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Abstract

Balance of mass and linear momentum of a solid—fluid mixture furnish a complete set of equations from which the displacements of the sc
matrix and the pore pressures can be resolved for the case of quasi-static loading, resulting in the se-gal@dlerkin formulation. In this
work, a recently proposed model for dense sands is utilized to model the effective stress response of the solid matrix appearing in the bal
of linear momentum equation. In contrast with other more traditional models, inherent inhomogeneities in the porosity field at the meso-sc
are thoroughly incorporated and coupled with the macroscopic laws of mixture theory. Also, the hydraulic conductivity is naturally treated :
a function of the porosity in the solid matrix, allowing for a more realistic representation of the physical phenomenon. The aforementione
balance laws are cast into a fully nonlinear finite element program utilizing isoparametric elements satisfying the BabuSka—Brezzi stabil
condition. Criteria for the onset of localization under locally drained and locally undrained conditions are derived and utilized to detec
instabilities. Numerical simulations on dense and loose sand specimens are performed to study the effects of inhomogeneities on the stal
of saturated porous media at the structural level.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction behavior as a macroscopic process and were, therefore, unable
to model the very complex behavior of saturated geomaterials
Deformation banding is one of the most common failureaccurately.
modes in geomaterials such as rock, concrete, and soil. It is In this paper, we study the deformation—diffusion behavior
well known that appearance of bands of intense localized desf a two-phase system of soil and fluid. It is well known that
formation significantly reduces the load-carrying capacity ofthe coupling between the mechanical behavior of the underly-
any structure that develops th¢in2]. Furthermore, when deal- ing drained solid and the fluid flow can lead to sharply distinct
ing with fluid-saturated geomaterials, the interplay between thbehavior of the overall mixed system. For instance, dilative
contraction/dilation of pores and the development of pore fluidsaturated rock masses can lead to a phenomenon called ‘dila-
pressures is expected to influence not only the strength of thiant hardening’, which, as the name implies, tends to delay the
solid matrix but also its ability to block or transport such flu- onset of strain localization because effective pressures tend to
ids [3]. Accurate and thorough simulation of these phenomenincrease and hence strengthen the sarf§pté]. On the other
(i.e., deformation banding and fluid flow) requires numericalhand, relatively loose sands tend to compact when sheared.
models capable of capturing fine-scale mechanical processé@$erefore, when pores compact faster than the rate at which
such as mineral particle rolling and sliding in granular soilsfluids can escape, pore fluid pressure increases and the effec-
and the coupling between porosity and relative permeabilitytive pressure decreases, leading to a phenomenon known in the
Until recently, these processes could not even be observed geotechnical community as ‘liquefactiofr—9]. Consequently,
the laboratory. Numerical models could only interpret materiait is important to study the deformation—diffusion behavior in
B ) saturated granular media taking into account the effect of pore
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Even though the interplay between fluid flow and solid defor-is not decomposed into elastic and plastic parts as the porosity
mation using finite elements has been studied before, the foctiild is naturally coupled to the elastoplastic formulation ema-
of models dealing with fully saturated and partially saturatedhating from the constitutive law for the porous matrix. The nu-
soils has been on ‘homogeneous’ material resp¢h8el19] merical implementation also differs from that of Armdf®]

This has been a natural approach given the fact that the technals it does not rely on the operator split technique, but rather
ogy to infer material inhomogeneities in the laboratory has onlysolves the coupled system of nonlinear equations directly. It is
been recently developed. Therefore, numerical models dealingorthwhile noting that Armero and CallgB87] and Callari and
with the simulation of strain localization have either imposedArmero[38] expanded the work by Armeif@0] by developing
inhomogeneous deformation fields (e[@Q—12) or introduced a strong discontinuity model to model deformation banding in
arbitrary weaknesses in the otherwise pristine specimens (e.gppmogeneous saturated media at finite strains.

[20-23). In this work, fluid-saturated porous media is modeled using

New advances in laboratory experimentation, such as X-raponlinear continuum mechanics and a novel constitutive model
computed tomography (CT) and digital image correlation (DIC)for sands. Furthermore, the effect of porosity is also accounted
technigues, allow accurate observation of key parameters assior by utilizing the Kozeny—Carman equation which relates the
ciated with material strength and provide the motivation for theintrinsic permeability to the porosif39]. The objective of this
development of more realistic models that incorporate informapaper is to study the effect of fluctuations in porosity at the
tion at a scale finer than specimen scale (see workg4n26] meso-scale on the stability and transport properties of samples
for applications of X-ray CT andl27,28] for applications of of dense and loose sand analyzed as boundary-value problems.
DIC). In this paper, we adopt a refined constitutive model based Using the balance laws for the system, along with
on a meso-scale description of the porosity to simulate the dghe concept of effective stresses, the strong form of the
velopment (location and direction) of deformation bands ordeformation—diffusion problem at finite deformations is devel-
saturated samples of sand. The effective stress behavior of tiped. The variational form is obtained as a two-field mixed
granular material is assumed to be governed by an elastoplafgrmulation where the displacements in the solid matrand
tic model for sands developed by the author§2@,30] The the Cauchy fluid pressurgsserve as basic unknowns. Thus,
ability of the model to incorporate data depicting the inheren@ classicalu — p formulation is obtained and discretized in
inhomogeneities in samples of sand at the meso-scale providépace using elements satisfying the BabuSka—Brezzi stability
a natural and realistic source of inhomogeneity that, as weondition [40,41] The linearization of the variational equa-
shall demonstrate subsequently, affects the stability and floWions serve as the building block to develop expressions for
characteristics of sand specimens. As a matter of terminologhe acoustic tensor for two extreme cases: the case of locally
the ‘meso-scale’ here refers to a scale smaller than specim@hained behavior and the case of IocaIIy undrained behavior.
size but larger than particle size. In a typical sample encounfhese expressions for the acoustic tensor are then utilized in the
tered in the laboratory, the meso-scale refers to the millimeteanalysis of localization of strain for a fully saturated medium.
scale. The structure of the paper is as follows. In Section 2 the con-

The constitutive model for the effective stresses is a membegervation of mass and linear momentum equations for a two-
of the critical state plasticity family of models. It is based on phase mixture are derived. Section 3 describes the constitutive
an Origina| mode' proposed by Jeﬁeries[m] and extended framework utilized in the formulation. In particular, the con-
by the authors i{29,30] Two main features distinguish this Cept of effective stress is introduced and the model governing
model from its critical state predecessors. First, the yield surthe effective stresses is briefly described. Darcy's law is pre-
face is a”owed to ‘detach’ from the critical state line (CSL) by sented as the fundamental constitutive equation for fluid flow.
introducing a state parametér[32], allowing a state point to In Section 4, the finite element solution procedure is presented
|ie either above or be'ow the CSL. Through the state param@nd the |ineari2ati0n Of the Variational equations iS addressed
ter l// we are able to prescribe Spatia] values of porosity acros'ly detail. Section 5 addresses the extreme criteria for localiza-
the sample, which constitutes the connection to the meso-scaféon in fluid-saturated media. The framework described above
Second, the model features a nonassociative flow rule andigthen used in a series of numerical examples presented in Sec-
three stress-invariant formulation, for capturing important fealion 6, where it is shown that the stability and flow properties
tures of sand behavigB3]. of samples of sand are profoundly influenced by meso-scale

The model for the two-phase system is based on the theophomogeneities in the initial porosity field.
of mixtures[34,35], which serves as the underlying theoretical ~As for notations and symbols used in this paper, bold-faced
block to develop balance laws for multi-phase bodies. Saturategtters denote tensors and vectors; the symbalenotes an
granular media is modeled as a two-phase system composedidfer product of two vectors (e.ga - b = a;b;), or a single
a solid phase and a fluid phase. This study extends the wolgontraction of adjacentindices of two tensors (&gls=c;;d;);
of Li et al. [36] who considereclastic expulsion of fluids at the symbol *’ denotes an inner product of two second-order
finite strain and also extends the work by Arméi®] who  tensors (e.gs : d=c;;d;;), or a double contraction of adjacent
looked at the strain localization behaviortidmogeneousat-  indices of tensors of rank two and higher (e®:,e®=C;jxeg));
urated samples of soil—obeying a generalized Drucker—Pragéfe symbol &' denotes a juxtaposition, e.ga® b);; = a;b;.
constitutive model—under boundary conditions favoring inho-Finally, for any symmetric second-order tenserand g, (¢ ®
mogeneous deformations. Furthermore, here the fluid conte®jx = % B, (@ ® B)ijx = Bixoji, and (@O P);jx; = it B j-
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2. Balance laws: conservation of mass and linear convenient to define the total time derivative following the
momentum a-phase such that
o
Consider a two-phase mixture of solids and fluid. The balancc@ — @ + VX)) - vy, (2.3)
equations are obtained by invoking the classical mixture theory dr or

(see for example the works if84,35). Within this context,
eacha-phase ¢ = s, f, for solid and fluid, respectively) or
constituent occupies a volume fractiepf, := v,/ V, whereV,

is the volume occupied by thephase and’ = V5 + V; is the
total volume of the mixture. Naturally,

where VX(J) = 0J/0x is the gradient operator with respect
to the current configuratiof? andv,, = 0¢,, /0t is the velocity
vector of thea-phase. For simplicity of notation and where
there is no room for ambiguity, we drop the subscripts and
superscripts for all quantities pertaining to the solid phase, as
oS+ ¢f —1 2.1 Wwe \_/viII write all balance Iaws follqwing this phase. It is thus
straightforward to check the identity
The total mass of the mixture is defined by the mass contribution .
from each phase, i.eM = Mg+ Ms. The inherent or true d@ = 4o +VX0O) -V (2.4)
mass density for the-phase is defined as, := M,/ V,. Also, dr dr ’
the apparent or partial mass density is givendly= ¢"p,.  wherev := v — vis the relative velocity vector ang/ds (0) =
Therefore, the total mass density is given by :

