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PREFACE

This Complete Solutions to Selected Problems has been developed as a

supplement to the sixth edition of Materials Science and Engineering:  An

Introduction.  The author has endeavored to select problems that are representative

of those that a student should be able to solve after having studied the related

chapter topics.  In some cases problem selection was on the basis of illustrating

principles that were not detailed in the text discussion.  Again, problems having

solutions in this supplement have double asterisks by their numbers in both

“Questions and Problems” sections at the end of each chapter, and in the “Answers

to Selected Problems” section at the end of the printed text.

Most solutions begin with a reiteration of the problem statement.

Furthermore, the author has sought to work each problem in a logical and

systematic manner, and in sufficient detail that the student may clearly understand

the procedure and principles that are involved in its solution;  in all cases,

references to equations in the text are cited.  The student should also keep in mind

that some problems may be correctly solved using methods other than those

outlined.

Obviously, the course instructor has the option as to whether or not to assign

problems whose solutions are provided here.  Hopefully, for any of these solved

problems, the student will consult the solution only as a check for correctness, or

only after a reasonable and unsuccessful attempt has been made to solve the

particular problem.  This supplement also serves as a resource for students, to help

them prepare for examinations, and, for the motivated student, to seek additional

exploration of specific topics.

The author sincerely hopes that this solutions supplement to his text will be a

useful learning aid for the student, and to assist him/her in gaining a better

understanding of the principles of materials science and engineering.  He welcomes

any comments or suggestions from students and instructors as to how it can be

improved.

William D. Callister, Jr.
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CHAPTER 2

ATOMIC STRUCTURE AND INTERATOMIC BONDING

PROBLEM SOLUTIONS

2.3  (a)  In order to determine the number of grams in one amu of material, appropriate manipulation of

the amu/atom, g/mol, and atom/mol relationships is all that is necessary, as

# g/amu =  
1 mol

6.023  x 1023  atoms

 

 
 

 

 
 

1 g /mol
1 amu /atom

 
 
  

 
 

= 1.66 x 10-24 g/amu

(b)  Since there are 453.6 g/lbm,

1 lb - mol =  453.6 g/lbm( ) 6.023 x 1023  atoms/g - mol( )

= 2.73 x 1026 atoms/lb-mol

2.14  (c)  This portion of the problem asks that, using the solutions to Problem 2.13, we mathematically
determine values of ro and Eo.  From Equation (2.11) for E

N

A = 1.436

B = 7.32 x 10
-6

n = 8

Thus,

 

ro =  
A

nB
 
 
  

 
 

1/(1 -  n)

=
1.436

(8) 7.32 x 10-6( )
 

 

 
 
 

 

 

 
 
 

1/(1 - 8)

= 0.236 nm

and
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Eo =  −  
1.436

1.436

(8) 7.32 x  10−6 
 

 
 

 

 

 
 

 

 

 
 

1/(1 −  8)  +  
7.32  x 10−6

1.436

(8) 7.32  x  10−6 
 

 
 

 

 

 
 

 

 

 
 

8/(1 −  8)

= - 5.32 eV

2.19  The percent ionic character is a function of the electron negativities of the ions XA and XB

according to Equation (2.10).  The electronegativities of the elements are found in Figure 2.7.

For MgO, XMg = 1.2 and XO = 3.5, and therefore,

%IC =  1 −  e(− 0.25) (3.5−1.2)2 
  

 
   x 100 =  73.4%

For CdS, XCd = 1.7 and XS = 2.5, and therefore,

%IC =  1 −  e(− 0.25) (2.5−1.7)2 
  

 
   x 100 =  14.8%
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CHAPTER 3

THE STRUCTURE OF CRYSTALLINE SOLIDS

PROBLEM SOLUTIONS

3.3  For this problem, we are asked to calculate the volume of a unit cell of aluminum.  Aluminum has an

FCC crystal structure (Table 3.1).  The FCC unit cell volume may be computed from Equation (3.4)

as

VC =  16R3 2 =  (16) 0.143 x 10-9  m( )3 2 =  6.62 x 10-29 m3

3.12.  (a)  The volume of the Ti unit cell may be computed using Equation (3.5) as

VC =
nATi
ρNA

Now, for HCP, n = 6 atoms/unit cell, and for Ti, A
Ti

 = 47.9 g/mol. Thus,

VC =  
(6 atoms/unit cell)(47.9 g/mol)

4.51 g/cm3( )6.023 x 1023  atoms/mol( )

= 1.058 x 10-22 cm3/unit cell = 1.058 x 10-28 m3/unit cell

(b)  From the solution to Problem 3.7, since a = 2R, then, for HCP

VC =  
3 3 a2c

2

but, since c = 1.58a

VC =  
3 3 (1.58)a3

2
=  1.058 x 10-22 cm3/unit cell

Now, solving for a
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a =  
2( ) 1.058 x 10-22  cm3( )

3( ) 3( )1.58( )

 

 

 
 
 

 

 

 
 
 

1/3

= 2.96 x 10-8 cm = 0.296 nm

And finally

c = 1.58a = (1.58)(0.296 nm) = 0.468 nm

3.17  (a)  From the definition of the APF

APF =  
VS
VC

=  
n

4

3
πR3 

 
  

 
 

a2c

we may solve for the number of atoms per unit cell, n, as

n =  
(APF)a2c

4
3

πR3

=  
(0.693)(4.59)2(4.95)  10-24 cm3( )

4

3
π 1.625 x 10-8  cm( )3

= 4.0 atoms/unit cell

3.30  (a)  We are asked for the indices of the two directions sketched in the figure.  For direction 1, the

projection on the x-axis is zero (since it lies in the y-z plane), while projections on the y- and z-axes

are b/2 and c, respectively.  This is an [012] direction as indicated in the summary below

x y z

Projections 0a b/2 c

Projections in terms of a, b,

and c 0 1/2 1
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Reduction to integers 0 1 2

Enclosure [012]

(b)  This part of the problem calls for the indices of the two planes which are drawn in the sketch.

Plane 1 is an (020) plane.  The determination of its indices is summarized below.

x y z

Intercepts ∞ a b/2 ∞ c

Intercepts in terms of a, b,

and c ∞ 1/2 ∞

Reciprocals of intercepts 0 2 0

Enclosure (020)

3.33  Direction B is a [4 03 ]  direction, which determination is summarized as follows.  We first of all

position the origin of the coordinate system at the tail of the direction vector;  then in terms of this

new coordinate system

x y z

Projections - 
2a

3
0b - 

c

2

Projections in terms of a, b,

and c - 
2

3
0 - 

1

2

Reduction to integers - 4 0 - 3

Enclosure [4 03 ]

Direction D is a [ 1 1 1 ]  direction, which determination is summarized as follows.  We first of

all position the origin of the coordinate system at the tail of the direction vector;  then in terms of this

new coordinate system

x y z

Projections - 
a

2

b

2
- 

c

2
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Projections in terms of a, b,

and c - 
1

2

1

2
- 

1

2

Reduction to integers - 1 1 - 1

Enclosure [1 1 1 ]

3.37  For plane B we will leave the origin of the unit cell as shown;  thus, this is a (122) plane, as

summarized below.

x y z

Intercepts a
b

2

c

2

Intercepts in terms of a, b,

and c 1
1

2

1

2

Reciprocals of intercepts 1 2 2

Reduction not necessary

Enclosure (122)

3.40  (a)  For this plane we will leave the origin of the coordinate system as shown;  thus, this is a (12 11)

plane, as summarized below.

a1 a2 a3 z

Intercepts a - 
a

2
a c

Intercepts in terms of a's and c 1 - 
1

2
1 1

Reciprocals of intercepts 1 - 2 1 1

Reduction not necessary

Enclosure (12 11)

3.43  (a)  The unit cell in Problem 3.21 is body-centered tetragonal.  Only the (100) (front face) and (0 1 0)

(left side face) planes are equivalent since the dimensions of these planes within the unit cell (and
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therefore the distances between adjacent atoms) are the same (namely 0.45 nm x 0.35 nm), which

are different than the (001) (top face) plane (namely 0.35 nm x 0.35 nm).

3.45  (a)  In the figure below is shown a [100] direction within an FCC unit cell.

For this [100] direction there is one atom at each of the two unit cell corners, and, thus, there is

the equivalent of 1 atom that is centered on the direction vector.  The length of this direction vector is just

the unit cell edge length, 2R 2  [Equation (3.1)].  Therefore, the expression for the linear density of this

plane is

LD100 =  
number of atoms centered on [100] direction vector

length of [100] direction vector

=
1 atom

2 R 2
=

1

2R 2

3.54W  We must first calculate the lattice parameter using Equation (3.3) and the value of R cited in Table

3.1 as

a =
4R

3
=

(4)(0.1249 nm)

3
=  0.2884  nm

Next, the interplanar spacing may be determined using Equation (3.3W) according to

d310 =  
a

(3)2  +  (1)2 +  (0)2
=

0.2884  nm

10
=  0.0912  nm

And finally, employment of Equation (3.2W) yields
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sin θ =
nλ
2d

=
(1)(0.0711 nm)
(2)(0.0912 nm)

=  0.390

θ = sin-1(0.390) =  22.94°

And

2θ = (2)(22.94°) =  45.88°

3.55W From the table, α-iron has a BCC crystal structure and an atomic radius of 0.1241 nm.  Using

Equation (3.3) the lattice parameter, a, may be computed as

a =
4R

3
=

(4)(0.1241 nm)

3
= 0.2866 nm

Now, the d111 interplanar spacing may be determined using Equation (3.3W) as

d111 =  
a

(1)2 +  (1)2 +  (1)2
=

0.2866  nm

3
=  0.1655  nm

3.59W  For each peak, in order to compute the interplanar spacing and the lattice parameter we must

employ Equations (3.3W) and (3.2W), respectively.  For the first peak which occurs at 31.3°

d111 =
nλ

2 sin θ
=

(1)(0.1542 nm)

(2) sin 
31.3°

2
 
 
 

 
 
 

 =  0.2858 nm

And

a =  dhkl (h)2 +  (k)2  +  (l)2 =  d111 (1)2 +  (1)2 +  (1)2

=  (0.2858  nm) 3 =  0.4950 nm

Similar computations are made for the other peaks which results are tabulated below:
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Peak Index 2θ dhkl(nm) a (nm)

200 36.6 0.2455 0.4910

311 62.5 0.1486 0.4929
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CHAPTER 4

IMPERFECTIONS IN SOLIDS

PROBLEM SOLUTIONS

4.1  In order to compute the fraction of atom sites that are vacant in lead at 600 K, we must employ
Equation (4.1).  As stated in the problem, Q

v
 = 0.55 eV/atom.  Thus,

NV
N

=  exp −
QV
kT

 

 
 

 

 
 =  exp −

0.55 eV /atom

8.62  x  10−5  eV /atom -K( )(600 K)

 

 

 
 
 

 

 

 
 
 

= 2.41 x 10
-5

4.5  In the drawing below is shown the atoms on the (100) face of an FCC unit cell;  the interstitial site is

at the center of the edge.

The diameter of an atom that will just fit into this site (2r) is just the difference between the unit cell

edge length (a) and the radii of the two host atoms that are located on either side of the site (R);  that

is

2r = a - 2R
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However, for FCC a is related to R according to Equation (3.1) as a = 2R 2 ;  therefore, solving for

r gives

r =  
a − 2 R

2
=  

2R 2 − 2R
2

=  0.41R

4.10  The concentration of an element in an alloy, in atom percent, may be computed using Equation

(4.5).  With this problem, it first becomes necessary to compute the number of moles of both Cu and

Zn, for which Equation (4.4) is employed.  Thus, the number of moles of Cu is just

nm
Cu

 =  
mCu

'

A Cu
 =  

33  g
63.55  g /mol

 =  0.519  mol

Likewise, for Zn

nmZn
 =  

47  g
65.39  g /mol

 =  0.719 mol

Now, use of Equation (4.5) yields

CCu
' =  

nmCu
nmCu

+ nmZn

 x  100

=  
0.519  mol

0.519  mol  +  0.719  mol
 x  100 =  41.9 at%

Also,

CZn
' =  

0.719  mol
0.519  mol +  0.719  mol

 x  100 =  58.1 at%

4.14  This problem calls for a determination of the number of atoms per cubic meter for aluminum.  In

order to solve this problem, one must employ Equation (4.2),

N =  
NA ρAl

AAl
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The density of Al (from the table inside of the front cover) is 2.71 g/cm
3
, while its atomic weight is

26.98 g/mol.  Thus,

N =  
6.023  x  1023  atoms/mol( )2.71 g /cm3( )

26.98  g /mol

= 6.05 x 1022 atoms/cm3 = 6.05 x 1028 atoms/m3

4.22  This problem asks us to determine the weight percent of Ge that must be added to Si such that the

resultant alloy will contain 2.43 x1021 Ge atoms per cubic centimeter.  To solve this problem,

employment of Equation (4.18) is necessary, using the following values:

N1 = NGe = 2.43 x 1021 atoms/cm3

ρ1 = ρGe = 5.32 g/cm3

ρ2 = ρSi = 2.33 g/cm3

A1 = AGe = 72.59 g/mol

A2 = ASi = 28.09 g/mol

Thus

CGe =  
100

1 +  
NAρSi

NGeA Ge
 −  

ρSi
ρGe

=  
100

1 +  
6.023  x1023  atoms/ mol( )(2.33  g / cm3)

 2.43 x1021 atoms / cm3( )(72.59 g /mol)
 −  

2.33 g/ cm3

5.32 g/ cm3

 

 
  

 

 
  

= 11.7 wt%
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4.25  (a)  The Burgers vector will point in that direction having the highest linear density.  From Section

3.11, the linear density for the [110] direction in FCC is 1/2R, the maximum possible;  therefore for

FCC

b =  
a
2

[110]

(b)  For Cu which has an FCC crystal structure, R = 0.1278 nm (Table 3.1) and a = 2R 2  =

0.3615 nm [Equation (3.1)];  therefore

b =  
a
2

h2  +  k2  +  l2

=  
0.3615  nm

2
(1 )2  +  (1 )2  +  (0)2 =  0.2556  nm

4.32  (a)  This part of problem asks that we compute the number of grains per square inch for an ASTM

grain size of 6 at a magnification of 100x.  All we need do is solve for the parameter N in Equation

4.16, inasmuch as n = 6.  Thus

N = 2n−1

= 26 −1 = 32 grains/in.2

(b)  Now it is necessary to compute the value of N for no magnification.  In order to solve this

problem it is necessary to use the following equation:

NM
M

100
 
 
  

 
 

2
= 2n−1

where NM = the number of grains per square inch at magnification M, and n is the ASTM grain size

number.  (The above equation makes use of the fact that, while magnification is a length parameter,

area is expressed in terms of units of length squared.  As a consequence, the number of grains per

unit area increases with the square of the increase in magnification.)  Without any magnification, M

in the above equation is 1, and therefore,
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N1
1

100
 
 
  

 
 

2
= 26 −1 = 32

And, solving for N1, N1 = 320,000 grains/in.2.

