Method

In order to make the output image of each set of anatom-
ical segment MTANNS consistent in density and contrast, it is
preferable to use similar CXRs to train each anatomical seg-
ment. A normal case was therefore selected for training the
eight MTANNSs with different segments of the lung field. In
order to maintain nodule contrast while suppressing bone struc-
tures, nodules cases were used to train the anatomical segment
specific multiple MTANNSs as well. As it is impossible to find
an abnormal case where each of eight typical nodules is lo-
cated in each of the eight anatomical segments in the lung field,
eight different nodule cases were required for training eight
anatomical MTANNSs. For each nodule case, a nodule was lo-
cated in the anatomical segment that was used to train the cor-
responding MTANN. As a result, nine CXRs were used, i.e.,
one normal case and eight nodule cases, along with the corre-
sponding dual-energy bone images for training the eight sets of
multi-resolution MTANNS.

For training of overall features in each anatomic segment in
the lung field, 10 000 pairs of training samples were extracted
randomly from the anatomic segment for each anatomically spe-
cific MTANN: 5000 samples from the normal case; and 5000
samples from the corresponding nodule case. A three-layered
MTANN was used, where the numbers of input, hidden, and
output units were 81, 20, and 1, respectively. Once the MTANNSs

are trained, the dual-energy imaging system is no longer neces-
sary. The trained MTANNSs can be applied to standard CXRs
for suppression of bones; thus the term “virtual dual-energy”
(VDE) technology. The advantages of this technology over real
dual-energy imaging are that there is no need for special equip-
ment to produce dual-energy images, or no additional radiation
dose to patients.

Because of differences in acquisition conditions and patients
among different CXRs, the density and contrast vary within the
different training images. This makes the training of the eight
anatomically specific MTANNSs inconsistent. To address this
issue, a histogram-matching technique was applied to training
images to equalize the density and contrast. Histogram matching
is a technique for matching the histogram of a given image with
that of a reference images. We used a normal case as the ref-
erence image to adjust the nodule cases. First, the cumulative
histogram F; of the given image and that F» of the reference
image were calculated. Then, the histogram transfer function
M(G1) = G was calculated so that F1(G1) = F2(Gs). Fi-
nally, the histogram transfer function M was applied to each
pixel in the given image.

The proportion of background also varies among different
CXRs. The histogram matching of an image with a larger pro-
portion of the background to another with a small proportion
may cause the density of the lung field in the matched image
to appear darker than the target image. For this reason, only the
histogram of the body without the background was matched in
the target image. The background was first segmented, which
typically corresponds to the highest signal levels in the image
where the unobstructed radiation hits the imaging plate. Sev-
eral factors make the detection of these regions a challenging
task. First, the radiation field across the image may be nonuni-
form due to the orientation of the X-ray source relative to the
imaging plate, and the effect of scatter in thicker anatomical
regions compounds this problem. Further, for some examina-
tions, multiple exposures may be carried out on a single plate,
resulting in multiple background levels. The noise attributes
of the imaging system were used to determine if the variation
around a candidate background pixel is a typical range of direct
exposure pixel values. The corresponding values of candidate
background pixels were accumulated in a histogram, and the re-
sulting distribution of background pixel values invariably con-
tained well-defined peaks, which served as markers for selecting
the background threshold. The background peak was searched
from low to high intensities in the smoothed histogram and de-
tected as the first occurrence of a local maximum as follows:

if (histogramm .., (€) > histogram, oo, (¢ + Astep ),

then PCakbackgmund =1

where A, was determined to be 8 bins in our experiment and
2
histogram,,oon (1) = Z histogram(z + %) /5.0.
k=—2

After analyzing the histogram, the intensity values to the left
of the background peak clearly represented the background,
while those to the right represented, to a progressively greater
extent, the intensity values of image information. The portion
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Fig. 4. Main diagram of background segmentation in CXR.

of the histogram to the right of the background peak was pro-
cessed to find the point at which the histogram first exhibited
a change in its curvature from negative to positive. For an
increase in intensity, a negative curvature corresponds to a
decreasing rate of occurrence of background pixels, while a
positive curvature corresponds to an increasing rate of occur-
rence. In this manner, it was possible to create a difference
histogram to obtain a positive slope at the intensity position to
the right of the background peak. The difference histogram was
smoothed with a five-bin median filter

diff (¢) = histogram,,,...,(¢) — histogram,_ .., (i — 1)
diff sio0tn (¢) = median(diff (¢ — 2), diff (¢ — 1)
diff (), diff (i + 1), diff (i + 2)).