(0) is the total material time derivative following the solid
p=p°+p". (2.2) Phase. _ |
Consider the expression for the total mass-ghase in the
Furthermore, both phases are assumed to be superimposedanrent configuration, i.e.,
top of each other and hence, a poinih the mixture is occupied
by both sqlid and fluid simultarjeously. 3 m* = / ¢%p, dQ :/ $*py oAy,  o=sf, (2.5)
From this point forward, all inherent or true quantities per- Q (o8,

taining to thex-phase are designated with a subscript, wherea\%/hich has been pulled back to the reference configuration of

apparent or partial quantities are designated with a superscripr%ea phase via the mapping:* and whereJ, = detF, is the
: - o0 o= o
as a general notation. Jacobian of the deformation gradient tenBgr= 0¢,/0X,. If
there is no production of-phase mass and there are no mass
2.1. Balance of mass exchanges amongst phases, conservation of mass implies

In deriving the balance laws, it is relevant to pose all timef &
derivatives following a particular phase. Frdfig. 1, we note e
that the current configuration of the mixture in a regidis de-
fined by the mapping of the solid phage(Xs, ¢), whereXs = which after classical gontinuity arguments yields the localized
X is the position vector in the reference configuratifni= Qo,  form of the conservation of mass for thephase
and the mapping of the fluid phasge(Xs, t), whereX; is the d*
position vector in the reference configuratiaé. Hence, it is Ep“ + p*V*.v, =0, 2.7)
whereV* . () is the divergence operator with respect to the
current configuration. Making use of Eq. (2.7) and identity (2.4)
the conservation of mass equation for the solid and fluid phases
are, respectively,

dO{
:/ d—((],’)ap“.]a) dQU :0, OC:S,f, (26)
@ at

PS4+ pSVi.v=0, (2.8a)
oIV v=—V*.q (2.8b)

whereq = p'V is the Eulerian relative flow vector of the fluid
phase with respect to the solid matrix. Adding Egs. (2.8a) and
(2.8b), we get the basic conservation of mass equation for the
system, i.e.,

po=—JV*-q, (2.9)

wherepy = Jp is the pull-back mass density of the mixture in
the reference configuration. It is clear from the above equation
that in the case of locally undrained deformations (i.e., when

Fig. 1. Current configuratiorf2 mapped from respective solid and fluid bOth_ phases of the mith_Jre mOV_e as oqet)z _O and thus the
reference configurations. relative mass flux term in the right-hand side drops out and

X1
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the classical conservation of mass for a mono-phase body B2. Balance of linear momentum
captured.

Egs. (2.8a) and (2.8b) are typically simplified by recalling Atthis point, itis necessary to introduce the concept of partial
the definition of the partial densities and introducing the bulkstresses in a more rigorous way. L€t denote the Cauchy
modulus. For barotropic flows, there exists a functional relapartial stress tensor for thephase. The total Cauchy stress
tionship of the formf,(p«, p,) =0, wherep, is the intrinsic  tensor is obtained from the suf85,44,45]

Cauchy pressure in thephase or the force acting on this phase

_ .S f
per unit area of the same phd86,42] Thus, it is meaningful ¢=¢ +¢ - (2.17)
to define the bulk modulus of thephase such that From the above definition, an expression for the partial Cauchy
dp, pressure or mean normal stress for #hphase can be readily
Ky= Pugy s %7 s f, (2.10)  obtained, i.e.p* = —$tre” and hence, the intrinsic Cauchy
o

pressures can be defined such that
and therefore Eqgs. (2.8a) and (2.8b) can then be rewritten,

1
i _ s - f
respectively, as Ps= ~35 tre> and p;= —37; tro . (2.18)
¢+ ¢° (ﬁ + VX -v) =0, (2.11a) Also, the associated first Piola—Kirchhoff partial stress ten-
Ifs sor can be defined aB* = Je¢* - F~!, and the total first
q;f +¢f (% + VX. v) - _ivx g (2.11b)  Piola—Kirchhoff stress tensor is given by
f p
' P=pS4+ P (2.19)

Adding the last two equations and recalling Eq. (2.1), we get
The linear momentum acting on thephase is given by

. . 1
AN R VR ) (2.12) [34.35.46]
Ks K Pt
o __ o
The above equation can be expressed in terms of the Kircf%- o /Qp V2 dQ2, (2.20)

hoff intrinsic pressures by recalling the relationship between . .
the Kirchhoff and Cauchy stress tensors, ig.= Ja,, and whereas the resulting forces acting on the phasé4aie

as a result the Kirchhoff pressure for thephase is defined , o M o
asv, = Jp,. Using the identity/ = JV* . v [43] we express r= /Q(¢ P29+ ¢7hy) d2 + /r ¢t dr, (2.21)
Eqg. (2.12) as
a- ( ) whereg is the gravity vector. The first term in (2.21) results
s ‘ Vs . ¢° Vs ¢f O J from the body forces acting on thephase, the second term
(bS? +é X +J(1- TE TR —-—VvX.q comes from the forces exerted on thphase from other phases
S f S f Pt in the mixture, and the third term emanates from the tractions

(2.13) imposed on the phase at the boundAryNote that the partial
Eq. (2.13) is complete in the sense that neither constitutive ndfaction is related to the partial Cauchy stress ondtihase

kinematic assumptions have been introduced. In geomechanicdf the tetrahedron theorem, i.€%,= ¢*t, = ¢” - n, wheren
applications, a typical and plausible assumption is to treat th& & unit vector normal to the surfa¢e

solid phase as incompressible, and consequekigly—> oc. Balance of linear momentum on thephase necessitates

Then, theeducedbalance of mass equation for the mixture can g

be written as EI“ =r7, (2.22)

" ﬁ j ﬂﬁ _ ivx (2.14) and after pull-back and push-forward operations and enforcing
Ki + T K| _pf & ’ balance of mass, see Eq. (2.7), we get

Finally, we can write the Lagrangian balance of mass equatioyf p*a,dQ =r% (2.23)
by making use of the Piola identity, i.&7X - (JF~') =0 where Q

vX.(0) is the divergence operator with respect to the referenc@/herea, = d*v*/dr is the absolute acceleration vector for the
configuration of the solid phase and the superscript ‘t' is the,-phase. Once again, we can invoke localization arguments to
transpose operator. Thus, get the point-wise version for the balance of linear momentum

for the a-ph
IV q=v%.Q (2.15) or the a-phase

VX . 6% + p*g+ ¢%hy, = p%ay, 2.24
whereQ = JF~1. g is the Piola transform of the Eulerian prot ¢ ha=p ( )
vectorq. Therefore, the Lagrangian balance of mass equatiowhich leads to the overall balance of linear momentum equation

takes the form, cf. Eq. (2.9), for the mixture, i.e.,

po=—VX. Q. (2.16) V*-o+pg=pas+p'a, (2.25)
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whered = a; — ag is the relative acceleration. In obtaining the conjugate pair is furnished by the effective stre$sand the
above equation, the balance of linear momentum equations faymmetric part of the rate of deformation tensor for the solid
both phases have been added and the fact/ttat- d)f hs =0, matrix d = syml, with | = V*v, and where we have dropped
since these are mutually equilibrating internal forces, has beetme subscript ‘s’ from the velocity vector as there is no room
exploited. For the important case of quasi-static loading, alfor ambiguity.
inertial forces are neglected and the equation of balance of For the case of interest herein, where the solid phase is as-
linear momentum for the mixture reduces to the classical fornsumed to be incompressible, the above expression for the effec-
tive stress reduces to the classical form introduced by Terzaghi

VX. 6+ pg=0. (2.26)  [a9],ie.,
In this work, only quasi-static loading conditions will be con- 4/ — 5 + p1 — ¢/ = 7 4 91, (3.2)
sidered.

Finally, the Lagrangian form of the balance of linear momen-where the expression on the right-hand side has been obtained
tum is easily obtained from its Eulerian counterpart, namely, from direct application of the relationship between the Kirch-
hoff and the Cauchy stress (i.e.= Ja). Also note the sub-
VX P+ pog=pas+p'a (2.27)  script ‘" has been dropped from the fluid-phase pressures for

Accordinalv. the Laarangian balan f linear momentum f rsimplicity of notation. For incompressible solid grains, the
ceordingly, the Lagrangian balance ot inear Momentum 1ol 1o 'of mass for the solid phase (cf. (2.11a)) necessitates
the system in the quasi-static range takes the form .

¢S+ ¢3V* . v=0 implying (J ¢ =0, and therefore

PS=¢3/J and ¢'=1—(1-¢h)/J, (3.3)

Remark 1. The equations of ba_lange qf mass and I!near mo'whereqbg and ¢B are the reference values ¢f and ¢f when
mentum derived above from basic principles of the mixture the-J — 1. Also, the bulk modulus for the fluid phase is assumed
ory are identical to those presented by BorjgdB] and Lietal.  y, po constant and hence recalling its definition allows us to

in_[36]. In fact,_Bor_ja[45] considers the case of a three-phase, btain a relationship between the intrinsic fluid pressure and
mixture by taking into account the gas phase also and deve he intrinsic fluid density, i.e

ops a constitutive framework, but no boundary-value problems
are solved. The interested reader is referred to the wod&h _ dp _ P — pio

where the remaining balance laws for the multi-phase systeme = Pt dp; constant= pr = pro €xp Ks 34
are reported.