4.D1  This problem calls for us to compute the concentration of lithium (in wt%) that, when added to

aluminum, will yield an alloy having a density of 2.55 g/cm3.  Solution of this problem requires the

use of Equation (4.10a), which takes the form

ρave =  
100

CLi
ρ

Li

 +  
100  −  CLi

ρ
Al

inasmuch as CLi + CAl = 100.  According to the table inside the front cover, the respective densities

of Li and Al are 0.534 and 2.71 g/cm3.  Upon solving for CLi from the above equation

CLi =  
100 ρLi ρAl −  ρave( )

ρ
ave

ρ
Al  −  ρ

Li( )

=  
(100) 0.534  g /cm3( )2.71 g / cm3  −  2.55  g /cm3( )

2.55  g/ cm3 2.71 g / cm3  −  0.534  g /cm3( )

= 1.537 wt%
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CHAPTER 5

DIFFUSION

PROBLEM SOLUTIONS

5.8  This problem calls for computation of the diffusion coefficient for a steady-state diffusion situation.

Let us first convert the carbon concentrations from wt% to kg C/m3 using Equation (4.9a).  For 0.012

wt% C

CC
'' =  

CC
CC
ρC

 +  
CFe
ρFe

 x 10
3

=  
0.012

0.012

2.25  g / cm3
 +  

99.988

7.87  g / cm3

 x  103

0.944 kg C/m3

Similarly, for 0.0075 wt% C

CC
'' =  

0.0075
0.0075

2.25  g / cm3  +  
99.9925

7.87  g/ cm3

 x 103

= 0.590 kg C/m3

Now, using a form of Equation (5.3)

D =  −  J 
xA  −  xB
CA  −  CB

 

 
 
 

 

 
 
 

=  −  1.40 x 10-8  kg/m2 - s( ) −  10−3  m

0.944  kg /m3  −  0.590  kg / m3

 

 
 
 

 

 
 
 
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= 3.95 x 10-11 m2/s

5.15  This problem calls for an estimate of the time necessary to achieve a carbon concentration of 0.45

wt% at a point 5 mm from the surface.  From Equation (5.6b),

x
2

Dt
=  constant

But since the temperature is constant, so also is D constant, and

x2

t
=  constant

or

x1
2

t1
=  

x2
2

t2

Thus,

(2.5 mm)2

10 h
=  

(5.0 mm)2

t2

from which
t
2
 = 40 h

5.21  (a)  Using Equation (5.9a), we set up two simultaneous equations with Q
d

 and D
o

 as unknowns.

Solving for Q
d

 in terms of temperatures T
1
 and T

2
 (1273

 
K and 1473

 
K) and D

1
 and D

2
 (9.4 x 10

-16

and 2.4 x 10
-14 m2/s), we get

Qd = − R 
ln D1 − ln D2

1

T1

− 1
T2
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=  −  
(8.31 J/mol - K) ln 9.4 x 10-16( ) −  ln 2.4 x 10-14( ) 

 
 
 

1
1273 K

− 1
1473 K

= 252,400 J/mol

Now, solving for D
o

 from Equation (5.8)

Do =  D1exp
Qd
RT1

 

 
  

 

 
  

=  9.4 x 10-16  m2/s( )exp
252,400  J/mol

(8.31 J/mol - K)(1273  K)

 

 
 

 

 
 

= 2.2 x 10
-5

 m
2

/s

(b)  Using these values of D
o

 and Q
d

, D at 1373
 
K is just

D =  2.2 x 10-5  m2/s( )exp −
252,400  J/mol

(8.31 J /mol - K)(1373 K)
 

 
 

 

 
 

= 5.4 x 10
-15

 m
2
/s

5.29  In order to determine the position within the diffusion couple at which the concentration of A in B is

2.5 wt%, we must employ Equation (5.6b) with t constant.  That is

x
2

D
=  constant

Or

x800
2

D800
=  

x1000
2

D1000

It is necessary to compute both D800 and D1000 using Equation (5.8), as follows:

D800 =  1.5 x 10-4  m2/s( )exp −
125,000  J/mol

(8.31 J/mol -K)(1073  K)

 
  

 
  



Copyright © John Wiley & Sons, Inc. 18

= 1.22 x 10-10 m2/s

D1000 =  1.5 x 10-4  m2/s( )exp −
125,000  J/mol

(8.31 J/ mol- K)(1273 K)

 
  

 
  

= 1.11 x 10-9 m2/s

Now, solving for x1000 yields

x1000 =  x800

D1000
D800

=  (5 mm)
1.11 x 10−9 m2 /s

1.22  x  10−10 m2 /s

= 15.1 mm
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CHAPTER 6

MECHANICAL PROPERTIES OF METALS

PROBLEM SOLUTIONS

6.4  We are asked to compute the maximum length of a cylindrical titanium alloy specimen that is

deformed elastically in tension.  For a cylindrical specimen

A o =  π
do
2

 

 
 

 

 
 

2

where d
o

 is the original diameter.  Combining Equations (6.1), (6.2), and (6.5) and solving for lo

leads to

lo =  
E π do

2∆ l

4F

=  
107 x 109 N /m2( )(π) 3.8 x 10−3m( )2 0.42 x 10−3 m( )

(4)(2000 N)

= 0.25 m = 250 mm (10 in.)

6.9  This problem asks that we calculate the elongation •l of a specimen of steel the stress-strain behavior

of which is shown in Figure 6.24.  First it becomes necessary to compute the stress when a load of

65,250 N is applied as

σ =
F

Ao
=

F

π
do
2

 

 
 

 

 
 

2 =
65,250 N

π 8.5 x 10−3 m
2

 

 
  

 

 
  

2 =  1150 MPa (170,000 psi)

Referring to Figure 6.24, at this stress level we are in the elastic region on the stress-strain curve,

which corresponds to a strain of 0.0054.  Now, utilization of Equation (6.2) yields
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∆ l = ε lo = (0.0054)(80  mm) = 0.43 mm (0.017 in.)

6.14  (a)  We are asked, in this portion of the problem, to determine the elongation of a cylindrical

specimen of aluminum.  Using Equations (6.1), (6.2), and (6.5)

F

π
do

2

4

 

 
 
 

 

 
 
 

= E
∆ l
lo

Or

∆ l =  
4 Flo
π do

2E

=  
(4)(48,800 N) 200 x 10−3m( )

(π) 19 x 10−3 m( )2 69 x 109 N/ m2( )
= 0.50 mm (0.02 in.)

(b)  We are now called upon to determine the change in diameter, ∆∆∆∆d.  Using Equation (6.8)

ν = −
εx
ε
z

=  −
∆d /do
∆ l / lo

From Table 6.1, for Al, νννν = 0.33.  Now, solving for •d yields

∆d = −
ν ∆ ldo

lo
= −

(0.33)(0.50  mm)(19  mm)
200  mm

= -1.57 x 10-2 mm  (-6.2 x 10-4 in.)

The diameter will decrease.

6.16  This problem asks that we compute Poisson's ratio for the metal alloy.  From Equations (6.5) and

(6.1)
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εz =  
σ
E

=
F / Ao

E
=

F

π
do
2

 

 
 

 

 
 
2

E

=
4 F

π do
2 E

Since the transverse strain εεεεx is just

εx =
∆d
do

and Poisson's ratio is defined by Equation (6.8) then

ν =  −
εx
εz

= −
∆d / do

4 F

π do
2E

 

 
 
 

 

 
 
 

= −
do∆d πE

4F

=  −
10 x 10−3 m( )−7 x 10−6 m( )(π) 100 x 109 N/m2( )

(4)(15,000  N)
=  0.367

6.21  (a)  This portion of the problem asks that we compute the elongation of the brass specimen.  The

first calculation necessary is that of the applied stress using Equation (6.1), as

σ =
F

Ao
=

F

π
do
2

 

 
 

 

 
 

2 =
10,000  N

π 10 x 10−3 m
2

 

 
  

 

 
  

2 = 127 MPa  (17,900 psi)

From the stress-strain plot in Figure 6.12, this stress corresponds to a strain of about 1.5 x 10-3.

From the definition of strain, Equation (6.2)

∆ l = ε lo = 1.5 x 10-3( )(101.6 mm) =  0.15 mm  (6.0 x 10-3 in.)

(b)  In order to determine the reduction in diameter •d, it is necessary to use Equation (6.8) and the
definition of lateral strain (i.e., εεεεx = •d/do) as follows

∆d =  doε x = − doνεz = − (10 mm)(0.35) 1.5 x 10-3( ) 
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= -5.25 x 10-3 mm (-2.05 x 10-4 in.)

6.27  This problem asks us to determine the deformation characteristics of a steel specimen, the stress-

strain behavior of which is shown in Figure 6.24.

(a)  In order to ascertain whether the deformation is elastic or plastic, we must first compute the

stress, then locate it on the stress-strain curve, and, finally, note whether this point is on the elastic

or plastic region.  Thus,

σ =
F

Ao
=

140,000  N

π 10 x 10−3 m
2

 

 
  

 

 
  

2 = 1782  MPa  (250,000  psi)

The 1782 MPa point is past the linear portion of the curve, and, therefore, the deformation will be

both elastic and plastic.

(b)  This portion of the problem asks us to compute the increase in specimen length.  From the

stress-strain curve, the strain at 1782 MPa is approximately 0.017.  Thus, from Equation (6.2)

∆ l = ε lo = (0.017)(500 mm) = 8.5 mm   (0.34 in.)

6.29  This problem calls for us to make a stress-strain plot for aluminum, given its tensile load-length data,

and then to determine some of its mechanical characteristics.

(a)  The data are plotted below on two plots:  the first corresponds to the entire stress-strain curve,

while for the second, the curve extends just beyond the elastic region of deformation.
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(b)  The elastic modulus is the slope in the linear elastic region as

E =
∆ σ
∆ε

=
200  MPa − 0  MPa

0.0032 − 0
= 62.5 x 103  MPa = 62.5 GPa  9.1 x 106 psi( )

(c)  For the yield strength, the 0.002 strain offset line is drawn dashed.  It intersects the stress-strain

curve at approximately 285 MPa (41,000 psi ).

(d)  The tensile strength is approximately 370 MPa (53,500 psi), corresponding to the maximum

stress on the complete stress-strain plot.

(e)  The ductility, in percent elongation, is just the plastic strain at fracture, multiplied by one-

hundred.  The total fracture strain at fracture is 0.165;  subtracting out the elastic strain (which is

about 0.005) leaves a plastic strain of 0.160.  Thus, the ductility is about 16%EL.

(f)  From Equation (6.14), the modulus of resilience is just

Ur =
σy

2

2E

which, using data computed in the problem, yields a value of

Ur =
(285  MPa)

2

(2) 62.5 x 103 MPa( )= 6.5 x 10
5

 J/m
3
   93.8 in. - lbf /in.

3( )
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6.32  This problem asks us to calculate the moduli of resilience for the materials having the stress-strain

behaviors shown in Figures 6.12 and 6.24.  According to Equation (6.14), the modulus of resilience
Ur is a function of the yield strength and the modulus of elasticity as

Ur =
σ

y
2

2E

The values for σσσσy and E for the brass in Figure 6.12 are 250 MPa (36,000 psi) and 93.9 GPa (13.6 x

106 psi), respectively.  Thus

Ur =
(250  MPa)2

(2) 93.9 x 103 MPa( )
=  3.32 x 105 J/m3  47.6 in. - lbf/in.3( )

6.41  For this problem, we are given two values of εεεεT and σσσσT,
 
from which we are asked to calculate the

true stress which produces a true plastic strain of 0.25.  After taking logarithms of Equation (6.19),

we may set up two simultaneous equations with two unknowns (the unknowns being K and n), as

log (50,000 psi) =  log K +  n log (0.10)

log (60,000 psi) =  log K +  n log (0.20)

From these two expressions,

n =
log (50,000) − log (60,000)

log (0.1) − log (0.2)
= 0.263

log K = 4.96 or K = 91,623 psi

Thus, for εεεεT = 0.25

σT =  K εT( )0.263
= (91,623 psi)(0.25)0.263 = 63,700  psi  (440 MPa)

6.45  This problem calls for us to utilize the appropriate data from Problem 6.29 in order to determine the
values of n and K for this material.  From Equation (6.38) the slope and intercept of a log σσσσT versus
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log εεεεT plot will yield values for n and log K, respectively.  However, Equation (6.19) is only valid in

the region of plastic deformation to the point of necking;  thus, only the 7th, 8th, 9th, and 10th data

points may be utilized.  The log-log plot with these data points is given below.

The slope yields a value of 0.136 for n, whereas the intercept gives a value of 2.7497 for log K, and

thus K = 562 MPa.

6.49  This problem calls for estimations of Brinell and Rockwell hardnesses.

(a)  For the brass specimen, the stress-strain behavior for which is shown in Figure 6.12, the tensile

strength is 450 MPa (65,000 psi).  From Figure 6.19, the hardness for brass corresponding to this

tensile strength is about 125 HB or 70 HRB.