The best threshold intensity between background and signal
was determined by finding the first A, rise in the smoothed
difference histogram to the right of the background peak,
namely

if (diﬁsmooth(i) < diﬂ‘smooth(i + Astep);
then Threshold = .

At this position, we could determine the counts for the least
intense pixels, whose intensities are mostly due to the signal.
After finding the intensity level representative of the minimum
signal intensity level, this level was applied as a signal threshold
for segmenting the background. This approach successfully
dealt with the problems of nonuniform backgrounds. Fig. 4
shows the main diagram of background segmentation in CXR.
Fig. 5 illustrates our background segmentation result. A back-
ground peak is seen in the histogram illustrated in Fig. 5(a).
Fig. 5(b) illustrates a segmentation threshold determined by
finding the first rise to the right of the background peak in
the difference histogram. Fig. 5(d) shows the background
segmentation result by using the threshold value.

E. Automated Anatomic Segmentation

To train and process anatomically specific MTANN:S, a given
CXR was divided into anatomic segments. Each segment was
inputted into each of anatomically specific MTANNSs simulta-
neously. Each MTANN provided the corresponding segment
of a VDE bone image where bones were extracted. Because
each MTANN is an expert for a specific anatomic segment, the
signal-to-noise ratio is highest in the corresponding anatomic
segment among all segments, as illustrated in Fig. 6. Merging
all anatomic segments provided a complete single VDE bone
image where the signal-to-noise ratio is high in all segments.
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Fig. 6. Eight output bone images of the trained anatomically specific multiple
MTANN:S. (a) Output from the segment MTANNS trained for the hilar region.
(b) Output from the MTANNS trained for the lower region of the lung. (¢) Output
from the MTANNSs trained for the middle region of the lung. (d) Output from
the MTANNS trained for the upper region of the lung.

To determine eight anatomic segments, an automated
anatomic segmentation method was developed based on ac-
tive shape models (ASMs) [36]. First, the lung fields were
segmented automatically by using a multi-segment ASM
(M-ASM) scheme [37], which can be adapted to each of the
segments of the lung boundaries (which we call a multi-seg-
ment adaptation approach), as illustrated in Fig. 7. As the nodes
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Fig. 7. Result of automated anatomic segmentation based on our M-ASM.

in the conventional ASM are equally spaced along the entire
lung shape, they do not fit parts with high curvatures. In our
developed method, the model was improved by the fixation
of selected nodes at specific structural boundaries that we call
transitional landmarks. Transitional landmarks identified the
change from one boundary type (e.g., a boundary between the
lung field and the heart) to another (e.g., a boundary between
the lung field and the diaphragm). This resulted in multiple
segmented lung field boundaries where each segment is cor-
related with a specific boundary type (heart, aorta, rib cage,
diaphragm, etc.). The node-specific ASM was built by using a
fixed set of equally spaced nodes for each boundary segment.
Our lung M-ASM consisted of a total of 50 nodes for each lung
boundary that were not equally spaced along the entire contour.
A fixed number of nodes were assigned to each boundary
segment, and they were equally spaced along each boundary
(as shown in Fig. 7). For example, the boundary between the
left lung field and the heart consisted of 11 points in every
image, regardless of the actual extent of this boundary in the
image (see Fig. 7). This allowed the local features of nodes
to fit a specific boundary segment rather than the whole lung,
resulting in a marked improvement in the accuracy of boundary
segmentation. From the training images, the relative spatial
relationships among the nodes in each boundary segment
were learned in order to form the shape model. The nodes
were arranged into a vector x and projected into the principal
component shape space, represented by the following equation:

b=V (z—z) Q)

where V = (V1 Va... V) is the matrix of the first M eigenvec-
tors for the shape covariance matrix, and b = (b1by ... byr)7 isa
vector of shape coefficients for the primary axes. The shape co-
efficients were constrained to lie in a range £m+/); to generate

only a plausible shape and projected back to node coordinates,
represented by:

r=T+VDb %)

where n usually has a value between 2 and 3 [38], and was 2.5
in our experiment.

