
ANALYSIS AND GENERALIZATIONS OF THE LINEARIZED BREGMAN METHOD∗

WOTAO YIN†

Abstract. This paper analyzes and improves the linearized Bregman method for solving the basis pursuit and related sparse

optimization problems. The analysis shows that the linearized Bregman method has the exact regularization property, namely, it

converges to an exact solution of the basis pursuit problem whenever its smooth parameter α is greater than a certain value. The

analysis is based on showing that the linearized Bregman algorithm is equivalent to gradient descent applied to a certain dual

formulation. This result motivates generalizations of the algorithm enabling the use of gradient-based optimization techniques

such as line search, Barzilai-Borwein, L-BFGS, and nonlinear conjugate gradient methods. In the numerical simulations, the

two proposed implementations, one using Barzilai-Borwein steps with nonmonotone line search and the other using L-BFGS,

gave more accurate solutions in much shorter times than the existing basic implementation of the linearized Bregman method

(with a so-called kicking technique).

Key words. Bregman, linearized Bregman, compressed sensing, l1 minimization, basis pursuit.

AMS subject classifications. 68U10, 65K10, 90C25, 90C51.

1. Introduction. Let A ∈ Rm×n for m < n (and sometimes, m � n in compressed sensing), b ∈ Rm,

and x ∈ Rm. The linearized Bregman method is introduced in [?] and extended or analyzed in [?, ?, ?] to

approximately solve the basis pursuit problem

(1.1) min{‖x‖1 : Ax = b},

which determines an `1-minimal solution xopt of the underdetermined linear system Ax = b. This problem

arises in many applications, and in particular, in the recently emerging application of compressed sensing,

which was brought to the forefront by Donoho [?] and Candes, Romberg, and Tao [?].

The linearized Bregman method is a variant of the original Bregman method introduced in [?, ?], and

both Bregman methods can be applied to (??). They are briefly reviewed in subsection ?? below. Previous

analysis in [?, ?] shows that the linearized Bregman method generates a sequence of points converging to

xα, the unique solution of min{‖x‖1 + 1
2α‖x‖

2 : Ax = b}, where ‖x‖ := ‖x‖2 is the Euclidean norm of x (in

the view of objective function smoothing, it is related to the Moreau-Yosida regularization [?]). This paper

analyzes the primal–dual problem pair

P(α) : min
x
{‖x‖1 +

1

2α
‖x‖2 : Ax = b}

D(α) : min
y,z
{−b>y +

α

2
‖A>y − z‖2 : z ∈ [−1, 1]n},

and studies how their solutions vary in terms of α.

1.1. Contributions. The first contribution of this report is an exact regularization property: there

exists a finite α∞ so that whenever α > α∞, the solution of P(α) is a solution of (??). Similar exact

regularization results were introduced by Mangasarian and Meyer [?] and studied in [?, ?] in the context of

linear programming. In [?], Ferris and Mangasarian studied such results for nondifferentiable and strongly

convex objective functions. We recently become aware of the work of M.Friedlander and P.Tseng [?], which

proves the same result for a large class of optimization problems. Specifically, the necessary and sufficient

∗This research was supported in part by NSF CAREER Award DMS-07-48839, ONR Grants N00014-08-1-1101, the U.S.

Army Research Laboratory and the U. S. Army Research Office grant W911NF-09-1-0383, and an Alfred P. Sloan Research

Fellowship.
†Department of Computational and Applied Mathematics, Rice University, 6100 Main Street, MS-134, Houston, Texas,

77005, U.S.A. (wotao.yin@rice.edu).

1

condition for exact regularization to hold is provided, especially for problems with polyhedral objective

functions including the `1 norm. The exact regularization result of this paper can be obtained by applying

their results. However, in the context of the linearized Bregman method, this paper obtains the result by

taking a different proof approach based on analyzing D(α), which leads to results for checking α.

The second contribution is to show that the linearized Bregman iteration is equivalent to the gradient

descent iteration applied to the y–minimization problem below. Specifically, in D(α), the optimal z is given

by z = Proj[−1,1]n(A>y), so z can be eliminated, which reduces D(α) to

D’(α) : min
y
− b>y +

α

2

∥∥∥A>y − Proj[−1,1]n(A>y)
∥∥∥2 .