6.54  The working stresses for the two alloys the stress-strain behaviors of which are shown in Figures

6.12 and 6.24 are calculated by dividing the yield strength by a factor of safety, which we will take to
be 2.  For the brass alloy (Figure 6.12), since σσσσy = 250 MPa (36,000 psi), the working stress is 125

MPa (18,000 psi).
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6.D6  (a)  This portion of the problem asks that we derive a performance index expression for strength

analogous to Equation (6.33) for a cylindrical cantilever beam that is stressed in the manner shown

in the accompanying figure.  The stress on the unfixed end, σσσσ, for an imposed force, F, is given by

the expression [Equation (6.42) in the textbook]

 
σ =  

FLr
I

(6.D1)

where L and r are the rod length and radius, respectively, and I is the moment of inertia;  for a

cylinder the expression for I is provided in Figure 12.29:

 
I =

πr4

4
(6.D2)

Substitution for I into Equation (6.D1) leads to

σ =
4FL

π r3
(6.D3)

Now, the mass m of some given quantity of material is the product of its density (ρρρρ) and volume.

Inasmuch as the volume of a cylinder is just ππππr2L, then

m =  πr2Lρ (6.D4)

From this expression, the radius is just

r =  
m

πLρ
(6.D5)

Inclusion of Equation (6.D5) into Equation (6.D3) yields

σ =  
4Fπ1/ 2L5/ 2ρ3 / 2

m3/ 2
(6.D6)

And solving for the mass gives

m =  16πF2L5( )1/ 3 ρ
σ2/ 3

(6.D7)
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To ensure that the beam will not fail, we replace stress in Equation (6.D7) with the yield strength (σσσσy)

divided by a factor of safety (N) as

m =  16πF
2
L
5
N

2( )1/ 3 ρ
σy

2/ 3 (6.D8)

Thus, the best materials to be used for this cylindrical cantilever beam when strength is a

consideration are those having low 
ρρρρ

σσσσy
2/ 3

 ratios.  Furthermore, the strength performance index, P, is

just the reciprocal of this ratio, or

P =  
σ

y
2 / 3

ρ
(6.D9)

The second portion of the problem asks for an expression for the stiffness performance

index.  Let us begin by consideration of Equation (6.43) which relates δδδδ, the elastic deflection at the

unfixed end, to the force (F), beam length (L), the modulus of elasticity (E), and moment of inertia (I)

as

 
δ =  

FL3

3EI
(6.43)

Again, Equation (6.D2) gives an expression for I for a cylinder, which when substituted into Equation

(6.43) yields

δ =  
4FL3

3πEr4
(6.D10)

And, substitution of the expression for r [Equation (6.D5)] into Equation (6.D10), leads to

δ =  
4FL3

3πE
m

πLρ
 

 
 

 

 
 

4
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=  
4FL5πρ2

3Em2
(6.D11)

Now solving this expression for the mass m yields

m =  
4FL5π

3 δ

 

 
  

 

 
  

1/2
ρ
E

(6.D12)

Or, for this cantilever situation, the mass of material experiencing a given deflection produced by a

specific force is proportional to the 
ρρρρ
E

 ratio for that material.  And, finally, the stiffness performance

index, P, is just the reciprocal of this ratio, or

P =
E

ρ
(6.D13)
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CHAPTER 7

DISLOCATIONS AND STRENGTHENING MECHANISMS

PROBLEM SOLUTIONS

7.10  We are asked to compute the Schmid factor for an FCC crystal oriented with its [100] direction

parallel to the loading axis.  With this scheme, slip may occur on the (111) plane and in the [1 1 0]

direction as noted in the figure below.

The angle between the [100] and [1 1 0]  directions, λλλλ, is 45°.  For the (111) plane, the angle

between its normal (which is the [111] direction) and the [100] direction, φφφφ, is tan-1 
a 2

a

 

 
 

 

 
  = 54.74°,

therefore

cos λ cos φ = cos(45°)cos(54.74°) = 0.408

7.22  We are asked to determine the grain diameter for an iron which will give a yield strength of 205 MPa

(30,000 psi).  The best way to solve this problem is to first establish two simultaneous expressions of
Equation (7.5), solve for σσσσo and k

y
, and finally determine the value of d when σσσσy = 205 MPa.  The

data pertaining to this problem may be tabulated as follows:

σy d (mm) d-1/2 (mm)-1/2

135 MPa 5 x 10
-2

4.47

260 MPa 8 x 10
-3

11.18
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The two equations thus become

135  MPa = σo + (4.47) ky

260  MPa = σo + (11.18) ky

Which yield the values, σσσσo = 51.7 MPa and k
y
 = 18.63 MPa(mm)

1/2
.  At a yield strength of 205 MPa

205  MPa = 51.7  MPa +  18.63  MPa mm( )1/2[ ]d-1/2

or d
-1/2

 = 8.23 (mm)
-1/2

, which gives d = 1.48 x 10
-2

 mm.

7.27  In order for these two cylindrical specimens to have the same deformed hardness, they must be

deformed to the same percent cold work.  For the first specimen

%CW =
Ao − Ad

Ao
x 100 =

π ro
2 − πrd

2

πro
2 x 100

=
π (15  mm)2 − π(12 mm)2

π (15 mm)2
x 100 = 36%CW

For the second specimen, the deformed radius is computed using the above equation and solving for
rd as

rd = ro 1 −
%CW
100

= (11  mm) 1 −
36%CW

100
= 8.80  mm

7.29  This problem calls for us to calculate the precold-worked radius of a cylindrical specimen of copper

that has a cold-worked ductility of 25%EL.  From Figure 7.17(c), copper that has a ductility of 25%EL

will have experienced a deformation of about 11%CW.  For a cylindrical specimen, Equation (7.6)

becomes
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%CW =
πr o

2 − πr d
2

π ro
2

 

 
 
 

 

 
 
 

x 100

Since r
d

 = 10 mm (0.40 in.), solving for r
o

 yields

ro =
rd

1 −
%CW

100

=
10  mm

1 −
11.0

100

= 10.6  mm  (0.424  in.)

7.37  In this problem, we are asked for the length of time required for the average grain size of a brass

material to increase a specified amount using Figure 7.23.

(a)  At 500°C, the time necessary for the average grain diameter to increase from 0.01 to 0.1 mm is

approximately 3500 min.

7.D1  This problem calls for us to determine whether or not it is possible to cold work steel so as to give a

minimum Brinell hardness of 240 and a ductility of at least 15%EL.  According to Figure 6.19, a

Brinell hardness of 240 corresponds to a tensile strength of 800 MPa (116,000 psi).  Furthermore,

from Figure 7.17(b), in order to achieve a tensile strength of 800 MPa, deformation of at least

13%CW is necessary.  Finally, if we cold work the steel to 13%CW, then the ductility is 15%EL from

Figure 7.17(c).  Therefore, it is possible to meet both of these criteria by plastically deforming the

steel.

7.D6  Let us first calculate the percent cold work and attendant yield strength and ductility if the drawing is

carried out without interruption.  From Equation (7.6)

%CW =

π
do
2

 

 
 

 

 
 

2

− π
dd
2

 

 
 

 

 
 

2

π
do
2

 

 
 

 

 
 

2 x 100
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=
π

10.2  mm

2
 
 
  

 
 

2
− π

7.6  mm

2
 
 
  

 
 

2

π
10.2  mm

2
 
 
  

 
 

2 x  100 = 44.5%CW

At 44.5%CW, the brass will have a yield strength on the order of 420 MPa (61,000 psi), Figure

7.17(a), which is adequate;  however, the ductility will be about 5%EL, Figure 7.17(c), which is

insufficient.

Instead of performing the drawing in a single operation, let us initially draw some fraction of

the total deformation, then anneal to recrystallize, and, finally, cold work the material a second time in

order to achieve the final diameter, yield strength, and ductility.

Reference to Figure 7.17(a) indicates that 26%CW is necessary to give a yield strength of

380 MPa.  Similarly, a maximum of 27.5%CW is possible for 15%EL [Figure 7.17(c)].  The average of

these two values is 26.8%CW, which we will use in the calculations.  If the final diameter after the first

drawing is do
' , then

26.8%CW =

π
do

'

2

 

 
 
 

 

 
 
 

2

− π
7.6 mm

2
 
 
 

 
 
 

2

π
do

'

2

 

 
 
 

 

 
 
 

2 x  100

And, solving for do
'  yields do

'  
= 9.4 mm (0.37 in.).
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CHAPTER 8

FAILURE

PROBLEM SOLUTIONS

8.6  We may determine the critical stress required for the propagation of an internal crack in aluminum

oxide using Equation (8.3);  taking the value of 393 GPa (Table 12.5) as the modulus of elasticity, we

get

σc =
2Eγ s

πa

=
(2) 393 x 109 N/m2( )(0.90  N/m)

(π)
4 x 10−4 m

2

 

 
  

 

 
  

= 33.6  x106 N/m2 = 33.6 MPa

8.8W  This problem calls for us to calculate the normal σσσσx and σσσσy stresses in front on a surface crack of

length 2.0 mm at various positions when a tensile stress of 100 MPa is applied.  Substitution for K =

σσσσ πa  into Equations (8.9aW) and (8.9bW) leads to

σx = σ fx(θ)
a
2r

σy = σ fy(θ)
a
2r

where fx(θθθθ) and fy(θθθθ) are defined in the accompanying footnote 2.  For θθθθ = 0°, fx(θθθθ) = 1.0 and fy(θθθθ) =

1.0, whereas for θθθθ = 45°, fx(θθθθ) = 0.60 and fy(θθθθ) = 1.25.

(a)  For r = 0.1 mm and θθθθ = 0°,

σx = σy = σ(1.0)
a
2r

= (100 MPa)
2.0  mm

(2)(0.1 mm)
= 316 MPa  (45,800 psi)
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(d)  For r = 0.5 mm and θθθθ = 45°,

σx = σ(0.6)
a
2r

= (100  MPa)(0.6)
2.0  mm

(2)(0.5  mm)
= 84.8 MPa   (12,300 psi)

σy = σ(1.25)
a
2 r

= (100 MPa)(1.25)
2.0  mm

(2)(0.5  mm)
= 177 MPa  (25,600  psi)

8.10W  (a)  In this portion of the problem it is necessary to compute the stress at point P when the applied

stress is 140 MPa (20,000 psi).  In order to determine the stress concentration it is necessary to

consult Figure 8.2cW.  From the geometry of the specimen, w/h = (40 mm)/(20 mm) = 2.0;

furthermore, the r/h ratio is (4 mm)/(20 mm) = 0.20.  Using the w/h = 2.0 curve in Figure 8.2cW, the

Kt value at r/h = 0.20 is 1.8.  And since Kt  =
σσσσm
σσσσ

o
, then

σm = Ktσo = (1.8)(140 MPa) = 252 MPa (36,000 psi)

8.13W  This problem calls for us to determine the value of B, the minimum component thickness for which

the condition of plane strain is valid using Equation (8.14W), for the metal alloys listed in Table 8.1.

For the 2024-T3 aluminum alloy

B = 2.5 
KIc
σ

y

 

 
 
 

 

 
 
 

2

= (2.5)
44 MPa m

345  MPa

 

 
 

 

 
 
2

= 0.0406  m = 40.6 mm  (1.60  in.)

For the 4340 alloy steel tempered at 260°C

B = (2.5)
50  MPa m

1640  MPa

 

 
 

 

 
 

2

= 0.0023  m = 2.3 mm  (0.09  in.)

8.17  For this problem, we are given values of KIc, σσσσ, and Y for a large plate and are asked to determine

the minimum length of a surface crack that will lead to fracture.  All we need do is to solve for ac

using Equation (8.7);  therefore
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ac =
1
π

KIc
Yσ

 

 
 

 

 
 

2

=
1
π

82.4  MPa m

(1)(345  MPa)

 

 
 

 

 
 

2

= 0.0182  m = 18.2  mm  (0.72  in.)

8.22  (a)  The plot of impact energy versus temperature is shown below.

(b)  The average of the maximum and minimum impact energies from the data is

Average =
105 J + 24 J

2
= 64.5  J

As indicated on the plot by the one set of dashed lines, the ductile-to-brittle transition temperature

according to this criterion is about -100°C.

(c)  Also, as noted on the plot by the other set of dashed lines, the ductile-to-brittle transition

temperature for an impact energy of 50 J is about -110°C.

8.27  We are asked to determine the fatigue life for a cylindrical 2014-T6 aluminum rod given its diameter

(6.4 mm) and the maximum tensile and compressive loads (+5340 N and -5340 N, respectively).
The first thing that is necessary is to calculate values of σσσσmax and σσσσmin using Equation (6.1).  Thus

σmax =
Fmax
A o

=
Fmax

π
do
2

 

 
 

 

 
 
2
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 =
5340  N

(π)
6.4 x 10−3 m

2

 

 
  

 

 
  

2 = 166  x  106  N/m2 = 166  MPa  (24,400  psi)

σmin =
Fmin

π
do

2

 

 
 

 

 
 

2

=
−5340  N

(π)
6.4 x 10−3 m

2

 

 
  

 

 
  

2 = − 166 x 106 N/m2 = − 166  MPa  (−24,400 psi)

Now it becomes necessary to compute the stress amplitude using Equation (8.16) as

σa =
σmax − σmin

2
=

166  MPa − (−166  MPa)
2

= 166  MPa  (24,400  psi)

From Figure 8.44, for the 2014-T6 aluminum, the number of cycles to failure at this stress amplitude

is about 1 x 107 cycles.

8.29  (a)  The fatigue data for this alloy are plotted below.
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(b)  As indicated by one set of dashed lines on the plot, the fatigue strength at 4 x 106 cycles [log (4

x 106) = 6.6] is about 100 MPa.

(c)  As noted by the other set of dashed lines, the fatigue life for 120 MPa is about 6 x 105 cycles

(i.e., the log of the lifetime is about 5.8).

8.30  We are asked to compute the maximum torsional stress amplitude possible at each of several

fatigue lifetimes for the brass alloy the fatigue behavior of which is given in Problem 8.29.  For each

lifetime, first compute the number of cycles, and then read the corresponding fatigue strength from

the above plot.

(a)  Fatigue lifetime = (1 yr)(365 days/year)(24 h/day)(60 min/h)(1800 cycles/min) = 9.5 x 108 cycles.

The stress amplitude corresponding to this lifetime is about 74 MPa.

(c) Fatigue lifetime = (24 h)(60 min/h)(1800 cycles/min) = 2.6 x 106 cycles.  The stress amplitude

corresponding to this lifetime is about 103 MPa.