After the lungs were segmented, they were automatically di-
vided into eight anatomic segments by using the boundary types
and the transitional landmarks. By using the landmark points,
we obtained the upper region, lower region, and hilar region in
each lung, as illustrated in Fig. 7. The eight output segmental
images from the multiple MTANNs were merged into a single
VDE bone image

8
folay) =Y fiwoy) = mi(w,y) (6)

=1

where fi(z,y) is the output image from the ith MTANN and
mi(x,y) is the anatomic segment mask for the ith MTANN
which has been smoothed by a Gaussian filter so that an unnat-
ural discontinuity between anatomical segments in the merged
image was eliminated. Our TV minimization smoothing was
then applied to the entire composited VDE bone image.

F. Creation of Soft-Tissue Images

After the VDE bone image was obtained, the VDE soft image
could be acquired by use of the subtraction technique. In this
study, we focused on the suppression of ribs and clavicles in the
lung field regions, because this is where most nodules overlap
with bony structures. For processing only in the lungs, lung seg-
mentation was used, and suppression was done only in the seg-
mented lungs in the subtraction technique. After the segmen-
tation, a Gaussian filter was applied for smoothing the edges
of the segmented lung regions to create an image m(x,y) for
masking the outside of the lung regions. The masking image
was normalized to have values from 0 to 1. For suppression of
ribs in an original CXR, the VDE bone image f3(z, y) produced
by the anatomically specific multiple MTANN was subtracted
from the original CXR g(x, y) with the masking image m(x, y)
as follows:

fS(:L‘ay):g(:L"/y)fwc be(:L‘ay) X"”/(ZL',y) (7)

where w¢ is a weighting parameter for determining the contrast
of ribs. By changing the weighting parameter w ¢, one can ob-
tain processed CXR with different contrast of ribs and clavicles.

As mentioned above, owing to the noise in the VDE bone
image, the Gaussian smooth method was applied. Although this
can smooth the noise in the VDE bone image, it can also smooth
the bone edges. As a result, the bone edges are preserved in the
VDE soft image when subtracting the VDE bone image from
the corresponding CXR. In this paper, we propose a TV mini-
mization noise smoothing method which can smooth the noise
in the VDE bone image while preserving the edge information
of bones (Fig. 8). TV minimization problems were first intro-
duced into the context of image smoothing by Rudin [39]. The
main advantage of the TV formulation is the ability to preserve
edges in the images. This is because of the piecewise smooth
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regularization property of the TV norm. We assume the noise in
the VDE bone image is white Gaussian noise

z(x,y) = u(z,y) +nlz,y) ®)

where u(x, y) is an unknown piecewise constant 2-D function
representing the noise-free original image, z(x, y) is the noisy
observation of u(z,y), and n{x,y) is white Gaussian noise.
A conventional additive noise suppression technique such as
Wiener filtering was applied in order to find «(z, y) which min-
imizes the functional

1
T(u) = §||u —z||2 + aJ(u). 9

Common choices for J are
J(u) = /UQCZZL'. (10)

Equation (9) often induces blur in images and spurious oscilla-
tions when w is discontinuous.
Therefore, we consider the nonlinear TV functional

Jrv(u) = / |V u|d (11)
Ja

where Vu denotes the gradient of «

Here, u is not required to be continuous.

However, the Euclidean norm is not differentiable at zero.
To avoid difficulties associated with the nondifferentiability, the
modification

Js(u) :/ VIVul? + 52dr
Q

will be utilized here, where 8 should be a very small value and
was 0.0001 in our experiment.
The functional to be minimized is

1 -
T(u) = §Hu—z||2—|—oz/ VIVul? + 32.dx (12)
Jo
The Eular-lagrange equation associated with (12) is
u+ al(wu=z2€0
7]
T 0,4 € 90 (13)

an
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where L{u) is a differential operator whose action on u is given
by

L{u)u=— (14)

1
Vil ————=Vu | .
<\/|Vu|2 + ")

It is an elliptic nonlinear partial differential equation (PDE).
From (14), we can see that the smoothing decreases as the gra-
dient strength increases, and the smoothing is stopped across
edges.