Since the second term poses quadratic penalty to −e ≤ A>y ≤ e, D’(α) can be viewed as a quadratic penalty

problem for the Lagrange dual of (??):

(1.2) min{−b>y : ‖A>y‖∞ ≤ 1}.

The above result allows us to apply standard optimization techniques to accelerate gradient descents and

obtain much faster convergence. Specifically, D’(α) has a Lipschitz continuous objective function, on which

techniques such as line search, Barzilai-Borwein [?], quasi-Newton, L-BFGS [?], and nonlinear conjugate

gradient methods naturally apply. Numerical simulations were performed to demonstrate an significant

improvement in speed and accuracy.

We also show that the solution xα of P(α) can be obtained from any solution yα of D(w) as

(1.3) xα := α shrink(A>yα, 1),

where shrink is the soft–thresholding or shrinkage operator defined component-wise by shrink(si, β) =

SGN(si) max{|si| − β, 0}. Note that shrink(A>y, 1) = A>y − Proj[−1,1]n(A>y), i.e., shrinkage is built in

D’(()α).

The above results can be extended to more general problems of the form

(1.4) min{J(x) : Ax = b},

where J is a piece-wise linear (e.g., `1-like) regularization function. Similar results may possibly be obtained

for J being the nuclear norm of a matrix x, which is used in an optimization problem [?] similar to (??) for

the matrix completion problem.

1.2. Background.

1.2.1. The original Bregman Method. The original Bregman method (formally called the Bregman

iterative regularization method) is introduced in [?], not for solving a constrained minimization problem like

(??), but to improve image reconstruction quality in the context of total variation regularization; it has

been extended to wavelet-based denoising [?], nonlinear inverse scale space in [?, ?] and other papers,

and MR imaging in [?]. Recently, its usefulness in compressed sensing for solving constrained `1 and `1-

related minimization problems is studied in [?], where its equivalence to the augmented Lagrangian method

(the method of multipliers) [?, ?, ?] is also established. This equivalence in the context of total variation

minimization and the split Bregman method is studied in [?, ?].

Let J(·) stand for a convex function. The Bregman distance [?] with respect to J between points u and

v is defined as

(1.5) Dp
J(u, v) := J(u)− J(v)− 〈p, u− v〉

2

where p ∈ ∂J(v), the subdifferential of J at v. Note that because Dp
J(u, v) 6= Dp

J(v, u) in general, Dp
J(u, v)

is not a distance in the usual sense. The original Bregman method solves a sequence of convex problems in

the iterative scheme

(1.6) xk+1 ← min
x
Dpk

J (x, xk) +
1

2
‖Ax− b‖2

for k = 0, 1, . . . starting from x0 = 0 and p0 = 0. For nondifferentiable J such as µ‖ · ‖1 and µTV (·),
∂J(xk+1) may contain more than one element, leading to many possible choices of pk+1. In (??), each

pk+1 is chosen based on the optimality conditions: 0 ∈ ∂J(xk+1) − pk + A>(Axk+1 − b), which yields

pk+1 := pk +A>(b−Axk+1).

In [?, ?] three key results for the sequence {xk} are proved. First, ‖Axk−b‖ converges to 0 monotonically

and limxk is a solution of min{J(x) : Ax = b}; second, for `1-like functions J , the convergence is finite; third,

assuming that b is a noisy observation of Ax̄, where x̄ is the unknown noiseless signal, xk monotonically gets

closer to x̄ in terms of the Bregman distance Dpk

J (x̄, xk), at least while ‖Axk − b‖ ≥ ‖Ax̄ − b‖ (note that

‖Axk − b‖ decreases monotonically in k). The first two results were proven previously in the literature of

the augmented Lagrangian method.

Interestingly, (??) can be interpreted as iteratively “adding back the residual.” Since pk is in the range

space of A> (assume that pk = A>vk for a certain vk), the linear term 〈pk, x〉 = 〈vk, Ax〉 can merge into
1
2‖Ax− b‖

2, yielding the equivalent iterative scheme

(1.7) xk+1 ← min
x
J(x) +

1

2
‖Ax− bk+1‖2, where bk+1 = bk + (b−Axk).