8.43  This problem asks that we determine the total elongation of a low carbon-nickel alloy that is

exposed to a tensile stress of 70 MPa (10,000 psi) at 427°C for 10,000 h;  the instantaneous and

primary creep elongations are 1.3 mm (0.05 in.).
From the 427°C line in Figure 8.29, the steady state creep rate, Ý ε ε ε ε s , is about 0.035 %/1000 h

(or 3.5 x 10-5 %/h) at 70 MPa.  The steady state creep strain, εεεεs, therefore, is just the product of Ý ε ε ε ε s

and time as

εs = Ý ε s x  (time)

= 3.5 x 10-5  %/h( )(10,000  h) = 0.35 % = 3.5 x10-3

Strain and elongation are related as in Equation (6.2);  solving for the steady state elongation, ∆∆∆∆ls,

leads to

∆ ls = loεs = (1015  mm) 3.5  x 10-3( )= 3.6  mm  (0.14  in.)

Finally, the total elongation is just the sum of this ∆∆∆∆ls and the total of both instantaneous and primary

creep elongations [i.e., 1.3 mm (0.05 in.)].  Therefore, the total elongation is 4.9 mm (0.19 in.).
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8.47  The slope of the line from a log Ý ε ε ε ε s  versus log σσσσ plot yields the value of n in Equation (8.19);  that is

n =
∆ log Ý ε s
∆ log σ

We are asked to determine the values of n for the creep data at the three temperatures in Figure
8.29.  This is accomplished by taking ratios of the differences between two log Ý ε ε ε ε s  and log σσσσ values.

Thus for 427°C

n =
∆ log Ý ε s
∆ log σ

=
log 10−1( ) − log 10−2( )

log (85 MPa) − log (55 MPa)
= 5.3

8.50  This problem gives Ý ε ε ε ε s  values at two different temperatures and 140 MPa (20,000 psi), and the

stress exponent n = 8.5, and asks that we determine the steady-state creep rate at a stress of 83

MPa (12,000 psi) and 1300 K.

Taking the natural logarithm of Equation (8.20) yields

ln Ý ε s =  ln K2 + n ln σ −
Qc
RT

With the given data there are two unknowns in this equation--namely K2 and Qc.  Using the data

provided in the problem we can set up two independent equations as follows:

ln 6.6 x 10−4 (h)−1[ ]= ln K2 +  (8.5) ln (140 MPa) −
Qc

(8.31 J /mol - K)(1090 K)

ln 8.8 x 10−2 (h)−1[ ]= ln K2 +  (8.5) ln (140 MPa) −
Qc

(8.31 J /mol - K)(1200 K)

Now, solving simultaneously for K2 and Qc leads to K2 = 57.5  (h)-1 and Qc = 483,500 J/mol.  Thus,

it is now possible to solve for Ý ε ε ε ε s  at 83 MPa and 1300 K using Equation (8.20) as

Ý ε s = K 2σn
exp −

Qc
RT

 

 
 

 

 
 
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= 57.5 (h)−1[ ](83 MPa)8.5exp −
483,500  J /mol

(8.31 J/mol - K)(1300  K)

 

 
 

 

 
 

4.31 x 10-2 (h)-1

8.D1W  This problem asks us to calculate the minimum KIc necessary to ensure that failure will not occur

for a flat plate given the following:  an expression from which Y(a/W) may be determined, the internal

crack length, 2a (25 mm), the plate width, W (100 mm), and the value of σσσσ (415 MPa).  First we

compute the value of Y(a/W) using Equation (8.12W), as follows:

Y(a/W) =
W
πa

tan
π a
W

 

 
 

 

 
 
1/2

=  
100  mm

(π)(12.5  mm)
 tan 

(π)(12.5  mm)
100  mm

 

 
 

 

 
 
1/2

= 1.027

Now, using Equation (8.13W) [or Equation (8.5)] it is possible to determine KIc;  thus

KIc = Y(a/W)σ πa

=  (1.027)(415 MPa) (π) 12.5 x 10−3 m( )= 84.5 MPa m  (77.2 ksi in.)

8.D7W  We are asked in this problem to estimate the maximum tensile stress that will yield a fatigue life

of 3.2 x 105 cycles, given values of ao, ac, m, A, and Y.  Since Y is independent of crack length we

may utilize Equation (8.29W) which, upon integration, takes the form

Nf =
1

Aπm / 2(∆σ)m Ym a−m / 2

ao

ac

∫ da

And for m = 4
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Nf =
1

Aπ2(∆σ)4Y4 a −2

ao

ac

∫ da

=  −
1

Aπ2(∆σ )4Y4
1

ac

−
1

ao

 

 
 
 

 

 
 
 

Now, solving for ∆σ∆σ∆σ∆σ from this expression yields

∆σ = 

1

ao
−

1

ac

Nf Aπ2Y4

 

 

 
 
 
 

 

 

 
 
 
 

1/4

 = 

1

2.5 x 10−4 m
− 1

5 x 10−3 m

3.2 x 105 cycles( )5 x 10−15( )(π)2(2)4

 

 

 
 
 
 

 

 

 
 
 
 

1/4

= 350 MPa

This 350 MPa will be the maximum tensile stress since we can show that the minimum stress is a
compressive one--when σσσσmin is negative, ∆σ∆σ∆σ∆σ is taken to be σσσσmax.  If we take σσσσmax = 350 MPa, and

since σσσσm is stipulated in the problem to have a value of 25 MPa, then from Equation (8.14)

σmin = 2σm − σmax = 2(25 MPa) − 350  MPa = − 300  MPa

Therefore σσσσmin is negative and we are justified in taking σσσσmax to be 350 MPa.

8.D14W  (a)  This portion of the problem asks that we compute the maximum tensile load that may be

applied to a spring constructed of a 1
4

 hard 304 stainless steel such that the total deflection is less

than 5 mm;  there are 10 coils in the spring, whereas, its center-to-center diameter is 15 mm, and the
wire diameter is 2.0 mm.  The total spring deflection δδδδs may be determined by combining Equations

(8.32W) and (8.33W);  solving for the load F from the combined equation leads to
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F =  
δsd4G

8NcD3

However, it is also necessary to determine the value of the shear modulus G.  This is possible using

Equation (6.9) and values of the modulus of elasticity (193 GPa) and Poisson's ratio (0.30) as taken

from Tables B.2 and B.3 in Appendix B.  Thus

G =  
E

2(1 + ν)

=  
193 GPa

2(1 + 0.30)
=  74.2 GPa

Substitution of this value and values of the other parameters into the above equation for F leads to

F =  
5 x 10−3 m( )2 x 10−3 m( )4 74.2 x 109 N /m2( )

(8)(10 coils) 15 x 10−3 m( )3

=  22.0 N (5.1 lb f)

(b)  We are now asked to compute the maximum tensile load that may be applied without any

permanent deformation of the spring wire.  This requires that we combine Equations (8.30W) and

(8.31W), and then solve for F.  However, it is first necessary to calculate the shear yield strength and
substitute it for ττττ in Equation (8.30W).  The problem statement stipulates that ττττy = 0.6 σσσσy.  From

Table B.4 in Appendix B, we note that the tensile yield strength for this alloy in the 1/4 hardened
state is 515 MPa;  thus ττττy = 309 MPa.  Now, solving for F as outlined above

F =  
πτyd3

(1.6)(8)(D)
D
d

 
 
  

 
 

−0.140

=
π 309 x 106 N/m2( )2 x 10−3 m( )3

(1.6)(8) 15 x 10−3 m( ) 15 x 10−3 m

2 x 10−3 m

 

 
  

 

 
  

−0.140
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=  53.6 N (12.5 lb f)

8.D21W  We are asked in this problem to calculate the stress levels at which the rupture lifetime will be 1

year and 15 years when an 18-8 Mo stainless steel component is subjected to a temperature of

650°C (923 K).  It first becomes necessary to calculate the value of the Larson-Miller parameter for

each time.  The values of tr corresponding to 1 and 15 years are 8.76 x 103 h and 1.31 x 105 h,

respectively.  Hence, for a lifetime of 1 year

T 20 +  log tr( )= 923 20 +  log 8.76 x 103( ) 
 

 
 = 22.10 x 103

Using the curve shown in Figure 8.45, the stress value corresponding to the one-year lifetime is

approximately 110 MPa (16,000 psi).
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CHAPTER 9

PHASE DIAGRAMS

PROBLEM SOLUTIONS

9.5  This problem asks that we cite the phase or phases present for several alloys at specified

temperatures.

(a)  For an alloy composed of 15 wt% Sn-85 wt% Pb and at 100°C, from Figure 9.7, αααα and ββββ phases

are present, and
Cα = 5 wt% Sn-95 wt% Pb

Cβ = 98 wt% Sn-2 wt% Pb

(c)  For an alloy composed of 85 wt% Ag-15 wt% Cu and at 800°C, from Figure 9.6, ββββ and liquid

phases are present, and

Cβ = 92 wt% Ag-8 wt% Cu

CL = 77 wt% Ag-23 wt% Cu

9.7  This problem asks that we determine the phase mass fractions for the alloys and temperatures in

Problem 9.5.

(a)

Wα =
Cβ − Co

Cβ − Cα
=

98 − 15
98 − 5

= 0.89

Wβ =
Co − Cα
Cβ − C

α
=

15 − 5
98 − 5

= 0.11

(c)

Wβ =
Co − CL
Cβ − CL

=
85 − 77
92 − 77

= 0.53
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WL =
Cβ − Co

Cβ − CL
=

92 − 85
92 − 77

= 0.47

9.9  This problem asks that we determine the phase volume fractions for the alloys and temperatures in

Problems 9.5a, b, and d.  This is accomplished by using the technique illustrated in Example

Problem 9.3, and the results of Problems 9.5 and 9.7.

(a)  This is a Sn-Pb alloy at 100°C, wherein

Cα = 5 wt% Sn-95 wt% Pb

Cβ = 98 wt% Sn-2 wt% Pb

Wα = 0.89

Wβ = 0.11

ρSn = 7.29 g/cm3

ρPb = 11.27 g/cm3

Using these data it is first necessary to compute the densities of the αααα and ββββ phases using Equation

(4.10a).  Thus

ρα =
100

CSn(α)

ρSn
+

CPb(α)

ρPb

=
100

5

7.29 g / cm3
+

95

11.27 g / cm3

=  10.97 g/cm3

ρβ =
100

CSn(β)

ρSn
+

CPb(β)

ρPb

=
100

98

7.29 g / cm3
+ 2

11.27 g / cm3

= 7.34 g/cm3
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Now we may determine the Vαααα and Vββββ values using Equation 9.6.  Thus,

Vα =

Wα
ρα

Wα
ρα

+
Wβ
ρβ

=

0.89

10.97 g/ cm3

0.89

10.97 g /cm3
+ 0.11

7.34 g / cm3

= 0.84

Vβ =

Wβ
ρβ

Wα
ρα

+
Wβ
ρβ

=

0.11

7.34 g / cm3

0.89

10.97 g /cm3
+ 0.11

7.34 g / cm3

= 0.16

9.12  (a)  We are asked to determine how much sugar will dissolve in 1000 g of water at 80°C.  From the

solubility limit curve in Figure 9.1, at 80°C the maximum concentration of sugar in the syrup is about

74 wt%.  It is now possible to calculate the mass of sugar using Equation (4.3) as

Csugar(wt%) =
msugar

msugar
+ mwater

× 100

74 wt% =
msugar

msugar
+ 1000 g

× 100

Solving for msugar yields msugar = 2846 g

(b)  Again using this same plot, at 20°C the solubility limit (or the concentration of the saturated

solution) is about 64 wt% sugar.
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(c)  The mass of sugar in this saturated solution at 20°C (msugar') may also be calculated using

Equation (4.3) as follows:

64 wt% =
msugar '

msugar' + 1000 g
× 100

which yields a value for msugar' of 1778 g.  Subtracting the latter from the former of these sugar

concentrations yields the amount of sugar that precipitated out of the solution upon cooling
msugar";  that is

msugar" = msugar - msugar' = 2846 g - 1778 g = 1068 g

9.21  Upon cooling a 50 wt% Ni-50 wt% Cu alloy from 1400°C and utilizing Figure 9.2a:

(a)  The first solid phase forms at the temperature at which a vertical line at this composition

intersects the L-(αααα + L) phase boundary--i.e., at about 1320°C;

(b)  The composition of this solid phase corresponds to the intersection with the L-(αααα + L) phase
boundary, of a tie line constructed across the αααα + L phase region at 1320°C--i.e., Cαααα = 62 wt% Ni-38

wt% Cu;

(c)  Complete solidification  of the alloy occurs at the intersection of this same vertical line at 50 wt%

Ni with the (α α α α + L)-αααα phase boundary--i.e., at about 1270°C;

(d)  The composition of the last liquid phase remaining prior to complete solidification corresponds to

the intersection with the L-(α α α α + L) boundary, of the tie line constructed across the α α α α + L phase region
at 1270°C--i.e., CL is about 37 wt% Ni-63 wt% Cu.

9.24  (a)  We are given that the mass fractions of α and liquid phases are both 0.5 for a 40 wt% Pb-60

wt% Mg alloy and asked to estimate the temperature of the alloy.  Using the appropriate phase

diagram, Figure 9.18, by trial and error with a ruler, a tie line within the αααα + L phase region that is

divided in half for an alloy of this composition exists at about 540°C.

(b)  We are now asked to determine the compositions of the two phases.  This is accomplished by

noting the intersections of this tie line with both the solidus and liquidus lines.  From these
intersections, Cαααα = 26 wt% Pb, and CL = 54 wt% Pb.
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9.27  Yes, it is possible to have a Cu-Ag alloy of composition 20 wt% Ag-80 wt% Cu which consists of
mass fractions Wαααα = 0.80 and WL = 0.20.  Using the appropriate phase diagram, Figure 9.6, by trial

and error with a ruler, the tie-line segments within the αααα + L phase region are proportioned such that

Wα =  0.8 =
CL − Co

CL − Cα

for Co = 20 wt% Ag.  This occurs at about 800°C.

9.34  This problem asks that we determine the composition of a Cu-Ag alloy at 775°C given that Wαααα' =

0.73 and Weutectic = 0.27.  Since there is a primary αααα microconstituent present, we know that the

alloy composition, Co is between 8.0 and 71.9 wt% Ag (Figure 9.6).  Furthermore, this figure also

indicates that Cαααα = 8.0 wt% Ag and Ceutectic = 71.9 wt% Ag.  Applying the appropriate lever rule

expression for Wαααα'

Wα' =
Ceutectic − Co
Ceutectic

− Cα
=

71.9 − Co
71.9 − 8.0

= 0.73

 and solving for Co yields Co = 25.2 wt% Ag.