VX P+ peg=0. (2.28)

where pygq is the initial reference fluid mass density at initial
3. Constitutive framework Pressurepro.. - .
At this point, a constitutive framework governing tb#ec-

There is the need to establish a link between the state of stre%ee stress as a function of the solid matrix deformation can

and the displacements or deformations and between the flo
vector and the fluid pressure in the porous media. These lin
are provided by constitutive relationships that we shall explicat
in this section. In particular, the stresses are assumed to B!
a nonlinear function of the deformations via an elastoplastic
constitutive response. On the other hand, the relative flow vectdﬁ
is related to the fluid pressure using Darcy’s law. t

introduced. Herein we assume the effective behavior of the
ranular material is governed by the three-invariant hypere-
astoplastic model proposed by the author®,30] Here, we
mmarize the salient features of the model.
The model is cast within the framework of nonlinear kine-
atics where the total deformation gradient is assumed to allow
e multiplicative decomposition into elastic and plastic parts
[50], i.e.,

3.1. The elastoplastic model for granular media F=F®.FP, (3.5)

. . . .
Analogous to the case of mono-phase materials, constituti¥hereF® and P are defined as the elastic and plastic defor-

relations in fluid saturated porous media connect the deformdnation gradient, respectively.

tions in the solid matrix to a suitable measure of stress. The

relationship must connect so-called energy conjugate pairs of 1-1- [Sotropic hyperelasticity o S
stress—strain measures. Consider the general definition of COnsider the principal elastic stretches emanating fF6m

p e _ L
effective stress for saturated conditidag,48] = 4n“ (no sum), where.; for a =1, 2, 3 are the principal
elastic stretches in the corresponding principal directidfis

/ K andn® in the intermediate and current configuration, respec-
=0+ |1-——)pl, (3.1 . - . NP . X

s tively. Material isotropy is satisfied if the strain-energy function

¥ = Y45, 15, /5). The elastic region is assumed to be gov-

whereK is the' bulk' modulus of the solid mgtrix aridis the erned by the isotropic strain-energy function proposesii
second-_order |dent|ty_tenso_r. Borja [48] derived expression .4 utilized in modeling of granular bodies [62,53],
(3.1) using a strong discontinuity approach for the mechanical

theory of porous media, and has shown that one suitable enerd§i(sS, £8) = P(£8) + gu%g 2 (3.6)
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where less than or equal to 0.4 for san#]. Lode’s anglel plays

3 € _ g€ the role of the third stress invariant modifying the shape of

Y(ed) = —pokexpw, o= — ¥y _vo the yield and plastic potential surfaces on a deviatoric plane
%0 ~ K through the functiorf ={(0). Here we adopt the form proposed

1= o + ;‘P(sS)- (3.7) by Gudehus if54] and Argyris et al. iff{55], namely,

The independent variables are the volumetric and deviatorigg) — A+o+d-0 COS}),
invariants of the elastic logarithmic stretch tensor, respectively, 2

whereg is a constant parameter called ellipticity. The above
function is only convex for%gggl [56] and satisfies the
e = %\/2[(ef — &%+ (e5 — 9% + (5 — £9, (3.8)  boundary conditions: (&)= 1/0 whenf =0, i.e., tension cor-

ner; and (b)Y =1 whenf = /3, i.e., compression corner. The
wheresg = In 2. The strain-energy function is an invariant third invariant allows us to account for the fact that soils have
function of the elastic deformations only. The Kirchhoff effec- less yield strength in triaxial extension than in compression.
tive stress tensar is coaxial with the left elastic Cauchy—Green

(3.13)

eg=¢;+e5+¢5 and

deformation tensob® = F® . F®! and defined such that Remark 2. We note in passing that in the present work we
ow do not make use of the shape function proposed by Willam
7= 2@ - b°. (3.9)  and Warnke[57] as it has been shown recently [58] (and

experienced first hand by the authors) that such shape function,
The above hyperelastic model produces pressure-dependesfitown in[29, equation (12)]leads to convergence problems
elastic bulk and shear moduli, a feature commonly observeth the material subroutine whengets small. Hence, to avoid
in the laboratory. The elastic constants necessary for a fulbss of robustness in our numerical simulations, we only make
description of the elasticity are the reference steginand the  use of the simple shape function presented above.
reference pressum of the elastic compression curve, as well
as the compressibility indek. The model produces coupled  Similar to the yield surface, we can postulate a plastic
volumetric and deviatoric responses in the cage# 0 for  potential function of the form
which p€ is a nonlinear function of the volumetric deforma-

/) = / = = | =
tions. Otherwise, fotg = 0 the responses are decoupled andG(T ) =GP q,0,7) = O + pH(p. ) (3.14)
the shear modulug® = p is constant. with
M[1+In(m/p’ if N=0,
3.1.2. Plasticity for sands n= {MENJ[rl_((Il/f %)(p//ﬁ_)ﬁ/(l—ﬁ)] it N0 (3.15)
We define the three invariants of the effective Kirchhoff stress ! '
tensor as WhenT; =nj andN = N, plastic flow is associative; otherwise,
S o1 o it is nonassociative in the volumetric sense. Additionally, from
p=3trt, q= \/;Ilé Il the multiplicative decomposition of the deformation gradient,
1 tr 6/3 the additive decomposition of the velocity gradiérfibllows,
—CcosP=— =y, (3.10)
J6 o I=1°+I°P = d=d°*+d", (3.16)

where & = 7/ — p’1 is the deviatoric component of the ef- whered® = sym® andd® = syml®. Neglecting the plastic spin
fective stress tensor, and y = Vtr &2. The quantityp’ is @ (see[59] for significance and consequences), we write the
called the mean normal effective stress and is assumed negatiff@w rule as

throughout. Furthen is Lode’s angle whose values range from p_ 3 oG

0<6<n/3; it defines an angle on a deviatoric plane emanatinéj - l@' (3.17)
from a tension corner.

From these three stress invariants we construct a yield surfagéhere- is the so-called consistency parameter. _
of the form Finally, recall the definitions for the volumetric and devia-

toric plastic strain rate invariants, respectively,
F(t,m)=F(p',q,0,m) ={(Oq + p'n(p', m), (3.11)

where

_ M1+ In(mi/ ph] if N=0,
|\ M/NIL- A= N)(p /)N TN if N>0.

&) =trd® and ég’:\/gndp—%éelu. (3.18)

Also, consider the state parameigs, which is the distance
(3.12)  between the specific volume of the sample and the specific
volume at critical at the image pressure,
The image stress; < 0 controls the size of the yield surface; ~
L ! . "Yi=v— In(—m), 3.19
it is defined such that the stress ratie= —{q/p = M when Vi=v—vo+in(=m) ( )
p’ = mj. The parameteN >0 determines the curvature of the wherewv is the specific volumey,o is the reference specific

yield surface on a meridian plane and it typically has a valuesolume at unit pressure, andis the plastic compressibility



J.E. Andrade, R.l. Borja / Finite Elements in Analysis and Design 43 (2007) 361-383 367

index. The state parametéf furnishes a link to the meso-
scale by providing information about the relative density at a
point in the sample. If; < 0 the sample is denser than critical
and if y; > 0 the sample is said to be looser than critical. In 10° ¢
the case wheny; = 0 the sample is at critical state. All of
these parameters emanate from the critical state theory which
postulates the existence of the CE3,60]. 3

The hardening law, which relates the image pressure with
the state of stress, the state paraméterand thedeviatoric
component of plastic flow, reads

k(o"yd

104 T
fii = h(r* — m)és, (3.20)

wherer =7 (p’, ), andh is a constant material property, to :
be calibrated in the finite deformation regime. We note in pass- . . R . . .
ing that the above hardening law allows for correct qualitative 12 13 14 15 16 1.7 18 19
capture of key features in both loose and dense sands by allow- SPECIFIC VOLUME

ing hardening and softening plastic response. More details re- o o P
garding the elastoplastic model for sands presented herein af§- 2- Nondimensional values of intrinsic permeability (i./d7) as a
h . . . function of specific volume.

its numerical implementation can be found[29,30,61]

3.2. Darcy’s law to obtain the fully Lagrangian form

The relative flow vector is related to the Cauchy pore Q= —EK AVXp — oy, (3.25)
pressure via the Eulerian form of the classical Darcy’s law
[39,46,62]

whereK=JF~1.k-F~tis the pull-back hydraulic conductivity

a= —gk AV =), (3.21) SO

Remark 3. Note that the intrinsic permeability is treated as

a function of thecurrent value of porosityqsf and hence will

need to be linearized accordingly (see Eq. (4.45p. 2shows

the variation of the intrinsic permeability with specific volume.

For samples of globally undrained sand (as considered herein

in Section 6), the variation in specific volume is not significant

enough as to affect the results. However, in other boundary-

value problems where compaction/dilation bands are allowed

k= fl(s)fz(qbf)dz, (3.22) toformatlarge strains, changes in porosity can lead to changes
in permeability of a few orders of magnitugig].

wheresis a dimensionless parameter that expresses the effect of

the shape of the solid graing,(s) is called shape factof2(¢') 4. Finite element implementation

is called the porosity factor, and is the effective diameter

of the grains. One of the most widely used relationships for |n this section, the balance laws developed in Section 2 pro-
the permeability is the Kozeny—Carman permeability equatioRjide a complete set of governing equations, which allow for the
proposed by Kozenf63] and Carmarj64], namely (se¢39]),  solution of quasi-static deformation—diffusion boundary-value

wherek = kv /ulis the isotropic hydraulic conductivity tensor,
the scalak is the intrinsic permeability of the porous media,
w is the dynamic viscosity of the fluidy is the gravitational
acceleration constant, apd= p; g is the scalar specific weight
of the fluid andy; = p;g is its tensorial counterpart.