There are many standard numerical optimization techniques
such as conjugate gradient method. However, these standard
methods tend to perform poorly on TV minimization problems.
In this paper, we adopt the nonlinear multi-grid method to deal
with this problem. Unlike the conventional methods, the multi-
grid algorithm can solve nonlinear elliptic PDE with noncon-
stant coefficients with hardly any loss in efficiency. In addition,
no nonlinear equations need be solved, except on the coarsest
grid.

Suppose we discrete the nonlinear elliptic PDE of (13) on a
uniform grid with mesh size h

Th(un) = zn (15)
where T}, (up,) denotes up, + oLy (up, Jup,.

Let u; denote some approximate solution and denote the
exact solution to (15). Then the correction is

Up = Up, — Up.
The residual is

Th(u~h + ’Uh) - Th(z[h) = fh - Th(,([h) - 7dh- (16)

Now, we form the appropriate approximation Ty of Tj on a
coarser grid with mesh size H (we will always take H = 25h).
The residual equation is now approximated by

TH(UH) — TH(’lfH) = —dH. (17)

Since Ty has smaller dimension, this equation will be easier
to solve. To define wy and dy on the coarse grid, we need a
restriction operator H that restricts vy, and dj, to the coarse grid.
That is, we solve

on the coarse gird. Then the coarse-grid correction is

v = ug — Ruy,.

Once we have a solution vz on the coarse gird, we need a pro-
longation operator P that interpolates the correction to the fine
gird

vy, = Pug.
So we have

up Y =y, + Pvy.

(19)
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Fig. 9. Illustration of incomplete suppression caused by a lung segmentation
failure (a) an original image, (b) lung field segmentation, and (c) bone suppres-
sion within the segmented lung fields. The right clavicle in (c) is not suppressed.

It is the two-grid algorithm and can be easily extended to multi-
grid.

At the coarsest-grid, we have one remaining task before
implementing our nonlinear multi-grid algorithm: choosing a
nonlinear relaxation scheme. Our first choice is the nonlinear
Gauss—Seidel scheme. If the discretized (15) is written with
some choice of ordering as

Ti(ur,...,un) = 2,1 =

(20)
then the nonlinear Gauss—Seidel scheme solves

new n
Ti(ul,...,ui,l:ui ./fU/j/+]_:.-.,IU/1’V) =z

for ul*". Often the equation is linear in ¢}V, since the non-
linear terms are discretized by means of its neighbors. If this is

not the case, we replace (20) by one step of a Newton iteration

old _ Ti(ug!) — zi
’ 01}(u§-’ld)/8ui )

new

Uy

€2y

= u

III. RESULTS

A. Lung Field and Anatomic Segment

Accurate background segmentation is prerequisite for his-
togram matching for consistency improvement. Because we did
not have the background truth with which to compare segmen-
tation results, we performed the visual evaluation of the back-
ground segmentation results for the 118 cases in our experiment,
and found that they were all acceptable, i.e., there was no sig-
nificant over- or under-segmentation.

Lung segmentation plays an important role in the bone
suppression in this study. Inaccurate segmentation means that
the anatomical segment mask will not correspond to the region
mask trained in the anatomically specific multiple MTANNS.
As a result, the bone structures will not be suppressed in the
VDE soft image. Fig. 9 shows a failed case due to inaccurate
segmentation of the lung field. It can be seen that some of the
bones are suppressed whereas the clavicles are not. When the
lung field was manually segmented into the eight anatomical
segments, the clavicles were suppressed much more success-
fully than when the automatic segmentation was used.

In this study, 93 normal images from the public Japanese So-
ciety of Radiology Technique (JSRT) database were used for

training of the M-ASM. The segmentation accuracy was com-
puted by use of the overlap measure §?