9.44W  We are asked to specify the value of F for Gibbs phase rule at points A, B, and C on the pressure-
temperature diagram for H2O.  Gibbs phase rule in general form is

P + F = C + N

For this system, the number of components, C, is 1, whereas N, the number of noncompositional

variables, is 2--viz. temperature and pressure.  Thus, the phase rule now becomes

P + F = 1 + 2 = 3

Or

F = 3 - P

where P is the number of phases present at equilibrium.

At point A, only a single (liquid) phase is present (i.e., P = 1), or
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F = 3 - P = 3 - 1 = 2

which means that both temperature and pressure are necessary to define the system.

9.51  This problem asks that we compute the carbon concentration of an iron-carbon alloy for which the

fraction of total ferrite is 0.94.  Application of the lever rule [of the form of Equation (9.12)] yields

Wα = 0.94 =
CFe

3
C − Co

'

CFe
3
C

− Cα
=

6.70 − Co
'

6.70 − 0.022

and solving for Co
'

Co
' = 0.42 wt% C

9.56  This problem asks that we determine the carbon concentration in an iron-carbon alloy, given the

mass fractions of proeutectoid ferrite and pearlite (0.286 and 0.714, respectively).  From Equation

(9.18)

Wp = 0.714 =
Co

' − 0.022

0.74

which yields Co
'   = 0.55 wt% C.

9.61  This problem asks if it is possible to have an iron-carbon alloy for which WFe3C = 0.057 and Wαααα' =

0.36.  In order to make this determination, it is necessary to set up lever rule expressions for these

two mass fractions in terms of the alloy composition, then to solve for the alloy composition of each;

if both alloy composition values are equal, then such an alloy is possible.  The expression for the

mass fraction of total cementite is

WFe
3
C =

Co − Cα
CFe

3
C − Cα

=
Co − 0.022

6.70 − 0.022
= 0.057
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Solving for this Co yields Co = 0.40 wt% C.  Now for Wαααα' we utilize Equation (9.19) as

Wα' =
0.76 − Co

'

0.74
= 0.36

This expression leads to Co
'  = 0.49 wt% C.  And, since Co and Co

'  are different this alloy is not

possible.

9.67  This problem asks that we determine the approximate Brinell hardness of a 99.8 wt% Fe-0.2 wt% C

alloy.  First, we compute the mass fractions of pearlite and proeutectoid ferrite using Equations

(9.18) and (9.19), as

Wp =
Co

' − 0.022

0.74
=

0.20 − 0.022
0.74

= 0.24

Wα' =
0.76 − C o

'

0.74
=

0.76 − 0.20
0.74

= 0.76

Now, we compute the Brinell hardness of the alloy as

HBalloy = HBα'Wα' +  HBpWp

= (80)(0.76) + (280)(0.24) = 128

9.70  We are asked to consider a steel alloy of composition 93.8 wt% Fe, 6.0 wt% Ni, and 0.2 wt% C.

(a)  From Figure 9.31, the eutectoid temperature for 6 wt% Ni is approximately 650°C (1200°F).

(b)  From Figure 9.32, the eutectoid composition is approximately 0.62 wt% C.  Since the carbon

concentration in the alloy (0.2 wt%) is less than the eutectoid, the proeutectoid phase is ferrite.
(c)  Assume that the αααα-(αααα + Fe3C) phase boundary is at a negligible carbon concentration.

Modifying Equation (9.19) leads to

Wα' =
0.62 − Co

'

0.62 − 0
=

0.62 − 0.20
0.62

= 0.68
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Likewise, using a modified Equation (9.18)

Wp =
Co

' − 0

0.62 − 0
=

0.20
0.62

= 0.32
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CHAPTER 10

PHASE TRANSFORMATIONS IN METALS

PROBLEM SOLUTIONS

10.4  This problem gives us the value of y (0.30) at some time t (100 min), and also the value of n (5.0)

for the recrystallization of an alloy at some temperature, and then asks that we determine the rate of

recrystallization at this same temperature.  It is first necessary to calculate the value of k in Equation

(10.1) as

k = −
ln (1 − y)

tn

= −
ln (1 − 0.3)

(100 min)5 = 3.57 × 10-11

At this point we want to compute t0.5, the value of t for y = 0.5, also using Equation (10.1).  Thus

t0.5 = −
ln (1 − 0.5)

k
 
  

 
  

1/n

= −
ln (1 − 0.5)

3.57 x 10−11

 

 
 
 

 

 
 
 

1/5

= 114.2  min

And, therefore, from Equation (10.2), the rate is just

rate =
1

t
0.5

=
1

114.2 min
= 8.76 x 10-3  (min)-1

10.7  This problem asks us to consider the percent recrystallized versus logarithm of time curves for

copper shown in Figure 10.2.

(a)  The rates at the different temperatures are determined using Equation (10.2), which rates are

tabulated below:
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Temperature (°C) Rate (min)
-1

135 0.105

119 4.4 x 10
-2

113 2.9 x 10
-2

102 1.25 x 10
-2

88 4.2 x 10
-3

43 3.8 x 10
-5

(b)  These data are plotted below.

The activation energy, Q, is related to the slope of the line drawn through the data points as

Q = − Slope (R)

where R is the gas constant.  The slope of this line is -1.126 x 10
4
 K, and thus

Q = − −1.126 x 104 K( )(8.31 J/mol - K)

= 93,600 J/mol

(c)  At room temperature (20°C), 1/T = 3.41 x 10
-3 

K
-1

.  Extrapolation of the data in the plot to this

1/T value gives

ln (rate) ≅ − 12.8
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which leads to

rate ≅ exp (−12.8) = 2.76 x 10-6  (min)-1

But since

rate =
1

t0.5

then

t0.5 =
1

rate
=

1

2.76 x 10−6 (min)−1

= 3.62 x 105 min = 250 days

10.15  Below is shown the isothermal transformation diagram for a eutectoid iron-carbon alloy, with a

time-temperature path that will yield (a) 100% coarse pearlite.
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10.18  Below is shown an isothermal transformation diagram for a 1.13 wt% C iron-carbon alloy, with a

time-temperature path that will produce (b)  50% fine pearlite and 50% bainite.

10.34  This problem asks for Rockwell hardness values for specimens of an iron-carbon alloy of eutectoid

composition that have been subjected to some of the heat treatments described in Problem 10.14.

(b)  The microstructural product of this heat treatment is 100% spheroidite.  According to Figure

10.21(a) the hardness of a 0.76 wt% C alloy with spheroidite is about 87 HRB (180 HB).

(g)  The microstructural product of this heat treatment is 100% fine pearlite.  According to Figure

10.21(a), the hardness of a 0.76 wt% C alloy consisting of fine pearlite is about 27 HRC (270 HB).

10.37  For this problem we are asked to describe isothermal heat treatments required to yield specimens

having several Brinell hardnesses.

(b)  This portion of the problem asks for a hardness of 220 HB.  According to Figure 10.21(a), for an

alloy of this composition to have this hardness, the microstructure would have to be intermediate

between coarse and fine pearlite—that is, medium pearlite.  Thus, an isothermal heat treatment is
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necessary at a temperature in between those at which fine and coarse pearlites form—for example,

about 630°C.  At this temperature, an isothermal heat treatment for at least 25 s is required.

10.D1  This problem inquires as to the possibility of producing an iron-carbon alloy of eutectoid

composition that has a minimum hardness of 200 HB and a minimum ductility of 25%RA.  If the alloy

is possible, then the continuous cooling heat treatment is to be stipulated.

According to Figures 10.21(a) and (b), the following is a tabulation of Brinell hardnesses and

percents reduction of area for fine and coarse pearlites and spheroidite for a 0.76 wt% C alloy.

Microstructure HB %RA

Fine pearlite 270 22

Coarse pearlite 205 29

Spheroidite 180 68

Therefore, coarse pearlite meets both of these criteria.  The continuous cooling heat treatment which

will produce coarse pearlite for an alloy of eutectoid composition is indicated in Figure 10.18.  The

cooling rate would need to be considerably less than 35°C/s, probably on the order of 0.1°C/s.



Copyright © John Wiley & Sons, Inc. 56

CHAPTER 11

APPLICATIONS AND PROCESSING OF METAL ALLOYS

PROBLEM SOLUTIONS

11.5  We are asked to compute the volume percent graphite in a 3.5 wt% C cast iron.  It first becomes

necessary to compute mass fractions using the lever rule.  From the iron-carbon phase diagram

(Figure 11.2), the tie-line in the αααα and graphite phase field extends from essentially 0 wt% C to 100

wt% C.  Thus, for a 3.5 wt% C cast iron

Wα  =  
CGr − Co
CGr − Cα

=  
100 − 3.5
100 − 0

=  0.965

WGr =  
Co − Cα
CGr − Cα

=  
3.5 − 0
100 − 0

=  0.035

Conversion from weight fraction to volume fraction of graphite is possible using Equation (9.6a) as

VGr =  

WGr
ρGr

Wα
ρα

+
WGr
ρGr

=  

0.035

2.3 g /cm3

0.965

7.9 g /cm3
+

0.035

2.3 g / cm3

= 0.111 or 11.1 vol%

11.D14  We are to determine, for a cylindrical piece of 8660 steel, the minimum allowable diameter

possible in order yield a surface hardness of 58 HRC, when the quenching is carried out in

moderately agitated oil.
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From Figure 11.14, the equivalent distance from the quenched end of an 8660 steel to give

a hardness of 58 HRC is about 18 mm (3/4 in.).  Thus, the quenching rate at the surface of the

specimen should correspond to this equivalent distance.  Using Figure 11.16(b), the surface

specimen curve takes on a value of 18 mm equivalent distance at a diameter of about 95 mm (3.75

in.).
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CHAPTER 12

STRUCTURES AND PROPERTIES OF CERAMICS

PROBLEM SOLUTIONS

12.5  This problem calls for us to predict crystal structures for several ceramic materials on the basis of

ionic charge and ionic radii.

(a)  For CsI, from Table 12.3

r
Cs+

r
I
−

=  
0.170  nm
0.220  nm

=  0.773

Now, from Table 12.2, the coordination number for each cation (Cs
+

) is eight, and, using Table 12.4,

the predicted crystal structure is cesium chloride.

(c)  For KI, from Table 12.3

r
K +

r
I
−

=  
0.138  nm
0.220  nm

=  0.627

The coordination number is six (Table 12.2), and the predicted crystal structure is sodium chloride

(Table 12.4).

12.9  This question is concerned with the zinc blende crystal structure in terms of close-packed planes of

anions.

(a)  The stacking sequence of close-packed planes of anions for the zinc blende crystal structure will

be the same as FCC (and not HCP) because the anion packing is FCC (Table 12.4).

(b)  The cations will fill tetrahedral positions since the coordination number for cations is four (Table

12.4).

(c)  Only one-half of the tetrahedral positions will be occupied because there are two tetrahedral

sites per anion, and yet only one cation per anion.
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12.19  (a)  We are asked to compute the theoretical density of CsCl.  Modifying the result of Problem 3.4,

we get

a =  
2r

Cs+ + 2r
Cl−

3
=  

2 (0.170  nm) + 2( 0.181 nm)

3

= 0.405 nm = 4.05 x 10-8 cm

From Equation (12.1)

ρ  =  
n' ACs +  ACl( )

V
C

N
A

 =  
n' ACs +  ACl( )

a3 NA

For the CsCl crystal structure, n' = 1 formula unit/unit cell, and thus

ρ  =  
(1 formula unit/unit cell)(132.91 g/mol +  35.45 g/mol)

4.05 x 10-8  cm( )3 /unit cell
 

 
 

 

 
 6.023 x 1023 formula units/mol( )

= 4.20 g/cm
3

12.25  We are asked in this problem to compute the atomic packing factor for the CsCl crystal structure.

This requires that we take the ratio of the sphere volume within the unit cell and the total unit cell

volume.  From Figure 12.3 there is the equivalent of one Cs and one Cl ion per unit cell;  the ionic

radii of these two ions are 0.170 nm and 0.181 nm, respectively (Table 12.3).  Thus, the sphere
volume, VS, is just

VS  =  
4
3

π( ) (0.170 nm)3  +  (0.181 nm)3[ ] =  0.0454  nm
3

Using a modified form of the result of Problem 3.4, for CsCl we may express the unit cell edge

length, a, in terms of the atomic radii as

a  =  
2r

Cs+ +  2r
Cl-

3
 =  

2(0.170 nm) +  2(0.181 nm)

3
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= 0.405 nm

Since VC = a3

VC = (0.405 nm)3 = 0.0664 nm3

And, finally the atomic packing factor is just

APF =
VS
VC

=
0.0454 nm3

0.0664 nm3 = 0.684

12.33  (a)  For Li
+

 substituting for Ca
2+

 in CaO, oxygen vacancies would be created.  For each Li
+

substituting for Ca
2+

, one positive charge is removed;  in order to maintain charge neutrality, a

single negative charge may be removed.  Negative charges are eliminated by creating oxygen

vacancies, and for every two Li
+

 ions added, a single oxygen vacancy is formed.