It is well documented throughout the literature that the in-
trinsic permeability can take the general foja®]

q,)f 3 problems. We depart from the strong form of the problem, and
k(¢h) = ——fzdz, (3.23) develop the variational form and its linearized version which
1801 - ¢" allows for optimal convergence of Newton—Raphson schemes,

which we will use herein to account for the effect of porosity a2nd finally present the classic matrix form known asuhe p

and Changes thereof in the Eulerian permeab“ity teRsor formulation. The prObIem results in a parabOIiC SyStem where
For completeness of presentation, we obtain the Lagrangiaife displacements of the solid phase and the pore pressures are

expression for Darcy’s law by recalling the Piola transform ofthe basic unknowns in an updated Lagrangian finite element

the relative flow vector, schemg65].
1

Q=JF 1. qg=—=JF 1. k- [V*p — %] (3.24)  4.1. The strong form
8

By the same token, the expression can be further reduced Consider the Lagrangian version of the strong form. Qgt
by using the well-known relationshiz*(0) = v*(0) - F be a simple body with boundatiyy defined by the solid matrix
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displacement and pressure fields are, respect[Gélly

Fu=1{u:Qo— R"u; € H', u=0on I'd}, (4.9)
Sp={p:Q — Rlpe H', p=ponT}} (4.10)

whereH1 is the space of Sobolev functions of first degree. The
second class of functions are the weighting functions or varia-
tions. We require the weighting functions to vanish on Dirichlet
boundaries. Thus, let the spaces of weighting functions associ-

0 0 ated with the displacement and pressure field be, respectively,
_______ b ra Vu=1{n:Q — Ry, € H', n=00nTg}, (4.11)
0 ° Y p={p: Qo — Ry e H', y=0onTh}. (4.12)

Fig. 3. Reference domaif2g with decomposed boundadyg.

LetG: &%, x &, x ¥, — R be given by

in the reference configuration. LBitbe the unit normal vector Gy, p, y) =/ (VXy: P — pon - 9) dQo _/ n - tdlo.
to the boundaryl’g. We assume the boundafyy admits the Qo rh

decompositiof41] (4.13)

To=riur.=r?uri, Under suitable smoothness conditiod&u, p, ) = 0 can be

g Fdom I 0_ Fpom qu 41 shown to be equivalent to balance of linear momentum in the
—S0 7 f0T o0 0 (4.1) strong form, i.e., Egs. (4.2), (4.4), and (4.5). Similarly, A&t

whererd, I't, ', andI'$ are open sets aritlis the empty set. Sux Fp x¥p > Riake the form

Fig. 3 shows the regio2g and its boundary’o decomposed

as described above. H(u, p,y) :/ [Wpo — Vxlp -QldQo — / YO dro.

The Lagrangian strong form for the quasi-static case and Qo Ig
incompressible solid grains reads: find the displacements (4.14)
x—X: Qo — R« and the Cauchy pore pressujes2 —~ R 506 again, under suitable smoothness conditiéiis, p, )=
such that 0 can be shown to be equivalent to balance of mass in the
vX. P+ pog=0 in Qo, (4.2) strong form, i.e., Egs. (4.3), (4.6), and (4.7). Consequently, the
) X _ Lagrangian weak form of the problem reads: find %, and
po+V7-Q=0 inQ, (43)  pe,suchthatforalye v, andy e 7,

o d

u=u only, @D G po = HU, p.w) =0. (4.15)
P-N=t onTlj}, (4.5)

- P 46 It is our objective to develop an updated Lagrangian scheme
p=pr Onlg, (4.6) and hence, we need to express the Lagrangian integrand of
Q-N=-Q onrIY, (4.7)  the above weak form in Eulerian form. We accomplish this by

recalling the identities
wherengg is the number of spatial dimensions to be considered,

U andp are the prescribed displacements and pressure on th qu - PdQ :/
Dirichlet boundariesl“‘é and Iy, respectively. By the same to- /g, ' fo

ken,t andQ are the prescribed traction vector and influx with X "

respect to the Neumann boundari€s and I, respectively. /Q Vi QdQO:/Q IV - qdQo, (4.16)
Finally, it is necessary to specify the initial conditions 0 0

qu : 1dQo,

which we can insert into Egs. (4.13) and (4.14) above to get
uX,r=0)=up(X), pX,t=0)=po(X), (4.8)

whereX is a point inQ. G(u, p,m) =/Q (V7 —Jpn-g) dQo — /F[ n-tdlo
0 0
(4.17)

4.2. The variational form

and
To define the weak or variational form, two classes of func-
tions need to be characteriztl]. The first class is composed g (u, p, y) = / [Wpo — IV - q] dQo — / Y Qdl.
of trial solutions, which are required to satisfy the Dirich- Qo ry
let boundary conditions. The spaces of trial solutions for the (4.18)
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Finally, for the sake of compactness of presentation, we intrapezoidal family and obtain

troduce the following notations:

HAt(ua pv lﬁ)
g1(U, p) = / V¥ : (7' — Jpl) dQo, (4.199) = / YApo d2
Q Qo
g2(u, p) = — /90 Jpn - 9dQo, (4.19b) — A o [0 VY - g+ (L= ) (J VY - 0),] dQo
UVY-Dpiy
gent(t) = /ra - tdlo, (4-190) e /F Y0+ (A—®)0,)dIy, (4.24)
0

and similarly

Qn+x

whereApg = pg — po,, and where we have omitted the +

hi(u, p) :/ Vo dQo, (4.20a) 1’ subscript for simplicity of notation. Similar to the results
Qo obtained above, the variational form implies
J
ha(u, p) = VX k- [V¥p — 9£1dQo, 4.20b
2U, p) /Q e Y-k [VEp —y11dQ0 (4200 p1 u, ) = 0 — W (U, p) — B (U, p), (4.25)
hexi(t) :f Y Qdl, (4.20c) where
I
hAL (¢ =At/ nto A0,
so that Eq. (4.15) implies ext(!) e ¥ Qn+a0lo
G (U, p. 1) = gext(t) — 22U, p) — ga(U, p), 4.21) M, p)= f VAo dQ0,
H(U, p. ) = hext(t) — ha(u, p) — ha(U, p). (4.22) %
WU p) = =1 [ IV 0000 (4.26)
4.2.1. Time integration and linearization of the variational Qo

form

The Newton—Raphson approach follows the standard proce-

Satisfaction of the weak form will entail solving a coupled ;e in which the governing equations from the weak form are
nonlinear system of equations where the primary variables Algxpanded about a configuration®, p*) and only linear terms

the displacements and the pore pressumg hence the name
u — p formulation. At the same time, the — p formula-

are kept, i.e.,

tion is resolved using an iterative Newton—Raphson procedur® = G(u, p, ) ~ G(Uk, o+ 5G (U, Ao, (4.27)
which necessitates the system Jacobians or consistent tangegts Ha, (U, p, W) & Hp, (UK, p*, W) + SHa, (UF, p*, ¥,

in closed form for optimal asymptotic convergence rates. For

the particular model proposed herein, it is possible to calculate (4.28)
such consistent tangents and thus attain optimal convergenbence, implying

rates. This is furnished by the fact that the elastoplastic model r ok vk

proposed is integrated within the return mapping algorithm— (U, P*, ) = 0G(U", p*, ), (4.29)
framework[67], which allows for a closed form expression for — Ha, (U, p*. ) = SHa (¥, p*, ). (4.30)

the elastoplastic consistent tangent operator [2&80,61]for

Therefore, the iterative strategy necessitates evaluation of

more details). the variationsdG(u, pk, n) and SHy, (UX, p*, ). Note that

Consider the generalized trapezoidal family of methdd$

Eq. (4.27) is solved at timg,, 1 as implied by our notation.

utilized in the solution of parabolic problems. The one-step The variation ofsG(u, p, ) implies

scheme relies on the advancement of the solution at time station

t,+1 from converged values at, i.e., 0G(U, p, ) = dgext(t) — dg1(U, p) — dga(u, p), (4.31)

u _fu u u where dgext(t) = 0 for deformation-independent tractions.
{p }n+1 - { p }n +ard- “){ p }n + Am{ p }n+1’ (4.23) Application of the chain rule then yields

where« is the integration parameter aild = ¢,11 — 1, IS og
the time step. Several classical schemes emanate for suitable

1(u,p)=/ [6V*y: (' — Jpl)
Qo

choices of the integration parameter. ko= 0 the scheme + V¥ : 6(7 — Jpl)] dQo, (4.32)
reduces to the explicit Euler algorithm,= % captures the where

Crank—Nicolson scheme, ang-1 reduces to the implicit back-

ward Euler. For a detailed discussion about the stability angiyx, — —v*y . v¥su, (4.33)

accuracy of the above-mentioned family $4&]. With the pur-

pose of obtaining a numerical scheme purely dependent on dig{t’ — Jp1) = € +7 @1+ 701

placements! and pressurg, we integrate Eq. (4.22) using the

—Jpl®1): Vu— Jopl, (4.34)
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0J = JV*.éu. (4.35) fields are approximated 1]