TPscg

Q=
TPseg+FPseg+FNseg

(22)

where T'F.., was the area correctly classified as a lung field,
I'P,., was the area incorrectly classified as a lung field, and
F'N,., was the area incorrectly classified as the background.
The mean and standard deviation of the overlap measure for all
the 154 nodule images in the JSRT database were 0.913 and
0.023, respectively. For the 118 cases, because we do not have
the lung field truth with which to compare our M-ASM segmen-
tation results, we only give a visualization evaluation for the
segmentation. In ten cases, the segmentation results were not as
good as the other cases, i.e., there were relatively larger over-
or under-segmentations. This may be because the M-ASM was
trained by the normal cases from JSRT database, which are dig-
itized images from film, whereas the U of C database consists
of digital radiographs from a CR system. The performance of
lung segmentation has the potential to be improved in our fu-
ture work. These 10 bad segmentation cases were kept using in
the subsequent bone separation steps in our approach.

In these experiments, 50 points for each M-ASM for each
lung were applied and the relative position of each point in the
segmentation results is known. The seventh point in the segment
boundary between the lung field and the lung wall beginning
from the apex of lung (the translating blue point), and the aortic
arch blue point were used to achieve the upper lung segment.
The sixth point beginning from costophrenic angle (blue point
in the lowest position) and the blue point in the ventricle border
were used to segment the lower lung region. Finally, the apex
point and the blue point in the hemidiaphragm were used to
segment the middle region to get the hilar region.

As a result, we can automatically obtain the anatomic seg-
ment based on the lung field segmentation results (Fig. 7).

B. Smoothing for VDE Bone Image

In order to prove the effectiveness of the TV minimization
smoothing method, we applied a number of different methods
to smooth the VDE bone image. Fig. 10(d) shows that the edges
of the ribs are eliminated, as well as the other bone structures
in the soft-like image, while the edges in Fig. 10(c), where the
Gaussian smoothing method was used, were more obvious.

In our experiment, the smoothing parameter used for the
original VDE bone image was usually larger than that of the
improved VDE bone image. The reason is that in our im-
proved bone suppression method, each set of anatomic specific
MTANNS only process a single anatomic segment with a simple
pattern. The signal to noise ratio is higher than that for the
whole lung field. When the original VDE bone image and the
improved VDE bone images were subtracted from the original
CXR without any smoothing, the improved VDE soft tissue
image was seen to be better than the original VDE soft image.

Compared to the Gaussian smoothing method, the processing
time of TV minimization is only 1 s per case because of the
multi-grad algorithm applied in this experiment.
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Fig. 10. Illustration of (a) a VDE bone image with Gaussian smoothing,
(b) a VDE bone image with TV-minimization-based smoothing, (c) a VDE
soft-tissue image corresponding to (a), and (d) a VDE soft-tissue image
corresponding to (b), all by use of the anatomically specific multiple MTANNS.

C. Evaluation

The newly developed anatomically specific multiple
MTANNs were subjected to a validation test that included
110 nodule cases. The bone suppression performance was
quantitatively evaluated by using the absolute error [4], repre-
sented by

EN = Z |b(.’1,', :lj) - ]Lb('I; ,7/)|/NL(bmax - bmin)

z,YyERL

(23)

where fi(x,y) is the VDE bone image, b(x,y) is the corre-
sponding “gold-standard” dual-energy bone image, 2y indi-
cates lung regions, Ny is the number of pixels in 2y, and by
and b,,;, are the maximum value and the minimum value in I,
in the dual-energy bone image, respectively. The result for the
110 CXRs was an average Iy of 0.072 with a standard devi-
ation of 0.012; both values are lower than our previous results
[23] at a statistically significant level (P < 0.05).

Fig. 11 illustrates the results of bone suppression for a normal
case. Compare to the old VDE soft-tissue images obtained by
use of our conventional technique, rib edges, the clavicles, and
ribs close to the lung wall are suppressed substantially, while
the visibility of soft tissue such as vessels is maintained. The
quality of the VDE soft-tissue images is comparable to that of
the “gold-standard” dual-energy soft-tissue images.