12.38  We are asked for the critical crack tip radius for an Al
2
O

3
 material. From Equation (8.1)

σm = 2 σo
a

ρt

 

 
  

 

 
  

1/ 2

Fracture will occur when σσσσm reaches the fracture strength of the material, which is given as E/10;

thus

E
10

= 2σo
a

ρt

 

 
  

 

 
  

1/ 2

Or, solving for ρρρρt

ρt =
400 aσo

2

E 2

From Table 12.5, E = 393 GPa, and thus,
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ρt =
(400) 2 x 10−3 mm( )(275  MPa)2

393 x 103 MPa( )2

= 3.9 x 10-7 mm = 0.39 nm

12.42  For this problem, the load is given at which a circular specimen of aluminum oxide fractures when

subjected to a three-point bending test;  we are then are asked to determine the load at which a

specimen of the same material having a square cross-section fractures.  It is first necessary to

compute the flexural strength of the alumina using Equation (12.3b), and then, using this value, we
may calculate the value of Ff in Equation (12.3a).  From Equation (12.3b)

σ fs =
FfL

πR3

=
(3000  N) 40 x 10−3 m( )

(π) 5.0 x 10−3 m( )3
= 306 x 106 N/m2 = 306 MPa   (42,970 psi)

Now, solving for Ff from Equation (12.3a), realizing that b = d = 12 mm, yields

Ff =
2σ fsd3

3L

=
(2) 306 x 106 N/m2( )15 x 10−3m( )3

(3) 40 x 10−3 m( ) = 17,200 N   (3870 lbf )

12.47  (a)  This part of the problem asks us to determine the flexural strength of nonporous MgO

assuming that the value of n in Equation (12.6) is 3.75.  Taking natural logarithms of both sides of

Equation (12.6) yields

lnσfs =  lnσo −  nP
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In Table 12.5 it is noted that for P = 0.05, σσσσfs = 105 MPa.  For the nonporous material P = 0 and,

ln σσσσo = ln σσσσfs.  Solving for ln σσσσo from the above equation and using these data gives

lnσo = lnσ fs  +  nP

= ln (105 MPa) + (3.75)(0.05) = 4.841

or σσσσo = e4.841 = 127 MPa (18,100 psi)

(b)  Now we are asked to compute the volume percent porosity to yield a σσσσfs of 74 MPa (10,700 psi).

Taking the natural logarithm of Equation (12.6) and solving for P leads to

P =
ln σo − ln σ fs

n

=  
ln (127  MPa)   −   ln (74  MPa)

3.75

= 0.144 or 14.4 vol%
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CHAPTER 13

APPLICATIONS AND PROCESSING OF CERAMICS

PROBLEM SOLUTIONS

13.5  (a)  From Figure 12.25, the maximum temperature without a liquid phase corresponds to the

temperature at the MgO(ss)-[MgO(ss) + Liquid] boundary at this composition, which is approximately

2240°C (4060°F).

13.7  This problem calls for us to compute the mass fractions of liquid for two fireclay refractory materials
at 1600°C. In order to solve this problem it is necessary that we use the SiO2-Al2O3 phase diagram

(Figure 12.27).  The mass fraction of liquid, WL, as determined using the lever rule and tie line at

1600°C, is just

WL =  
Cmullite − Co
Cmullite − CL

where Cmullite = 72 wt% Al2O3 and CL = 8 wt% Al2O3, as determined using the tie-line;  also, Co
is the composition (in weight percent Al2O3) of the refractory material.

(a)  For the 25 wt% Al2O3- 75 wt% SiO2 composition, Co = 25 wt% Al2O3, and

WL =  
72 − 25
72 − 8

= 0.73

13.16  (a)  Below is shown the logarithm viscosity versus reciprocal of temperature plot for the borosilicate

glass, using the data in Figure 13.6.
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(b)  The activation energy, Q
vis

, may be computed from this plot according to

Qvis =  R
∆ lnη

∆
1
T

 
 
  

 
 

 

 

 
 
 
 

 

 

 
 
 
 

where R is the gas constant, and ∆ln ηηηη/∆(1/T) is the slope of the line that has been constructed.  The

value of this slope is 4.36 x 104 K.  Therefore,

Qvis =  (8.31 J/mol- K) 4.36 x 104 K( )

= 362,000 J/mol
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CHAPTER 14

POLYMER STRUCTURES

PROBLEM SOLUTIONS

14.4  We are asked to compute the number-average degree of polymerization for polypropylene, given

that the number-average molecular weight is 1,000,000 g/mol.  The mer molecular weight of

polypropylene is just

m = 3(AC) + 6(AH)

= (3)(12.01 g/mol) + (6)(1.008 g/mol) = 42.08 g/mol

If we let n
n

 represent the number-average degree of polymerization, then from Equation (14.4a)

nn =
M n
m

=
106 g/mol

42.08 g/mol
=  23, 700

14.6  (a)  From the tabulated data, we are asked to compute M n , the number-average molecular weight.

This is carried out below.

Molecular wt
Range Mean M

i
x
i

x
i
M

i

8,000-16,000 12,000 0.05 600

16,000-24,000 20,000 0.16 3200

24,000-32,000 28,000 0.24 6720

32,000-40,000 36,000 0.28 10,080

40,000-48,000 44,000 0.20 8800

48,000-56,000 52,000 0.07 3640
____________________________

M n = xiMi∑ = 33,040 g/mol
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(c)  Now we are asked to compute n
n

 (the number-average degree of polymerization), using the

Equation (14.4a).  For polypropylene,

m = 3(AC) + 6(AH)

= (3)(12.01 g/mol) + (6)(1.008 g/mol) = 42.08 g/mol

And

nn =
M n
m

=
33,040 g/mol
42.08 g/mol

= 785

14.11  This problem first of all asks for us to calculate, using Equation (14.11), the average total chain

length, L, for a linear polyethylene polymer having a number-average molecular weight of 300,000
g/mol.   It is necessary to calculate the number-average degree of polymerization, nn, using

Equation (14.4a).  For polyethylene, from Table 14.3, each mer unit has two carbons and four

hydrogens.  Thus,

m = 2(AC) + 4(AH)

= (2)(12.01 g/mol) + (4)(1.008 g/mol) = 28.05 g/mol

and

nn =  
M n
m

 =  
300,000 g/mol

28.05 g/mol
 =  10,695

which is the number of mer units along an average chain.  Since there are two carbon atoms per mer

unit, there are two C--C chain bonds per mer, which means that the total number of chain bonds in

the molecule, N, is just (2)(10,695) = 21,390 bonds.  Furthermore, assume that for single carbon-

carbon bonds, d = 0.154 nm and θθθθ = 109° (Section 14.4);  therefore, from Equation (14.11)

L =  Nd sin 
θ
2

 
 
  

 
 

=  (21,390)(0.154 nm) sin 
109°

2
 
 
  

 
 

 
  

 
   =  2682 nm
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It is now possible to calculate the average chain end-to-end distance, r, using Equation

(14.12) as

r =  d N =  (0.154 nm) 21,390 =  22.5 nm

14.28  Given that polyethylene has an orthorhombic unit cell with two equivalent mer units, we are asked

to compute the density of totally crystalline polyethylene.  In order to solve this problem it is

necessary to employ Equation (3.5), in which n represents the number of mer units within the unit

cell (n = 2), and A is the mer molecular weight, which for polyethylene is just

A = 2(AC) + 4(AH)

= (2)(12.01 g/mol) + (4)(1.008 g/mol) = 28.05 g/mol

Also, VC is the unit cell volume, which is just the product of the three unit cell edge lengths as shown

in Figure 14.10.  Thus,

ρ =  
nA

V
C

N
A

=  
(2 mers/uc)(28.05 g/mol)

7.41 x 10-8 cm( )4.94 x 10-8  cm( )2.55 x 10-8 cm( )/uc 
 

 
 6.023 x 1023 mers/mol( )

= 0.998 g/cm3
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CHAPTER 15

CHARACTERISTICS, APPLICATIONS, AND PROCESSING OF POLYMERS

PROBLEM SOLUTIONS

15.15  This problem gives us the tensile strengths and associated number-average molecular

weights for two polymethyl methacrylate materials and then asks that we estimate the tensile
strength for M n  = 30,000 g/mol.  Equation (15.3) provides the dependence of the tensile

strength on M n .  Thus, using the data provided in the problem, we may set up two

simultaneous equations from which it is possible to solve for the two constants TS• and A.

These equations are as follows:

107  MPa = TS∞ −
A

40,000  g /mol

170  MPa = TS∞ −
A

60,000  g /mol

Thus, the values of the two constants are:  TS• = 296 MPa and A = 7.56 x 106 MPa-g/mol.

Substituting these values into the equation for which M n  = 30,000 g/mol leads to

TS = TS∞ −
A

30,000  g /mol

= 296  MPa −  
7.56 x 106 MPa - g /mol

30,000  g /mol

= 44 MPa

15.24  This problem asks that we compute the fraction of possible crosslink sites in 10 kg of

polybutadiene when 4.8 kg of S is added, assuming that, on the average, 4.5 sulfur atoms

participate in each crosslink bond.  Given the butadiene mer unit in Table 14.5, we may

calculate its molecular weight as follows:
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A(butadiene) = 4(AC) + 6(AH)

= (4)(12.01 g/mol) + 6(1.008 g/mol) = 54.09 g/mol

Which means that in 10 kg of butadiene there are 
10,000  g

54.09  g /mol
 = 184.9 mol.

For the vulcanization of polybutadiene, there are two possible crosslink sites per

mer--one for each of the two carbon atoms that are doubly bonded.  Furthermore, each of

these crosslinks forms a bridge between two mers.  Therefore, we can say that there is the

equivalent of one crosslink per mer.  Therefore, let us now calculate the number of moles of
sulfur (nsulfur) that react with the butadiene, by taking the mole ratio of sulfur to butadiene,

and then dividing this ratio by 4.5 atoms per crosslink;  this yields the fraction of possible

sites that are crosslinked.  Thus

nsulfur =
4800  g

32.06 g /mol
= 149.7 mol

And

fraction sites crosslinked =

149.7  mol
184.9  mol

4.5
= 0.180

15.42  (a)  This problem asks that we determine how much ethylene glycol must be added to 20.0

kg of adipic acid to produce a linear chain structure of polyester according to Equation 15.9.

Since the chemical formulas are provided in this equation we may calculate the molecular

weights of each of these materials as follows:

A(adipic) =  6(AC) +  10(AH) +  4(AO)

=  6(12.01 g/mol) +  10(1.008 g/mol) +  4 (16.00 g/mol) =  146.14 g/mol

A(glycol) =  2(AC ) +  6(AH) +  2(AO)

=  2(12.01 g/mol) +  6(1.008 g/mol) +  2(16.00 g/mol) =  62.07 g/mol
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The 20.0 kg mass of adipic acid equals 20,000 g or 
20,000 g

146.14 g /mol
 = 136.86 mol.  Since,

according to Equation (15.9), each mole of adipic acid used requires one mole of ethylene

glycol, which is equivalent to (136.86 mol)(62.07 g/mol) = 8495 g = 8.495 kg.

(b)  Now we are asked for the mass of the resulting polyester.  Inasmuch as one mole of

water is given off for every mer unit produced, this corresponds to 136.86 moles or (136.86

mol)(18.02 g/mol) = 2466 g or 2.466 kg since the molecular weight of water is 18.02 g/mol.

The mass of polyester is just the sum of the masses of the two reactant materials [as

computed in part (a)] minus the mass of water released, or

mass(polyester) =  20.0 kg +  8.495 kg −  2.466 kg =  26.03 kg
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CHAPTER 16

COMPOSITES

PROBLEM SOLUTIONS

16.4  This problem asks for the maximum and minimum thermal conductivity values for a TiC-Co cermet.
Using a modified form of Equation (16.1) the maximum thermal conductivity kmax is calculated as

kmax =  kmVm +  kpVp =  kCoVCo +  kTiCVTiC

=  (69 W/m - K)(0.15) +  (27 W/m -K)(0.85) =  33.3 W/m -K

And, from a modified form of Equation (16.2), the minimum thermal conductivity kmin is

kmin =
kCokTiC

VCokTiC + VTiCkCo

=  
(69 W /m - K)(27 W /m -K)

(0.15)(27 W /m- K) + (0.85)(69 W /m -K)

= 29.7 W/m-K

16.12  This problem asks for us to determine if it is possible to produce a continuous and oriented aramid

fiber-epoxy matrix composite having longitudinal and transverse moduli of elasticity of 35 GPa and

5.17 GPa, respectively, given that the modulus of elasticity for the epoxy is 3.4 GPa.  Also, from

Table 16.4 the value of E for aramid fibers is 131 GPa.  The approach to solving this problem is to
calculate two values of Vf using the data and Equations (16.10b) and (16.16);  if they are the same

then this composite is possible.
For the longitudinal modulus Ecl,

Ecl =  Em 1 -  Vfl( ) +  EfVfl

35 GPa =  (3.4 GPa) 1 -  Vfl( ) +  (131 GPa)Vfl
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Solving this expression for Vfl yields Vfl = 0.248.

Now, repeating this procedure for the transverse modulus Ect

Ect =  
EmEf

1 − Vft( )Ef
+ VftEm

5.17 GPa =  
(3.4 GPa)(131 GPa)

1 − Vft( )(131 GPa) + Vft(3.4 GPa)

Solving this expression for Vft leads to Vft = 0.351.  Thus, since Vfl and Vft are not equal, the

proposed composite is not possible.

16.17  This problem stipulates that the cross-sectional area of a composite, A
c
, is 320 mm

2
 (0.50 in.

2
),

and that the longitudinal load, F
c
, is 44,500 N (10,000 lbf) for the composite described in Problem

16.11.
(a)  First, we are asked to calculate the F

f
/F

m
 ratio.  According to Equation (16.11)

Ff
Fm

=  
EfVf

EmVm
=  

(131 GPa)(0.30)
(2.4 GPa)(0.70)

=  23.4

Or, F
f
 = 23.4F

m

(b)  Now, the actual loads carried by both phases are called for.  Since

Ff +  Fm =  Fc =  44,500  N

23.4Fm +  Fm =  44,500  N

which leads to
Fm =  1824 N  (410 lbf )

Ff =  44,500  N − 1824  N =  42,676 N  (9590 lb f)

(c)  To compute the stress on each of the phases, it is first necessary to know the cross-sectional

areas of both fiber and matrix.  These are determined as
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A f =  Vf Ac =  (0.30)(320  mm2) =  96 mm2  (0.15  in.2)

Am =  VmAc =  (0.70)(320  mm2) =  224 mm2  (0.35 in.2)

Now, for the stresses,

σ f =  
Ff
A f

=  
42,676 N

96 mm2
=

42,676 N

96 x 10−6 m2 =  445 MPa  (63,930  psi)

σm =  
Fm
Am

=  
1824 N

224 mm2 =
1824 N

224 x 10-6 m2 =  8.14 MPa  (1170 psi)

(d)  The strain on the composite is the same as the strain on each of the matrix and fiber phases, as

εm =  
σm
Em

=  
8.14 MPa

2.4 x 103 MPa
=  3.39 x 10-3

εf  =  
σf
Ef

=  
445 MPa

131 x 103 MPa
=  3.39 x 10-3

16.21  In this problem, for an aligned glass fiber-epoxy matrix composite, we are asked to compute the

longitudinal tensile strength given the following:  the average fiber diameter (0.015 mm), the average

fiber length (2.0 mm), the volume fraction of fibers (0.25), the fiber fracture strength (3500 MPa), the

fiber-matrix bond strength (100 MPa), and the matrix stress at composite failure (5.5 MPa).  It is first

necessary to compute the value of the critical fiber length using Equation (16.3).  If the fiber length is

much greater than lc, then we may determine σσσσcl
∗  using Equation (16.17), otherwise, use of either

Equation (16.18) or (16.19) is necessary.  Thus,

lc =  
σ f

∗ d

2τc
=  

(3500 MPa)(0.015 mm)
2(100 MPa)

=  0.263  mm  (0.010 in.)