The fourth-order tensqrepfis thehelastop!as'Fic conzisltznt ta_r;)— lé% Nd + Nf;‘é (4.48)
gent operator emanating from the constitutive model described _ 5 | n¢ 4.49
in Section 3. We get p PN, (4.49)

whereN is the array of displacement shape functiahss the

og1(u, p) = / [V : @P+Jp(1lol-111) vector of unknown displacementslc is the array of shape
QOX « functions approximating the displacement boundary conditions,
2 V70U — V=1 6pldQo, (4.36)  ¢is the vector of prescribed nodal displacemeNts the array
where of pressure shape functions,is the vector of unknown pore
ep_ ep ., pressures\’ is the array of shape functions approximating the
at=ct+7r ol (4.37) pressure boundary conditions, ahi$ the vector of prescribed

is the total elastoplastic tangent operator afigh’ = cP : d nodal pore pressures. Then, following the Galerkin recipe, the
where 2,7 is the Lie derivative of the effective stress tensorWeighting functions are approximated by
7 (see[29] for notations). By the same token, n~ Nc, (4.50)
Sgo(U, p) = — / Spon - 9dQo, Y ~ NC, (4.51)

Qo wherec and ¢ are arbitrary constant vectors. The spatial and

. ¢f temporal discretization leads to the matrix form of the problem
_ X, R . ’
N /QO / (V ou+ K¢ op |n-yrdo,  (4.38) which reads: find the vectosandp such that
where we have used Eq. (3.3ps =0, and the following key Gext| [Gint| _ |Re (4.52)
results: Hext Hint ) — |Re )’ '
3¢’ =1 —¢"HVv*. oy, (4.39)  \where
opr = 2op. (4.40)
Kt Gext(t) = / N'tdIo, (4.53)
Similarly, I
X — te/ _ _ t
SHa, (U, p. ) = ShBl(t) — oh (u, p) — ' (u, p), (4.41) Cm(@P) = /QO[B (v = 7pd) = poN gl A% (4:54)
whereéhg)ﬁt(t) =0 for configuration- and pressure-independentgnd
mass flux. Thus,
A Hext(t) = At / N' Qs dlo, (4.55)
oh1'(u, p) = / WépodQo ri
Qo _
r Hi(@p) = [ [N'Apo — Ar(IT0) 10 (4.56)
= f Yped | VX du+ —dp | dQo. (4.42) 2o
Q K¢

After algebraic manipulations, the Newton—Raphson incremen-

Now, we compute tal solution at thek + 1 iteration is updated using
ohy' (u, p) [ Ke P, } {50'} - { Ry } (4.57)
1 _ — = . .
% & 1 The reader is referred to Appendix A where a detailed presen-
+ acAt/ ZIVRY k- 5(VEp — ) dQo, (4.43) tation of the matrix form of the problem is given.
Q8
where Remark 4. Some authors have pointed out the existence of nu-
SV = —VXy - VXsu, (4.44) merical instabilities at th_e onset of the de_formatlon—(_ﬁffusmp
1 problem when considering the case of incompressible fluid
ok = —(k’yf&/)f + kdpsg)1, (4.45) phase[68,69] In fact, Murad and Lould68,70] showed, in
L X . the context of linear elasticity, that at the onset of deformation
(?V p=V7op—Vip-Viiu, (4.46)  the system is form-identical to the classical problem of incom-
oyt = dptg. (4.47)  pressible elasticity or Stokes’ flow in fluid mechanics. This is
_ also true in the context of poroplasticity at large strains. The
4.3. The matrix form system can be shown to reduce to

The spatial discretization is furnished by the classicalr[é é} {5u} _ {Fl} (4.58)

Galerkin method whereby the displacement and the pressufeC 0 | | op F2
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and thus, continuous across the band we can wfite: 6F | =A : [oF].
A a1 From[74] we get[F]=[V]®N/ ho, where[V] is the material
CA Bop=CA Fi1-Fy, (4.59)  velocity jump andhg is the (finite) thickness of the planar band

A oA in the reference configuration. Continuity of tractions requires
where A is anu x nu square matrixB is anu x nq rect-

angular matrix, andC is ang x nu matrix, with nu and ng 1

representing the number of displacement and pore pressuvg'ﬂ' [VI=0. ik =NsAiskLNL- (5-2)

. PR
unknowns, respectively. Hence, f@A "B to have full rank,  For s, £ 0, the necessary condition for localization is
we must havenu >np. One way to avoid stability prob-

lems associated with this constraint is to satisfy the so-calleflet-/ =0 (5.3)
Babuska—Brezzi condition (s¢€0,41). On the other hand, with o/ as the Lagrangian acoustic tensor. Finally, pushing

for the deformat_lpn—_dlffusmn problem a_t hand, |nvest|gatprst e Lagrangian acoustic tensor forward, we obtain the Eulerian
have used stabilization techniques available to solve mixe coustic tensor. i.e

problems. Wan in[69] used the Petrov—Galerkin technique
proposed by Hughes et al. jil] for solution of Stokes’ flow. A =nja;jun (5.4)

Similarly, Mira et al.[72] used Simo—Rifai elemen{§3] to thar = Foo Fir A, the total tial t i ¢
obtain stable solutions for the deformation—diffusion problem V'™ ijki *= £js FiLAisk as the total Spatial tangent operator

In this particular work, we only use mixed finite elementsandn is the normal to the deformation band in the current

satisfying the Babuska—Brezzi stability condition configuration. A standard argument then yields the Eulerian
' necessary condition for localization,

5. Localization of saturated granular media detA =0. (5.5)

acoustic tensors corresponding to the locally (fully) drainedStress and the Kirchhoff stress, iB+1- F~*, which together
and locally undrained conditions. These expressions are useftfith EQ. (3.1) yields

as they signal the loss of strong ellipticity of the correspondp _ p _ gp—t. (5.6)

ing drained and undrained global tangent operators. As in the

classical case of mono-phase bodies, the onset of localizatiohor the case of locally drained conditions, we ha®e= 0P

as measured by the loss of positive definiteness in the acoust®d thus, itis straightforward to show that the Eulerian acoustic
tensor, can be used to define the local direction of a shear barteinsor takes the classical forfi20,74]

and maybe even as a switch for a change in the material behay- ep

ior inside the band. Here, two extreme cases are considered’* = Aik =%kl .7

p

Firstly, we look at the case of a fully drained porous medi“mwhereaf.k, are the components of the total tangent operator

which basically reduces back to the classical mono-phase theyfined in Eq. (4.37). Similarly, for the locally undrained case,
ory. Secondly, we investigate the case of locally undrained beg o haveq = 0 point-wise, and consequently the equation of
havior, where the global tangent is influenced by the bulk comp 5 13nce of mass (2.14) reduces to

pressibility of the fluid phase, but relative flow is not present

anywhere in the sample. In a way, this latter case is analogoys__ _ (15;‘ _ 19) VX v, (5.8)

to the drained case, but with a different underlying constitutive
relatl_on (_one in which the fluid phase pl_ays a role, but t_here ISI'aking the time derivative dP and utilizing Eqg. (5.6) result in
no diffusion). The global tange€P obtained in the previous ; i
L . : . .. the undrained rate equation

section is used to obtain the drained and undrained localization
criteria. o | aep K _t _t Stee1| e

It is important to note that in general, saturated media behav%P - [A + <Jﬁ 0) FreF +0F oF +oF,
somewhere in between locally drained and locally undrained
conditions. For either extreme case, it is possible to write down
an expression relating the total stress rate and the rate of defor- (5.9)

mation for the granular matrix, i.e0P = A : oF, where Ais  \yhare P and AP are the drained and undrained first elasto-

the suitable (drained or undrained) first tangent operator Wiﬂﬂ)lastic tangent operators, respectively. Therefore, in this case
components Ay, = 0P;;/0Fy. [43,74] Consequently, we ;o have

require continuity of total tractions across the band and hence K
(cf., [74, equation (2.35)] A=Al 4+ J(?ffn ®n. (5.10)

[A:6F]-N=0, (5.1)

Kep

We note that the undrained acoustic tensor consists of the
where[O] is the jump operator across the band &hés the  drained acoustic tensor plus a volumetric contribution emanat-
normal to an impending shear band in the reference configung from the compressibility of the fluid phase. The expression
ration. Furthermore, by assuming the first tangent operator ifr the acoustic tensor derived above is very similar to that
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obtained by Borja iff45] for the case of infinitesimal deforma- dense sand. The inhomogeneous sample is constructed by
tions. prescribing a randomly generated specific volume field, which
displays a higher horizontal correlation than the vertical cor-
Remark 5. The spectral search algorithm proposed by therelation. The inhomogeneous sample is showRim 4 where
authors in[29] is utilized in the next section to search for the initial specific volume field is superimposed on the un-
the onset of strain localization under both locally drained andieformed finite element mesh. The sample is 5cm wide and
locally undrained conditions utilizing suitable expressions for10cm tall and has been discretized using a mesh composed of

the acoustic tensor as obtained above. 200 Q9P4 isoparametric elements [nine displacement nodes
_ _ . plus four (continuous) pressure nodes]. This kind of finite el-
6. Numerical simulations ement has been shown to satisfy the BabuSka—Brezzi stability

condition and hence avoid stability problems associated with

In this section, several globally undrained plane strain comconsolidation of porous media (see end of Section 4 for dis-
pression tests are performed. Macroscopically dense and loog@ssion on stability). The mean specific volume for the sample
samples of sand with and without inhomogeneities at the mesgs 1.572, making the sample dense macroscopically. However,
scale are sheared to failure, whenever possible. The objective gbme pockets are relatively loose with specific volume as high

these boundary-value problems is to study the effect of mesas 1.64. The range in the specific volume for the dense sample
scale inhomogeneities in the porosity on the stability and flows 1.54—1.64.