Fig. 12 illustrates the results for a case where the nodule not
only overlapped with ribs but was also close to the lung wall.
In our previous method, the ribs close to the lung wall were not
successfully suppressed and the contrast of the nodules in this
area was similar to the original CXR. In the present improved
method, the nodule was maintained while the surrounding ribs
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(b) (€) (d)

Fig. 11. Result for a nontraining normal chest radiograph. (a) An original
normal chest radiograph, (b) a VDE soft-tissue image obtained by use of our
original MTANN technique, (¢) a VDE soft-tissue image obtained by use
of our new MTANN technique, and (d) the corresponding “gold-standard”
dual-energy soft-tissue image.

(@

(b) (c) (d)

Fig. 12. Result for an abnormal chest radiograph with a nodule that overlaps
with both anterior and posterior ribs. (a) An original abnormal chest radiograph
with a nodule (indicated by a red arrow), (b) a VDE soft-tissue image obtained
by use of our original MTANN technique, (c) a VDE soft-tissue image obtained
by use of our new MTANN technique, and (d) the corresponding “gold-stan-
dard” dual-energy soft-tissue image.

were suppressed, and the boundary of the nodule was clearer
than that in the original CXR. Fig. 13 illustrates a case in which
the nodule partly overlapped with bone. In our original results,
the boundaries of the nodule were smoothed and the contrast
of the nodule was partly suppressed. While in the improved re-
sult, there were clear nodule boundaries and the contrast of the
nodule was close to that of the soft images. Fig. 14 illustrates
a case of good preservation of nodule found in the left lung.
Fig. 15 illustrates a case where the nodule was located in the
hilar region. Both the contrast and shapes of the nodules were
maintained very well using the present improved method com-
pared to the original method where the nodules appeared diffuse
with smoothed boundaries.

IV. DISCUSSION

In CXR, many nodules are overlapped with ribs, which are
usually close to the lung wall, causing a large number of FPs
in the CADe scheme. In previously described method, the pos-
terior ribs were suppressed well but the anterior ribs were not
suppressed sufficiently. From the VDE bone images, it can be
seen that the nodules are still overlapped with the anterior ribs,
which usually have a similar density to the nodule.
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(a) (b) (c) (d)

Fig. 13. Results for abnormal chest radiographs with a nodule that is mostly
overlap with a rib. (a) An original abnormal chest radiograph with a nodule
(indicated by a red arrow), (b) a VDE soft-tissue image obtained by use of our
original MTANN technique, (c) a VDE soft-tissue image obtained by use of our
new MTANN technique, and (d) the corresponding “gold-standard” dual-energy
soft-tissue image.

(a) (b) (©)

(d)

Fig. 14. Results for abnormal chest radiographs with a tiny nodule in the left
lung. (a) An original abnormal chest radiograph with a nodule (indicated by a red
arrow), (b) a VDE soft-tissue image obtained by use of our original MTANN
technique, (c) a VDE soft-tissue image obtained by use of our new MTANN
technique, and (d) the corresponding “gold-standard” dual-energy soft-tissue
image.

All the results in this paper were achieved using the same pa-
rameters. However, we can optimize the suppression by use of
different parameters for CXRs obtained using different expo-
sure setting.

Although consistent processing was used on the training im-
ages to make the output images of each of the anatomic segment
MTANNS in the bone suppression phase uniform, in some cases,
there were still some differences between different anatomic
segments in terms of the bone contrast and density. As a result,
in some anatomical segments, the bone was not suppressed as
well as in others. This may be because the bone contrast and
density were more variable than in the images that were used
for training.

One of the advantages of the M-ASM segmentation method
used in this work is that it is possible to know which point be-
longs to which type of boundary and which point is the trans-
lation point in the contour of the segmentation. Based on these
points, the lung field can be automatically divided into segments
based on the anatomy. It is helpful to suppress the bones in dif-
ferent anatomical segments automatically.