Inasmuch as l > lc (2.0 mm > 0.263 mm), but l is not much greater than lc, then use of Equation

(16.18) is necessary.  Therefore,
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σcd
∗  =  σ f

∗Vf 1 −
l
c
2 l

 

 
 

 

 
 +  σm

' 1 − Vf( )

=  (3500 MPa)(0.25) 1 −
0.263 mm

(2)(2.0 mm)

 

 
 

 

 
 +  (5.5 MPa)(1 − 0.25)

= 822 MPa  (117,800 psi)

16.D1  In order to solve this problem, we want to make longitudinal elastic modulus and tensile strength

computations assuming 50 vol% fibers for all three fiber materials, in order to see which meet the

stipulated criteria [i.e., a minimum elastic modulus of 50 GPa (7.3 x 10
6
 psi), and a minimum tensile

strength of 1300 MPa (189,000 psi)].  Thus, it becomes necessary to use Equations (16.10b) and

(16.17) with V
m

 = 0.5 and V
f
 = 0.5, E

m
 = 3.1 GPa, and σσσσm

∗  = 75 MPa.

For glass, E
f
 = 72.5 GPa and σσσσ f

∗  = 3450 MPa.  Therefore,

Ecl =  Em 1 −  Vf( ) +  EfVf

=  (3.1 GPa)(1 −  0.5) + (72.5 GPa)(0.5) =  37.8 GPa  (5.48 x 106 psi)

Since this is less than the specified minimum, glass is not an acceptable candidate.

For carbon (PAN standard-modulus), Ef = 230 GPa and σσσσ f
∗  = 4000 MPa (the average of the

extreme values in Table B.4), thus

Ecl =  (3.1 GPa)(0.5) +  (230 GPa)(0.5) =  116.6 GPa  (16.9 x 106 psi)

which is greater than the specified minimum.  In addition, from Equation (16.17)

σcl
∗  =  σm

' 1 − Vf( )+ σf
∗ Vf

=  (30 MPa)(0.5) +  (4000 MPa)(0.5) =  2015 MPa  (292,200 psi)

which is also greater than the minimum.  Thus, carbon (PAN standard-modulus) is a candidate.
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For aramid, Ef = 131 GPa and σσσσ f
∗  = 3850 MPa (the average of the extreme values in Table

B.4), thus

Ecl =  (3.1 GPa)(0.5) +  (131 GPa)(0.5) =  67.1 GPa  (9.73 x 106  psi)

which value is greater than the minimum.  Also, from Equation (16.17)

σcl
∗  =  σm

' 1 − Vf( )+ σf
∗ Vf

=  (50 MPa)(0.5) +  (3850 MPa)(0.5) =  1950 MPa (283,600 psi)

which is also greater than the minimum strength value.  Therefore, of the three fiber materials, both

the carbon (PAN standard-modulus) and the aramid meet both minimum criteria.
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CHAPTER 17

CORROSION AND DEGRADATION OF MATERIALS

PROBLEM SOLUTIONS

17.5  (a)  We are asked to compute the voltage of a nonstandard Cd-Fe electrochemical cell.  Since iron

is lower in the emf series (Table 17.1), we begin by assuming that iron is oxidized and cadmium is

reduced, as

Fe +  Cd2+ →  Fe2+ + Cd

and

∆V =  (VCd −  VFe) −  
0.0592

2
log 

[Fe2+ ]

[Cd2+ ]

=  − 0.403 V −  (− 0.440 V)[ ] −  
0.0592

2
log 

0.40

2 x 10−3

 

 
 
 

 

 
 
 

= -0.031 V

(b)  Since this ∆∆∆∆V is negative, the spontaneous cell direction is just the reverse of that above, or

Fe2+ +  Cd →  Fe +  Cd2+

17.13  This problem calls for us to compute the time of submersion of a steel piece.  In order to solve this

problem, we must first rearrange Equation (17.23), as

t =  
KW

ρA (CPR)

Thus,

t =  
(534 ) 2.6 x 106 mg( )

7.9 g / cm3( )10 in.2( )(200 mpy)
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=  8.8 x 104 h =  10 yr

17.20W  (a)  This portion of the problem asks that we compute the rate of oxidation for Ni given that both

the oxidation and reduction reactions are controlled by activation polarization, and also given the

polarization data for both nickel oxidation and hydrogen reduction.  The first thing necessary is to

establish relationships of the form of Equation (17.1W) for the potentials of both oxidation and

reduction reactions.  Next we will set these expressions equal to one another, and then solve for the
value of i which is really the corrosion current density, ic.  Finally, the corrosion rate may be

calculated using Equation (17.24).  The two potential expressions are as follows:

For hydrogen reduction

VH =  V
(H+/H

2
)
 +  βH log 

i
io

H

 

 

 
 

 

 

 
 

And for Ni oxidation

VNi =  V
(Ni/Ni2+ )

 +  βNi log 
i

io
Ni

 

 

 
 

 

 

 
 

Setting VH = VNi and solving for log i (log ic) leads to

log ic =  
1

β
Ni

− β
H

 

 
  

 

 
  V

(H+ / H
2

)
− V

(Ni/ Ni2+ )
− βH logio

H
+ βNi logio

Ni

 

 
 

 

 
 

=  
1

0.12 − (−0.10)

 

 
 

 

 
 0 − (− 0.25) − (−0.10) log 6 x 10−7( ){ }+ (0.12) log 10−8( ){ } 

  
 
  

= -6.055

Or

ic =  10-6.055  =  8.81 x 10-7 A/cm2

And from Equation (17.24)

r =  
ic
nF
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=  
8.81 x 10−7 C / s - cm2

(2)(96,500 C /mol)
=  4.56 x 10-12 mol/cm2 - s

(b)  Now it becomes necessary to compute the value of the corrosion potential, Vc.  This is possible

by using either of the above equations for VH or VNi and substituting for i the value determined

above for ic.  Thus

Vc =  V
(H+/H

2
)
 +  βH log 

ic
io

H

 

 

 
 

 

 

 
 

=  0 +  (−0.10 V) log
8.81 x 10−7 A / cm2

6 x 10−7 A/ cm2

 

 
  

 

 
  =  − 0.0167 V

17.34  For this problem we are given, for three metals, their densities, oxide chemical formulas, and oxide

densities, and are asked to compute the Pilling-Bedworth ratios, and then to specify whether or not

the oxide scales that form will be protective.  The general form of the equation used to calculate this

ratio is Equation (17.30) [or Equation (17.29)].  For magnesium, oxidation occurs by the reaction

Mg +  
1
2

O2 →   MgO

and therefore, from Equation (17.29)

P - B ratio =  
AMgOρMg

AMg
ρ

MgO

=  
(40.31 g /mol) 1.74 g /cm3( )
(24.31 g /mol) 3.58 g / cm3( )=  0.81

Thus, this would probably be a nonprotective oxide film since the P-B ratio is less than unity;  to be

protective, this ratio should be between one and two.

17.36  For this problem we are given weight gain-time data for the oxidation of Ni at an elevated

temperature.
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(a)  We are first asked to determine whether the oxidation kinetics obey a parabolic, linear, or

logarithmic rate expression, which expressions are represented by Equations (17.31), (17.32), and

(17.33), respectively.  One way to make this determination is by trial and error.  Let us assume that

the parabolic relationship is valid; that is from Equation (17.31)

W2 =  K1t +  K2

which means that we may establish three simultaneous equations using the three sets of given W
and t values, then using two combinations of two pairs of equations, solve for K1 and K2;  if K1 and

K2 have the same values for both solutions, then the kinetics are parabolic.  If the values are not

identical then the other kinetic relationships need to be explored.  Thus, the three equations are

(0.527) 2 =  0.278 =  10K1 +  K2

(0.857) 2 =  0.734 =  30K1 +  K2

(1.526) 2 =  2.329 =  100K1 +  K2

From the first two equations K1 = 0.0228 and K2 = 0.050;  these same two values are obtained

using the last two equations.  Hence, the oxidation rate law is parabolic.

(b) Since a parabolic relationship is valid, this portion of the problem calls for us to determine W after
a total time of 600 min.  Again, using Equation (17.31) and the values of K1 and K2

W2 =  K1t +  K2

=  (0.0228)(600 min) +  0.05 =  13.37

Or W = 13.73  = 3.70 mg/cm2.
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CHAPTER 18

ELECTRICAL PROPERTIES

PROBLEM SOLUTIONS

18.5  (a)  In order to compute the resistance of this copper wire it is necessary to employ Equations (18.2)

and (18.4).  Solving for the resistance in terms of the conductivity,

R =
ρl
A

=
l

σA

From Table 18.1, the conductivity of copper is 6.0 x 10
7
 (Ω-m)

-1
, and

R =
l

σA
=

2 m

6.0 x 10
7

(Ω − m)−1[ ](π)
3 x 10−3 m

2

 

 
  

 

 
  

2

= 4.7 x 10-3 Ω

(b)  If V = 0.05 V then, from Equation (18.1)

I =
V
R

=
0.05 V

4.7 x 10−3 Ω
= 10.6  A

(c)  The current density is just

J =
I

A
=

I

π
d
2

 
 
  

 
 

2 =
10.6 A

π 3 x 10−3 m
2

 

 
  

 

 
  

2 = 1.5 x 106  A/m2

(d)  The electric field is just

E =
V
l

=
0.05 V

2 m
= 2.5 x 10-2  V/m
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18.13  (a)  The number of free electrons per cubic meter for copper at room temperature may be

computed using Equation (18.8) as

n =
σ

e µe

=
6.0 x 107 (Ω − m)−1

1.602 x 10−19 C( )0.0030 m2 / V - s( )

= 1.25  x1029 m-3

(b)  In order to calculate the number of free electrons per copper atom, we must first determine the
number of copper atoms per cubic meter, NCu.  From Equation (4.2)

NCu =
NAρ
ACu

=
6.023 x 1023 atoms/mol( )8.94 g /cm3( )106 cm3 /m3( )

63.55 g /mol

= 8.47  x  1028  m-3

The number of free electrons per copper atom is just

n
N

=
1.25 x 1029 m−3

8.47 x 1028 m−3 = 1.48

18.18  This problem asks for us to compute the room-temperature conductivity of a two-phase Cu-Sn

alloy.  It is first necessary for us to determine the volume fractions of the αααα and εεεε phases, after which

the resistivity (and subsequently, the conductivity) may be calculated using Equation (18.12).

Weight fractions of the two phases are first calculated using the phase diagram information provided

in the problem.

We might represent the phase diagram near room temperature as shown below.
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Applying the lever rule to this situation

Wα =
Cε − Co
Cε − Cα

=
37 − 11
37 − 0

= 0.703

Wε =
Co − Cα
Cε − Cα

=
11 − 0
37 − 0

= 0.297

We must now convert these mass fractions into volume fractions using the phase densities given in

the problem.  (Note:  in the following expressions, density is represented by ρρρρ' in order to avoid

confusion with resistivity which is designated by ρρρρ.)  Utilization of Equations (9.6a) and (9.6b) leads

to

Vα =

Wα
ρ'α

Wα
ρ'α

+
Wε
ρ'ε

=

0.703

8.94 g /cm3

0.703

8.94 g /cm3
+

0.297

8.25 g /cm3

= 0.686



Copyright © John Wiley & Sons, Inc. 83

Vε =

Wε
ρ'ε

Wα
ρ'α

+
Wε
ρ'ε

=

0.297

8.25 g /cm3

0.703

8.94 g /cm3
+ 0.297

8.25 g /cm3

= 0.314

Now, using Equation (18.12)

ρ = ραVα +  ρεVε

= 1.88 x 10-8 Ω - m( )(0.686) +  5.32 x 10-7  Ω - m( )(0.314)

=  1.80 x 10-7  Ω - m

Finally, for the conductivity [Equation (18.4)]

σ =
1
ρ

=
1

1.80 x 10−7 Ω − m
= 5.56  x106 (Ω - m)-1

18.31  (a)  In this problem, for a Si specimen, we are given p and σσσσ, while µµµµh and µµµµe are included in

Table 18.2.  In order to solve for n we must use Equation (18.13), which, after rearrangement, leads

to

n =
σ − p e µh

e µ
e

=  
103 (Ω − m)−1 − 1.0 x 1023 m−3( )1.602 x 10−19 C( )0.05 m2 /V - s( )

1.602 x 10−19 C( )0.14 m2 / V - s( )
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=  8.9 x 1021 m-3

(b)  This material is p-type extrinsic since p (1.0 x 10
23

 m
-3

) is greater than n (8.9 x 10
21

 m
-3

).

18.41  This problems asks that we determine the room-temperature electrical conductivity of silicon that

has been doped with 1023 m-3 of arsenic atoms.  Inasmuch as As is a group VA element in the

periodic table (Figure 2.6) it acts as a donor in silicon.   Thus, this material is n-type extrinsic, and it

is necessary to use Equation (18.16), with n = 1023 m-3 since at room temperature all of the As

donor impurities are ionized.  The electron mobility, from Figure 18.17 at an impurity concentration of

1023 m-3, is 0.065 m2/V-s.  Therefore, the conductivity is equal to

σ = n e µe = 1023 m−3( )1.6 x 10−16 C( )0.065 m2 / V − s( )= 1040 (Ω − m)−1

18.47W  In this problem we are asked to determine the magnetic field required to produce a Hall voltage

of –3.5 x 10-7 V, given that σσσσ = 1.2 x 107 (Ω-m)-1, µµµµe = 0.0050 m2/V-s, Ix = 40 A, and d = 35 mm.