characteristics of sand specimens. It will be shown that the inho- The boundary conditions for the numerical experiments are

mogeneities, even though small, have a profound impact on thgs follows. The top and bottom faces of the sample are sup-
macroscopic behavior of the samples. Furthermore, it is showported on rollers (Dirichlet BCs) with the bottom left corner
that the constitutive model used to describe the effective stregied with a pin for stability. The bottom face is constrained
for the underlying sand specimens captures some of the maffom displacing in the vertical direction, whereas the top face
features observed in sand specimens tested in the laboratoryis given a vertical displacement responsible for compacting the
The material parameters utilized in the simulations are sumsample in the axial direction. At the same time, the lateral faces
marized inTables land2. We refer the reader to Section 3 for are confined with an initial pressure of 100 kPa (Newman BCs)
details regarding the material parameters and their significance simulate the confining pressure in a plane strain device. As
for the boundary conditions associated with the flow equations,
6.1. Plane strain compression in globally undrained dense all faces of the sample are no-flow boundaries (Dirichlet BCs),
sands provoking a globally undrained condition (although the per-
meability is finite locally and so there is a locally drained con-
In this subsection, we present the results obtained from pegition). This condition is equivalent to having an impermeable
forming globally undrained plane strain compression simulamembrane surrounding the specimen, which is typically used
tions on both inhomogeneous and homogeneous samples i@f undrained compression tests in the laboratory. The testing

Table 1
Summary of hyperelastic material parameters for plane strain compression
problems

1.63

Symbol Value Parameter A
% 0.03 Compressibility ] ez
) 0 Coupling coefficient
Uo 2000 kPa Shear modulus L 1 1.61
Po —99kPa Reference pressure
5y 0 Reference strain

- 11.6

= 1 1.59
Table 2
Summary of plastic material parameters for plane strain compression problems 1.58
Symbol Value Parameter
— 1.57
A 0.04 Compressibility
M 1.2 Critical state parameter
Ve0 1.8 Reference specific volume 1.56
N 0.4 For yield function
N 0.2 For plastic potential
0 0.78 Ellipticity . » . . .
h 280/70 Hardening coefficient for dense/loose samples Fig. 4. Initial specific volume for dense sand specimen superimposed on

undeformed finite element mesh.
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Fig. 5. (a) Contour of the determinant function for the drained acoustic tensor at a nominal axial strain of 5% and (b) deviatoric strains in dentour wi
superimposed relative flow vectogsat 5% axial strain for dense sand sample.
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Fig. 6. (a) Volumetric strain contour superimposed on deformed finite element mesh at 5% axial strain and (b) contour of Cauchy fluigh presefioemed
sample at 5% axial strain (in kPa) for dense sand sample. Dotted lines delineate undeformed configuration.

conditions favor homogeneous deformations in the absence afeas of intense localized deviatoric strains. Furthermore, the
material inhomogeneities and gravity effects. flow vectorsqg superimposed on both the contour for the deter-
The inhomogeneous sample of dense sand is loaded monatinant function and the contour for the deviatoric strain clearly
tonically until failure.Fig. 5a) shows a plot of the determinant show a strong influence of the deformation band on the flow
for the drained acoustic tensor at a deformed state after 5%characteristics in the sample. In fact, in this particular case, the
nominal axial deformation. Also, the figure shows the contourdeformation pattern appears to be ‘attracting’ the flow into the
of deviatoric strains at 5% axial strain with superimposed reladeformation band and away from the rest of the sample. This
tive fluid flow vectorsg in Fig. 5b). The instant in time is se- suggests a mostly dilative behavior of the sand within the de-
lected so as to show a fully developed deformation band and tiormation band, which will certainly tend to attract fluid flow.
underscore the need for a finite deformation formulation. The The dilative behavior of the sand specimen can be clearly ob-
developed deformation band allows for several interesting observed inFig. 6(a) where the contour for the volumetric strains
servations. It can be seen that the vanishing of the determinai# plotted against the deformed finite element mesh at an axial
for the drained acoustic tens&’ correlates very well with strain of 5%. Distinct areas of dilative (positive) volumetric
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Fig. 7. Force-displacement curve for inhomogeneous and homogeneous saf9- 8- Normalized determinant functions at point A for dense sand sample.
ples of dense sand.
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nal axial strain. The homogeneous sample is constructed by

response can be identified along the developed deformatidmposing a constant value of initial specific volume at 1.572
band. This behavior is consistent with the signature behaviofthe mean value of the distribution shown kig. 4). The
of relatively dense sands in the laboratory, which mostly tendoad—displacement responses are superimposed on each other
to dilate during shear deformatid3,75] This dilative re-  for the first 2% axial strain, at which point the inhomogeneous
sponse has been also reproduced by plasticity models such sample bifurcates (both drained and undrained acoustic ten-
Drucker—Prager, which account for plastic dilatj@0,12] This  sors lose positive definiteness at about 1.9% axial strain). The
important feature is captured by the model developed herein bygomogeneous sample does not localize and in fact continues
including meso-scale information about the porosity (and henct harden until the end of the simulation at 4% axial strain. On
relative density) in the hardening law via the state parametehe other hand, after localization is detected in the inhomoge-
;. Because of the coupling effect between the response of theeous sample, the response is characterized by softening and
porous medium and the fluid flowjg. 6(b) shows distinct areas the sample does not recover its load-carrying capacity.
of low Cauchy fluid pressures corresponding to those where the Localization above is defined as the first time that either the
volumetric response is dilative. In fact, it is obvious from the drained or undrained acoustic tensor loses positive definiteness
figure that strong gradients in the fluid pressure are generateat any (Gauss) point in the sample. The point where the sam-
and are consistent with the deformation pattern of the samplple localized for the first time is shown irig. 4 and referred
and are responsible for the amount and direction of fluid flowto as point A. The determinant functions for both drained and
It should be noted at this point that because of the small dimerecally undrained acoustic tensors at point A are plotteeign8
sions of the sample, gravitational effects do not play a major Localization occurred around 1.9% nominal axial strain when
role and hence there is not much meaning in distinguishindpoth determinants for the drained and undrained acoustic ten-
‘excess’ pore fluid pressure from total pore fluid pressure.  sors went negative for the first time. In this particular case, both

At this point, it is clear that the deformation pattern is localization criteria coincided, but in cases when the point in
strongly coupled with the fluid flow, but it is not clear what question was below the CSL, the drained localization criterion
the role of the meso-scale is in the overall stability of thesuperseded the undrained criterion. In this particular simulation,
undrained sample. To shed some light on this question, we/e never observed the determinant of the undrained acoustic
compare the response of the inhomogeneous sand sampénsor vanishing before that of the drained acoustic tensor.
against its homogeneous counterpart. This type of analyses Once localization occurs at point A, the modes of deforma-
has been performed before in the contextitdinedor effec-  tion tend to change considerably at that location. As expected,
tive material response (e.g., si9,30] for analyses on ‘dry’ deviatoric deformations are magnified once localization is de-
samples of dense sand). In these previous studies, it was foutekcted. The volumetric and deviatoric strain invariants are plot-
that the meso-scale is responsible for triggering instabilities ated inFig. 9where it is easily seen that after 1.9% axial strain,
the specimen scale, reducing the load-carrying capacity of thine slope of the deviatoric strain curve is about five times steeper
sample of dense sand. The same type of analysis is performéigian before localization is detected. Also, the point in question
here with very similar results. The force—displacement curveseems to compact very little initially, followed by significant
for both inhomogeneous and homogeneous samples of dend#ation, which is consistent with the macroscopic behavior of
sand are plotted ifrig. 7. In this figure, the reactive stresses dense sands. The volumetric behavior of point A can be fur-
at the top face of the samples are plotted against the nomther observed fronfrig. 10 where the specific volume at that



J.E. Andrade, R.l. Borja / Finite Elements in Analysis and Design 43 (2007) 361-383 375

a b x 1073
0.2 T — T 6 T — :
0.18 | : 1 |
0.16 | : 1 |
z i : ;1 Z
Z 014 : 2 ]
a4 : [
5 012 ¢ LOCALIZATION —> 1 @»
SIS : ) i
T 0. : 2 l
= . 1]
k008 | : 12 :
= : 0 -6t LOCALIZATION ——> .
[’ L : 1 O -
W 006 | S |
0.04 | : 1 8 : 1
0.02 | : 1 10 : I
0 L - L -12 . L .
0 1 2 3 4 0 1 2 3 4
NOMINAL AXIAL STRAIN, % NOMINAL AXIAL STRAIN, %

Fig. 9. (a) Deviatoric strain invariant at Gauss point A for sample of dense sand; (b) volumetric strain invariant at Gauss point A for sample afddense sa

1.65 . . - . . . 6.2. Plane strain compression in globally undrained loose
: sands
1.645 t
To obtain a somewhat complete picture of the behavior of
g 164 saturated granular materials under shear deformations, glob-
2 ally undrained compression tests are performed on samples of
Q 1.635 | macroscopically loose sands. In this set of tests, we compare the
8 163 | response of an inhomogeneous sample of sand with its homo-
o geneous counterpart. As in the previous subsection, the initial
% 1625 inhomogeneity is furnished by the initial distribution of spe-
' cific volume, which follows a pattern identical to that shown in
162 Fig. 4 above. The only difference here is the range and mean
of the distribution in order to reflect a macroscopically loose
1615 sample of sand. The initial range of specific volume for the