In this study, we assume that the noise model in the VDE
bone image is Gaussian, and the TV-based models can answer

(a) (b) (c) (d)

Fig. 15. Results for abnormal chest radiographs with a nodule in the hilar re-
gion of the lung. (a) An original abnormal chest radiograph with a nodule (in-
dicated by a red arrow), (b) a VDE soft-tissue image obtained by use of our
original MTANN technique, (c) a VDE soft-tissue image obtained by use of our
new MTANN technique, and (d) the corresponding “gold-standard” dual-energy
soft-tissue image.

fundamental questions arising in image restoration better than
other models.

In our original method, only the posterior ribs were present
in the VDE bone images. Owing to the anatomically specific
multiple MTANNS used in this work, the anterior ribs were also
present in the new VDE bone images. As the anterior ribs in a
CXR are usually close to the lung wall, their suppression using
this novel method was seen to be significantly better than using
the original method.

Although nine cases were used (one normal, eight abnormal)
for training the anatomically specific multiple MTANNS, only
one normal case and one nodule case were used for each
anatomic segment; however, the MTANNSs produced reliable
results for nontraining cases. A multi-resolution MTANN
would be more robust against variations among cases if a larger
number of cases were used for training.

MTANNS is a class of pixel/patch-based machine learning
[25] that uses pixel values in a subregion (image patch) as
the input information to a machine learning regression model,
instead of features calculated from segmented objects in ordi-
nary feature-based machine learning (or simply a classifier).
Pixel/patch-based machine learning outputs pixel values,
whereas feature-based machine learning such as a support
vector machine classifier outputs classes such as normal or
abnormal. The MTANN used in our bone separation technique
employs an artificial neural network (ANN) regression model
as the core machine learning regression, but other machine
learning regression models can be used in the massive-training
framework. We replaced the ANN regression model with sup-
port vector regression (SVR) and nonlinear Gaussian process
regression (GPR) models in the massive-training framework,
which are called MTSVR and MTGPR, respectively [35].
We performed experiments to figure out the advantages and
disadvantages of MTANNs over the MTSVR and MTGPR
in distinction between lesions (i.e., colonic polyps) and non-
lesions in medical images (i.e., CT). A major disadvantage
of the MTANN is the long training time because of the slow
convergence property of the ANN model. Unlike the ANN
model, the SVR and GPR models are memory-based methods
that store a part of or the entire training data. Therefore, their
training is generally fast. In our experiment, the MTSVR with a
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Gaussian kernel and MTGPR were able to offer a performance
comparable to that of the MTANN, with highly and better
efficient training: the MTSVR and MTGPR yielded a reduction
in the training time (from 38 h to 12 min and 25 h, respectively)
by factors of 190 and 1.3. However, the execution time of the
MTSVR and MTGPR are substantially longer than that of the
MTANN because of the nature of the memory-based models.
We expect the same properties describe above when we use
the MTSVR and MTGPR in our bone separation technique.
Namely, the performance on bone separation of the MTANN
would be comparable to that of the MTSVR and MTGPR. The
advantage of the use of the MTANN is a short execution time
(i.e., 1.63 s. per image); its disadvantage is a long training time
(e.g., 13 h).

As the use of a multi-resolution MTANN requires only
software, this technique can be utilized on an existing viewing
workstation. Although we applied a TV minimization based
smoothing method, the processing time for creating a VDE soft
image and a VDE bone image from a CXR is very short, i.e.,
1.63 s on a PC-based workstation (CPU: Intel Pentium IV, 3.2
GHz) because the multi-grid solving method was used; thus,
the software can be applied prior to interpretation in every case
without incurring any delay.

As the fine structures of soft tissues, such as small vessels, are
mostly maintained in the VDE soft tissue images, these images
could potentially be used for quantitative assessment of inter-
stitial lung diseases that are characterized by fine patterns. In
addition, this technique could easily be applied to anatomic re-
gions other than the lungs using dual-energy images training of
the specific anatomic segments involved.

V. CONCLUSION

We have developed an anatomically specific multiple
MTANN scheme to suppress bony structures in CXRs. With
our new technique, rib edges, ribs close to the lung wall, and
the clavicles were suppressed substantially better than was
possible with our conventional technique, while soft tissue
such as lung nodules and vessels was maintained. Thus, our
technique would be useful for radiologists as well as for CADe
schemes in the detection of lung nodules in CXRs.
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