Combining Equations (18.1W) and (18.3bW), and after solving for Bz, we get

Bz =
VH σd

Ixµe

=  
−3.5 x 10−7 V 

 
 
 1.2 x 107 (Ω − m)−1[ ]35 x 10−3 m( )

(40 A) 0.0050 m2 / V - s( )

= 0.74 tesla

18.54W  We want to compute the plate spacing of a parallel-plate capacitor as the dielectric constant is

increased form 2.5 to 4.0, while maintaining the capacitance constant.  Combining Equations

(18.6W) and (18.7W) yields

C =
εrεoA

l
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Now, let us use the subscripts 1 and 2 to denote the initial and final states, respectively.  Since C
1
 =

C
2
, then

εr1εoA

l1
=  

εr2εoA

l2

And, solving for l2

l2  =  
ε
r2l1
ε

r1
=  

(4.0)(1 mm)
2.5

=  1.6 mm

18.60W  (a)  We want to solve for the voltage when Q = 3.5 x 10
-11

 C, A = 160 mm
2
, l = 3.5 mm, and εεεεr

= 5.0.  Combining Equations (18.4W), (18.6W), and (18.7W) yields

Q
V

=  εrεo
A
l

And, solving for V

V =  
Q l

ε
r
ε

o
A

=  
3.5 x 10−11 C( )3.5 x 10−3 m( )

(5.0) 8.85 x 10−12 F/ m( )160 mm2( )1 m2 /106 mm2( )

= 17.3 V

(b)  For this same capacitor, if a vacuum is used

V =  
Q l

εoA

=  
3.5 x 10−11 C( )3.5 x 10−3 m( )

8.85 x 10−12 F /m( )160 x 10−6 m2( )

= 86.5 V
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(e)  The polarization is determined using Equations (18.12W) and (18.6) as

P =  εo(εr − 1)
V
l

=  
8.85 x 10−12 F /m( )(5.0 − 1)(17.3 V)

3.5 x 10−3 m

=  1.75  x 10-7 C/m2

18.D2  This problem asks that we determine the electrical conductivity of an 85 wt% Cu-15 wt% Zn alloy

at -100°C using information contained in Figures 18.8 and 18.28.  In order to solve this problem it is

necessary to employ Equation (18.9) which is of the form

ρtotal =  ρt +  ρi

since it is assumed that the alloy is undeformed.  Let us first determine the value of ρρρρi at room

temperature (25°C) which value will be independent of temperature.  From Figure (18.8), at 25°C

and for pure Cu, ρρρρt(25) = 1.75 x 10-8 Ω-m.  Now, since it is assumed that the curve in Figure 18.28

was generated also at room temperature, we may take ρρρρ as ρρρρtotal(25) at 85 wt% Cu-15 wt% Zn

which has a value of 4.7 x 10-8 Ω-m.  Thus

ρi  =  ρtotal(25) −  ρt(25)

=  4.7 x 10-8 Ω - m -  1.75 x 10-8 Ω - m =  2.95 x 10-8 Ω - m

Finally, we may determine the resistivity at -100°C, ρρρρtotal(-100), by taking the resistivity of pure Cu

at -100°C from Figure 18.8, which gives us ρρρρt(-100) = 0.90 x 10-8 Ω-m.  Therefore

ρtotal (-100) =  ρi  +  ρt(-100)

=  2.95 x 10-8 Ω - m +  0.90 x 10-8 Ω - m =  3.85 x 10-8 Ω - m

And, using Equation (18.4) the conductivity is calculated as



Copyright © John Wiley & Sons, Inc. 87

σ =  
1
ρ

=  
1

3.85 x 10−8 Ω − m
=  2.60 x 10

7
 (Ω - m)

-1
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CHAPTER 19

THERMAL PROPERTIES

PROBLEM SOLUTIONS

19.4  (a)  For aluminum, C
v
 at 50

 
K may be approximated by Equation (19.2), since this temperature is

significantly below the Debye temperature.  The value of C
v
 at 30

 
K is given, and thus, we may

compute the constant A as

A =  
Cv
T3 =  

0.81 J/ mol- K

(30 K)3
=  3 x 10-5 J/mol - K4

Therefore, at 50
 
K

Cv =  AT3 =  3 x 10-5  J/mol -K 4( )(50 K)3 =  3.75 J/mol -K

and

cv =  (3.75 J/mol- K)(1 mol/26.98 g)(1000 g/kg) =  139 J/kg - K

19.14  This problem asks for us to determine the temperature to which a cylindrical rod of tungsten

15.025 mm in diameter must be heated in order for it of just fit into a 15.000 mm diameter circular

hole in a plate of 1025 steel (which, of course, is also heated), assuming that the initial temperature

is 25°C.  This requires the use of Equation (19.3a), which is applied to the diameters of both the rod

and hole.  That is

df − do
do

=  α l Tf −  To( )

Solving this expression for df yields

df =  do 1 + α l Tf − To( ) 
 

 
 
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Now all we need do is to establish expressions for df(steel) and df(W), set them equal to one

another, and solve for Tf.  According to Table 19.1, ααααl(steel) = 12.0 x 10-6 (°C)-1 and ααααl(W) = 4.5 x

10-6 (°C)-1.  Thus

df(steel) =  df (W)

(15.000 mm) 1 + 12.0 x 10−6(°C)−1{ }Tf − 25°C( ) 
 

 
 

= (15.025 mm) 1 + 4.5 x 10−6(°C)−1{ }Tf − 25°C( ) 
 

 
 

Now solving for Tf gives Tf = 222.4°C

19.24  This problem asks that we treat a porous material as a composite wherein one of the phases is a

pore phase, and that we estimate upper and lower limits for the room-temperature thermal

conductivity of an aluminum oxide material having a 0.25 volume fraction of pores.  The upper limit
of k (kupper) may be determined using Equation (16.1) with thermal conductivity substituted for the

elastic modulus, E.  From Table 19.1, the value of k for Al2O3 is 39 W/m-K, while for still air in the

pore phase, k = 0.02 W/m-K.  Thus

kupper =  Vpkair  +  VAl
2
O

3
kAl

2
O

3

= (0.25)(0.02 W/m-K) + (0.75)(39 W/m-K) = 29.3 W/m-K

19.29  We want to heat the copper wire in order to reduce the stress level from 70 MPa to 35 MPa;  in

doing so, we reduce the stress in the wire by 70 MPa - 35 MPa = 35 MPa, which stress will be a
compressive one (i.e., σσσσ = -35 MPa).  Solving for T

f
 from Equation (19.8)

Tf =  To −
σ

Eα
l

=  20°C −  
-35 MPa

110 x 103 MPa( )17 x 10−6 (°C)−1[ ]
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= 20°C + 19°C = 39°C  (101°F)

19.D1  For these railroad tracks, each end is allowed to expand one-half of the joint space distance, or
the track may expand a total of this distance (4.6 mm).  Equation (19.3a) is used to solve for T

f
,

where ααααl for the 1025 steel is found in Table 19.1 [i.e., 12.0 x 10-6 (°C)-1].  Thus,

Tf =
∆ l

α
l
l
o

+  To

=  
4.6 x 10−3 m

12.0 x 10−6 (°C)−1[ ](11.9 m)
+  10°C

= 32.2°C + 10°C = 42.2°C  (108°F)
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CHAPTER 20

MAGNETIC PROPERTIES

PROBLEM SOLUTIONS

20.1  (a)  We may calculate the magnetic field strength generated by this coil using Equation (20.1) as

 
H =  

N I

l

=  
(200 turns)(10 A)

0.2 m
=  10,000  A - turns/m

(b)  In a vacuum, the flux density is determined from Equation (20.3).  Thus,

Bo =  µoH

=  1.257 x 10-6 H/m( )(10,000 A - turns/m) =  1.257 x 10-2 tesla

(c)  When a bar of titanium is positioned within the coil, we must use an expression that is a

combination of Equations (20.5) and (20.6) in order to compute the flux density given the magnetic

susceptibility.  Inasmuch as χχχχm = 1.81 x 10-4 (Table 20.2), then

B =  µoH +  µoM =  µoH +  µoχmH =  µoH 1 +  χm( )

=  1.257 x 10-6 H/m( )(10,000 A - turns/m) 1 +  1.81 x 10-4( )

≅ 1.257 x 10-2 tesla

which is essentially the same result as part (b).  This is to say that the influence of the titanium bar

within the coil makes an imperceptible difference in the magnitude of the B field.

(d)  The magnetization is computed from Equation (20.6):

M =  χmH =  1.81 x 10-4( )(10,000 A - turns/m) =  1.81 A/m
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20.6  (a)  The magnetic permeability of this material may be determined according to Equation (20.2) as

µ =
B
H

=
0.630 tesla

5 x 105 A /m
=  1.26 x 10

-6
 H/m

(b)  The magnetic susceptibility is calculated as

χm =
µ

µ
o

− 1 =
1.26 x 10−6 H /m

1.257 x 10−6 H/m
−  1

=  2.39 x 10-3

20.27  (a)  The B-H data provided in the problem are plotted below.

(b)  The first four data points are plotted below.



Copyright © John Wiley & Sons, Inc. 93

The slope of the initial portion of the curve is µµµµi (as shown), is

µi  =
∆B

∆H
=  

(0.15 − 0) tesla
(50 − 0) A /m

=  3.0 x 10-3 H/m

Also, the initial relative permeability [Equation (20.4)] is just

µri  =  
µi
µo

=
3.0 x 10−3 H /m

1.257 x 10−6 H/m
=  2400

(c)  The maximum permeability is the tangent to the B-H curve having the greatest slope;  it is drawn

on the plot below, and designated as µµµµ(max).
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The value of µµµµ(max) is

µ(max) =
∆B
∆H

=  
(1.3 − 0.3) tesla
(160 − 45) A - m

=  8.70 x 10 
-3

 H/m

20.32  (a)  Given Equation (20.12) and the data in Table 20.7, we are asked to calculate the critical
magnetic fields for lead at 2.5 and 5.0 K.  From the table, for Pb, TC = 7.19 K and BC(0) = 0.0803

tesla.  Thus, from Equation (20.3)

HC(0) =
BC(0)

µ
o

=  
0.0803 tesla

1.257 x 10−6 H /m
=  6.39 x 104  A/m

Now, solving for HC(2.5) using Equation (20.12) yields

HC(T) = HC(0) 1 −
T2

TC
2

 

 
 
 

 

 
 
 

HC(2.5) = 6.39 x 104 A /m( )1 −
(2.5 K)2

(7.19 K)2

 

 
 
 

 

 
 
 

= 5.62 x 104 A/m

(b)  Now we are to determine the temperature to which mercury must be cooled in a magnetic field of
15,000 A/m in order for it to be superconductive.  The value of HC(0) must first be determined using

BC(0) given in the table (i.e., 0.0411 tesla);  thus from Equation (20.3)

HC(0) =
BC(0)

µ
o

=
0.0411 tesla

1.257 x 10−6 H/m
=  3.27 x 104 A/m

Since TC = 4.15 K we may solve for T using Equation (20.12) as

T =  TC 1 −
HC(T)

H
C

(0)
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=  (4.15 K) 1 −
15,000 A/m
32,700 A/ m

=  3.05 K
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CHAPTER 21

OPTICAL PROPERTIES

PROBLEM SOLUTIONS

21.9  We want to compute the velocity of light in diamond given that εεεεr = 5.5 and χχχχm = -2.17 x 10
-5

.  The

velocity is determined using Equation (21.8);  but first, we must calculate the values of εεεε and µµµµ for

diamond.  According to Equation (18.7W)

ε =  εrεo =  (5.5) 8.85 x 10-12 F/m( ) =  4.87 x 10-11 F/m

Now, combining Equations (20.4) and (20.7)

µ =  µo χm +  1( )

=  1.257 x 10-6 H/m( )1 −  2.17 x 10-5( ) =  1.257 x 10-6 H/m

And, finally

v =
1

εµ

=  
1

4.87 x 10−11 F /m( )1.257 x 10−6 H/m( )

=  1.28 x 108  m/s

21.11W  This problem asks for us, using data in Table 21.1, to estimate the dielectric constants for silica

glass, soda-lime glass, PTFE, polyethylene, and polystyrene, and then to compare these values with

those cited in Table 18.1W and briefly explain any discrepancies.  From Equation (21.10)

εr  =  n2
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Thus, for fused silica, since n = 1.458

εr  =  (1.458)2 =  2.13

For polyethylene

εr  =  (1.51)2 =  2.28

When we compare the value of εεεεr for PE with that in Table 18.1W at frequencies of 1 MHz, there is

reasonable agreement (i.e., 2.28 versus 2.3).  However, for fused silica there is a significant

discrepancy (i.e., 2.13 versus 3.8).  The reason for this discrepancy is that an ionic component to the

dielectric constant is present at 1 MHz, but is absent at frequencies within the visible electromagnetic

spectrum, which frequencies are on the order 109 MHz (1015 Hz).  This effect may be noted in

Figure 18.8W.

21.19  In this problem we are asked to calculate the fraction of nonreflected light transmitted through a 20

mm thickness of transparent material, given that the fraction transmitted through a 10 mm width is

0.90. From the fraction of nonreflected light transmitted, IT
' /Io

' , and using a rearranged form of

Equation (21.18), we may determine the value of ββββ as

β =  −
1
x

ln
IT

'

I
o
'

 

 

 
 

 

 

 
 

=  −  
1

10 mm

 
 
 

 
 
 ln (0.90) =  1.05 x 10-2 mm-1

Now, solving for 
IT

'

Io
'

 when x = 20 mm gives

 

I
T
'

I
o
'

=  exp (- βx)

=  exp − 1.05 x 10−2 mm−1( )(20 mm) 
 

 
 =  0.81
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21.30  This problem asks for the difference in energy between metastable and ground electron states for

a ruby laser.  The wavelength of the radiation emitted by an electron transition from the metastable

to ground state is cited as 0.6943 µm.  The difference in energy between these states, ∆∆∆∆E, may be

determined from using a combined form of Equations (21.6) and (21.3), as

∆E =  hν =
hc
λ

=  
4.13 x 10−15 eV - s( )3 x 108 m/ s( )

6.943 x 10−7 m

= 1.78 eV
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