70 -75 80 -85 -90 -95 -100 -105 loose sample is depicted Kig. 11and goes from 1.62 to 1.66.
MEAN EFFECTIVE PRESSURE, kPa This particular range is much narrower than that chosen in the
previous set of simulations; the sample appears to be more ho-
Fig. 10. Specific volume plot as a function of effective pressure at point Amog(__,neous than the dense sand sample. The average specific
for dense sand sample. volume for the sample of loose sand is 1.62 (cf. with that for
the dense sand sample at 1.572). This average value of specific
volume puts the sample above the CSL on average and hence
point is plotted against the effective pressure and the CSL fowe expect the behavior of the structure to be macroscopically
the material is plotted for reference. It is interesting to note thasimilar to a homogeneous sample of loose sand. As for the rest
even though point A lies above the CSL, its volumetric behav-of the material parameters, they are almost identical to those
ior is closer to that of a drained point below the CSL. This isin the previous subsection and are summarizetalles land
because the rest of the sample is behaving macroscopically @sThe only difference in the material parameters between the
a dense sand and the coupling between the solid matrix ardkense sand samples and the loose ones is the hardening coef-
the fluid flow is really what governs deformation. The matrix ficient h, which is 280 in the case of the dense sands and 70
at point A may ‘want’ to contract, but the fact that point A is for the loose sands. This reflects the fact that relatively loose
more permeable than some other parts of the sample makessinds show ‘flatter’ force—displacement curves.
easier for the fluid to flow into point A and hence force it to The 5x 10 cm sample is discretized using the same mesh as
dilate. This last observation shows that the saturated behavithe dense sand samples and the imposed boundary conditions
of a globally undrained sample could be sharply distinct to thaare also identical. Hence, any difference in the behavior of
of a perfectly drained one. the structure is due to the different phenomenological behavior
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implied by the underlying effective stress constitutive modelon the aforementioned contours to give a relative sense of the
and triggered by the difference in relative densities. This is duénteraction between the deformation and flow patterns. Once
to the fact that the phenomenological model can realisticallyagain, the instant in time is chosen such that the deformation
capture the difference in behavior of sand samples at differeriiand is fully developed. As in the case of the dense sand sam-

relative densities.

ple, the localization criterion for the undrained acoustic tensor

Similar to the dense sand sample, the inhomogeneous sampecorrelates very well with high concentrations of deviatoric
of loose sand is loaded monotonically by prescribing a unifornstrains in the sample. In fact, the profile for the determinant of

vertical displacement at the top face of the samplig. 12
shows a plot of the determinant of thedrainedacoustic tensor
and the deviatoric strain invariant for the loose sand sample
5% axial strain. The relative flow vectogsare superimposed

1.665

1.66

r 1 1.655

- 1 1.65

1.645

1.64

1.635

the drained acoustic tensé looks similar with a different
order of magnitude throughout. The deformation pattern again
amfluences the flow characteristics in the sample but with an op-
posite effect to that observed in the dense sample. For the case
of loose sand deforming under globally undrained conditions,
the incipient shear band appears to be ‘repelling’ fluid flow. This
deformation—diffusion behavior suggests a compactive behav-
ior within the shear band compared to a relatively less compres-
sive and perhaps even dilative deformation pattern elsewhere
in the sample. Another contrasting feature is the fact that the
deformation band is initially (at lower values of axial strain)
less pronounced and less localized and looks more diffuse than
that for the dense sample, which is again consistent with the
behavior of relatively loose sands which tend to fail in a more
diffuse mode in the laboratory. These seem to be a novel result
since, as far as we know, no results showing compactive shear
bands repelling fluid flow have been reported in the literature
(e.g., see works by Armelfd0] and Larsson and Larss¢i?]

who only reportdilative shear bands).

The suggested compactive behavior within the deformation
band is truly appreciated when one plots the volumetric strain
invariant at 5% axial strairkig. 13a) shows such deformation
contour superimposed on the deformed finite element mesh.
There are well-defined pockets of compactive behavior on what
can be defined as the ends of the deformation band. The rest
of the band is not as compactive (in fact the center is slightly
dilating) as the ends, but the upper-right and lower-left corners

Fig. 11. Initial specific volume for loose sand specimen superimposed o€ much more dilative in comparison to the band. This is the

undeformed finite element mesh.

20
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x 1013

o N b~ O ©

reason why the fluid pressure contour showRim 13b) looks

0.2

0.15
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Fig. 12. (a) Contour of the determinant function for the undrained acoustic tensor at a nominal axial strain of 5% and (b) deviatoric strains imitbontour
superimposed relative flow vectogsat 5% axial strain for loose sand sample.
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Fig. 13. (a) Volumetric strain contour superimposed on deformed finite element mesh at 5% axial strain and (b) contour of Cauchy fluid predstoemed
sample at 5% axial strain (in kPa) for loose sand sample. Dotted lines delineate undeformed configuration.
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Fig. 14. Force—displacement curve for inhomogeneous and homogeneoﬂ:ég' 15. Normalized determinant functions at point A for loose sand sample.

samples of loose sand.

curve for the inhomogeneous sample with that of the homoge-

neous samplezig. 14shows a plot of the nominal axial stress
like a saddle. There is a relative low at the center of the bandt the top face for both inhomogeneous and homogeneous sam-
(and the specimen) but there are maxima at the ends of thaes of loose sand. The curves are clearly identical up to about
deformation band. The dilative pockets described above cor2.4% axial strain point at which the inhomogeneous sample
stitute regions where the Cauchy fluid pressuiie at a mini-  localizes and subsequently softens. The homogeneous sample
mum in the sample. This explains the direction of the relativedid not localize by any criterion and did not show any signs
flow, which tends to go away from the ends of the deformatiorof softening up to 4% axial strain. The fact that the curves
band, toward the center of the band and in general away frorooincide up to the point of bifurcation suggests that the
the band (se€ig. 12above). This pressure and flow pattern is effect of the meso-scale inhomogeneity is minimal early in the
clearly different from that observed in the sample of dense sandeformation—diffusion process. However, it is clear that the in-
and is consistent with the behavior of an undrained sample diomogeneities ultimately alter the load-carrying capacity of
relatively loose sand. the inhomogeneous sample, which is macroscopically softer

The effect of the inhomogeneities in the porosity field at thethan its homogeneous counterpart. Also note the flatter slope

meso-scale can be seen by comparing the force—displacementthe force—displacement curves obtained for the loose sample
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Fig. 16. (a) Deviatoric strain invariant at Gauss point A for sample of loose sand; (b) volumetric strain invariant at Gauss point A for sample afdoose s
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Fig. 17. Specific volume plot as a function of effective pressure at point A

for loose sand sample. Fig. 18. Convergence profile at various values of axial strain for plane strain

compression test on sample of loose sand.

than those for the dense sample; a direct effect of the relativiest positive definiteness of the acoustic tensor did so for the
density and hardening coefficient. drained and undrained acoustic tensors at the same time. Com-
The localization point at 2.4% axial strain is defined by theparison with the dense sand simulation shows that localization
vanishing of the determinant of both drained and undrainedvas attained at a later time, which suggests a more ductile be-
acoustic tensors at point A, which is depictedig. 11 Both  havior associated with the loose sand sample.
localization criteria are met at the same time at point A and Itis interesting to observe the modes of deformations at point
hence there is no room for ambiguity when one speaks of los& in the sample before and after localization is attained. As
of positive definiteness of the acoustic tensor. It is interestingn the dense sand sample, point A exhibits a steepening in the
to note that localization occurs first at the same point in botlslope of the deviatoric strain after localization, which is shown
dense and loose samples. This might be due to the fact that this Fig. 16a). In fact, the sample exhibits three times more de-
point is relatively looser in both specimens and hence tendsiatoric deformation in the last 1.6% axial strain than in the
to falil first in both instancedrig. 15shows a plot of the nor- first 2.4% axial strain. Also, point A remains basically incom-
malized determinant for both the drained and locally undrainegbressible up to the onset of localizatidfig. 16b) shows the
acoustic tensors. It is observed that both determinants vanisiolumetric strain invariant versus axial strain, where it is ob-
at around 2.4% axial strain. In this simulation, all points thatserved that point A did not change in volume until it reached
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Fig. 19. Perturbed samples of dense sand with otherwise homogeneous specific velulrg72. (a) Mesh composed of 509P4 elements and (b) mesh
composed of 20@Q9P4.

localization, after which point it compacted quite a bit. In this 280

case, which can be contrasted to the case of the dense sample

of sand, point A behaves more as a typical ‘drained’ point after _

localization: experiencing volume loss, which leads to an area& 240 | e =@ — = — -

of high pressure because the fluid cannot escape fast enouglg Lo EoN N

Fig. 17 shows the relation between specific volume and thed 220 | UNDRAINED LOCALIZATION

mean Kirchhoff effective pressure. The specific volume is es-{; 5gg |

sentially constant up to the onset of localization and subse-Z

guently the state is attracted toward the CSL. Once again, thes 180 r

behavior at point A is of course affected by the surrounding ¢ 5oL /- HOMOGENEOUS

area in th.e sgmple and also, and perhaps more importantly, bg - mgmgggzggﬂz ggOEEL

the coupling imposed by the balance laws. o 140 ¢

Finally, Fig. 18 shows the convergence profile at various

stages in the loading protocol for the plane strain compression

test on the inhomogeneous sample of loose sand. Consistent 100

linearization performed in the proposed finite element proce-

dure, combined with the fact that the effective stress consti-

tutive model features a consistent tangent operator ava”ab‘-elg 20. Force—displacement curves comparing perfectly homogeneous re-

in closed form[29], leads to an overall rate of convergence sponse with that of perturbed samples.

that enjoys the optimal quadratic rate associated with the full

Newton—Raphson scheme. Furthermore, the fact that finite

elements satisfying the Babuska—Brezzi stability condition

are utilized translates into solutions free of spurious oscillaterm. However, the conclusions reached above are qualitative

tions in the fluid pressure associated with instabilities neaand should not be affected by this detail.

initial time when the sample behaves as an incompressible To illustrate this ‘mild’ dependence, we perform a simple

solid [68,70] mesh sensitivity study. For simplicity, we solve same boundary-
value problem presented above in Section 6.1. Consider the

Remark 6. It is important to note that the finite element solu- same homogeneous sample with specific volura€l.572 but

tions presented above do suffer from mild pathological meshvith an arbitrary ‘weak’ region (i.e.p = 1.6) in the speci-

dependence once the onset of localization has been detectedmen as illustrated ifFig. 19 Two meshes are analyzed: one

has been show by Zhang and Schreflég] that even though consisting of 5009P4 elements and another one consisting

the fluid flow equation introduces a length scale via the permeef 200 such elements. The results of the undrained compres-

ability coefficient, it might not be enough if the effective stresssion tests are summarized figs. 20and 21. Fig. 20 shows

equations are not further regularized by, say, adding a viscoute force—displacement curves for the 50 and 200 element

260 r

120

0 1 2 3 4 5 6
NOMINAL AXIAL STRAIN, %
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Fig. 21. Deviatoric strains in contours with superimposed relative flow vecf@is3% axial strain for (a) 50 element mesh and (b) 200 element mesh.

mesh compared with the perfectly homogeneous response (i.enhomogeneities on the stability and flow characteristics
v = 1.572 throughout). It is shown that the perturbed sam-through a deforming sand specimen. We have shown that
ples are less stiff than the homogeneous sample and that thehavior of saturated granular media is more complex than that
responses of the two inhomogeneous samples are identical igferred from macroscopic observations and that even small
to 3% axial strain, corresponding to a level of strain that passeinperfections at a scale smaller than specimen size can trigger
the drained localization criterion. In fact, both inhomogeneouglobal failure and influence the amount and direction of flow.
samples detect the onset of drained localization simultaneouslifurthermore, the behavior of relatively dense and loose sam-
as expected. By the time undrained localization is detected iples differ substantially as the volumetric behavior of the solid
the fine mesh sample, the force—displacement curves start tatrix is coupled with the fluid flow, hence affecting the effec-
diverge. tive pressures, which govern strength in geomaterials. These
Fig. 21shows the deviatoric strains with superimposed relalast observations are unique to this study in which porosity
tive flow vectors on both finite element meshes. It is clear thahas been coupled with the hydraulic conductivity and effec-
the apparent width of the shear band is a function of the eletive stress behavior of the underlying granular media, thereby
ment size; the width of the shear band decreases proportionalgapturing both compactive and dilative modes of deformation
to the element size. However, the pattern of deformation antanding.
the direction of flow are identical in both samples. Both sam-
ples develop dilative shear bands that tend to attract fluid flow.
Hence, we say mesh dependence is ‘mild’ as both meshes di§cknowledgments
play the same overall mechanical behavior: both predict softer

responses, identical onset of drained localization, and appear- | NiS Work has been supported by National Science Foun-
ance of dilative shear bands. dation, Grant nos. CMS-0201317 and CMS-0324674 to Stan-

ford University; this support is gratefully acknowledged. The
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lation of saturated porous media exhibiting meso-scale inUniversity for patiently proof-reading this text.
homogeneities in the porosity field. The continuum balance
laws have been derived and utilized within a finite element,,
framework from which the basic unknowns, solid displace-
ments and Cauchy pore fluid pressures, have been resolved in
a u — p mixed finite element scheme. The scheme features
stable solutions with optimum rates of convergence. Repre- ep
sentative numerical examples dealing with plane strain comdg1 = CiA/ [Na,j(@;j + Jp(di1djk — 0ijor)) Np,10dpk
pression of undrained samples of dense and loose sands have 2

been presented to underscore the importance of meso-scale — JN 4 iNpdpp]dQo, (A1)

ppendix A

Eqg. (4.42) can be rewritten in indicial notation as
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following the notations if41] (cf. Egs. (4.49) and (4.51)) wherei, j, k,1=1,2,3, andi # j andk # . Also, each sub-
matrix in square brackets representssa®array. For example,

A , ¢

wix Yo Nadia+ ) Niéa, (A-2) A12012 %12[23 %AD(3Y
A<t—nd At leapren] = | 223z *@3rs  *“e@3Ey | (A.10)

p~ Y Napa+ Y Nila, (A.3) %312 %EBD23]  %EBD(3
A=y Acip where the parentheses signify a symmetric operator, whereas

n ~ Z Nacia, (A.4) the square brackets signify a skew-symmetric operator. For
Aen—ng example,

Y Y Naca, (A5)  wap2y = 7(01223— 21232+ %2123 — 02132 (A.11)
Aeﬁ—np

Similarly, a second-order tensd™y is mapped into a & 1

wheren andy denote the set of global node numbers for thevector, €.,

displacement and pressure, respectively. Similarly, weidet v*y = {1 1, 15 2. 13 3. 2101.2)> 21(2.3)»

andy, be the nodes at which the displacements and pressures ’ 2 ’ 5 ’ 5 ot A 12
: _ : N30 21,2 2M2,3)> 213,17} (A.12)

are prescribed, henge-nq andi —n, represent the active sets

for the displacement and pressure, respectively. By the samg,ch that the scalar produgt ;o k. = V*ptaV*y is recov-

token, ered. Also, given the finite element approximation§4b1); ,
f we have
5g2:—c,~A/ JN aysi |:N3,j5dj3 + %ﬁ35p3:| dQo. VXI1=BC (A.13)
Q f VXY =TT, (A.14)
(A.6) : - o
where B is the usual strain—displacement matrix, i.B.=
The linearized equations pertaining to the balance of masd31. B2. . ... Buul, and
equations can also be rewritten in indicial notation, i.e., - Na1 0 0 A
. 0 Nap 0
A — — ¢ — 0 0 Nas
(3}11’ =Cqa /QO JN Ap¢ |:N3,j5dj3+?fN35p3:| dQo, (A.7) Nao2 Na1 0
Ba = 0 Nag3 Na2 |. (A.15)
and N3 0 Naa
Na2 —Naa 0
A OAT_ — 0 Na3 —Napz
5h2t=?CA /QO Jkij[N a,iNp xodip [ —Nas 0 N1 |
_ By the same token, the matix=[I'1, I'2, ..., I';,]. The com-
— NaxNp.iddesl(p.j — 75;) dQ0 ponents off" read
A o — — —
+ (x—tEA / iNA,,'él‘jk/“/f I'y= {NA,l, NA,Z’ NA,3}I- (A-16)
8 Q H

It is convenient at this point to introduce the following oper-
% (1— dNDN& 16d e [0) ators. Leta be a vector or first-order tensor with components
(A= OONp ko (p.j = ;) Ao a; with i = 1, 2, 3, then let

At —  kij— .
+ a—EA/ JNA,ilNBpr(p,/ —))fj) dQg ag 0 0 %az 0 3za3 3a 0 _%“3
8 Qo Ky ’ c@=|0 ap O %al %ag 0 %al %a3 0
0 0 a3 O laz 5a1 —laz la]_
o At _ — . Vii— 2 2 2 2
+ —CA/ JIN 4ikij [NB,j5PB - %NB@UB (A.17)
g Q f
° Similarly, let g be a third-order tensor with componerfis;
wherei, j, k=1, 2, 3, then
— p,kNB,jédkB:| dQg. (A.8) b

r(Biji) = [Birx]  [Bigjy] [Bigjryl]l  (no sum), (A.18)

From this point forward we adopt Voigt notation .and hence, E‘Nherej # k within the 3x 9 array. Each submatrix in square
fourth-order tensow is mapped into a & 9 array, i.e., brackets represents axa3 array, for instance,

logirk]  Toiiny]  [otiitka] Bi11 P22 Pizs
a=| [ogpwk] [2ipan] [eapwnl | (no sum, (A9)  [Bi]=|Parr Poaz Baza|-
L] Toqijieny]  Loigen ) Ba11 Paoo Paas

(A.19)
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Using the arrays and mappings presented above, we can writ®] G. Castro, Liquefaction of sands, Harvard Soil Mechanics Series, vol.
the matrix equation for the iterative Newton—Raphson scheme. 81, Harvard University, January 1969.

The variational form for the equation of linear momentum[10] F.  Armero, Formulation and finite element implementation of
multiplicative model of coupled poro-plasticity at finite strains under

|mpI|es fully saturated conditions, Comput. Methods Appl. Mech. Eng. 171
sd (1999) 205-241.
R’; = [Kg (pg]k{ } , (A.20) [11] J.H. Prevost, B. Loret, Dynamic strain localization in elasto-
op k41 visco-)plastic solids, part 2. Plane strain examples, Comput. Methods
+
Appl. Mech. Eng. 83 (1990) 275-294.
where [12] J. Larsson, R. Larsson, Non-linear analysis of nearly saturated porous
media: theoretical and numerical formulation, Comput. Methods Appl.
Ke = / B'@®+ Jp(1ol-1x 1) Mech. Eng. 191 (2002) 3885-3907.
Qo [13] B.A. Schrefler, HW. Zhang, M. Pastor, O.C. Zienkiewicz, Strain
<« B — Nt’))f J5tB] dQo, (A.21) localisation modeling and pore pressure in saturated sand samples,

Comput. Mech. 22 (1998) 266—280.
d)f [14] W. Ehlers, T. Graf, M. Ammann, Deformation and localization analysis
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