At each iteration, the residual b−Axk is added to, rather than subtracted from, bk. For J(·) = µ‖ · ‖1, each

iteration of (??) solves the so-called basis pursuit denoising problem. Several recent algorithms based on

matrix-vector multiplications involving A and A> can efficiently solve this problem with large-scale data and

sparse solutions. They include iterative soft thresholding (IST) algorithms [?, ?, ?, ?, ?, ?, ?, ?, ?], GPSR

[?], SPGL1 [?], `1 `s [?], FPC AS [?], Nesterov–type algorithms [?, ?], and others. For finding a solution of

(??), the iterative scheme (??) is preferred over directly solving a single

(1.8) min
x

µ‖x‖1 +
1

2
‖Ax− b‖2

because (??) needs a tiny µ, which slows down most of the above algorithms1. In (??), a relatively large

µ can be used so that each iteration is cheap while the total number of iterations remains reasonable. For

compressed sensing problems with sparse solutions, [?] suggests using a moderately large µ and reports that

only 2–6 iterations on average will suffice.

The Bregman iteration has been extended and applied to solving various problems. In addition to

compressed sensing applications, extensions can be found in [?] for deconvolution and sparse reconstruction,

[?] for image blind deconvolution, [?, ?] for inverse scale space methods, [?] for wavelet-based image denoising,

[?] for the split Bregman method (the “split” part is from in [?, ?, ?, ?]) and its applications in [?], [?] for

denoising and partially parallel imaging, and [?, ?] for matrix rank minimization.

1.2.2. The Linearized Bregman Method. The linearized Bregman method [?] is obtained by lin-

earizing the last term in (??) into 〈A>(Axk − b), x〉 and adding the `2-proximity term 1
2α‖x− x

k‖2, yielding

the new iterative scheme:

(1.9) xk+1 ← arg min
x
Dpk

J (x, xk) + 〈A>(Axk − b), x〉+
1

2α
‖x− xk‖2.

1except for FPC AS because of its use of subspace optimization.

3

The components of x are separable in the last two terms of (??). Hence, for componentwise separable J

such as µ‖x‖1, (??) is very simple to compute. The update formula of p can be derived from the optimality

conditions of (??):

(1.10) pk+1 ← pk −A>(Axk − b)− 1

α
(xk+1 − xk),

where pk+1 ∈ ∂J(xk+1). The algorithm based on (??) and (??) is given in Table ??, in which the fitting

term 1
2‖Ax− b‖

2 has been substituted by a more general convex function H(x).

Table 1.1

The linearized Bregman method

Input: J(·), H(·), α > 0; optional: x0 and p0

1. Initialize: k = 0, let x0 = 0 and p0 = 0.

2. while stopping conditions not satisfied do

3. xk+1 ← arg minxD
pk

J (x, xk) + 〈∇H(xk), x〉+ 1
2α‖x− x

k‖2

4. pk+1 ← pk −∇H(xk)− 1
α (xk+1 − xk)

(If possible, replace Steps 3 and 4 by simpler updates. For solving (??), use (??) and (??).)

5. Optional: apply kicking if xk+1 = xk

6. k ← k + 1

7. end while

For H(x) = 1
2‖Ax − b‖

2, Steps 3 and 4 in Table ?? can be significantly simplified. First, from (??) or

Step 4, we get

pk+1 = pk −A>(Axk − b)− 1

α
(xk+1 − xk) = · · · =

k∑
i=0

A>(b−Axi)− xk+1

α
.

Then, introduce

(1.11) vk = pk+1 +
xk+1

α
= pk −A>(Axk − b) +

xk

α
=

k∑
i=0

A>(b−Axi), ∀k,

and simplify (??) or Step 3 to

xk+1 ← arg min
x
J(x)− 〈pk, x〉+ 〈A>(Axk − b), x〉+

1

2α

∥∥x− xk∥∥2
← arg min

x
J(x) +

1

2α

∥∥∥∥x− α(pk −A>(Axk − b) +
xk

α

)∥∥∥∥2
← arg min

x
J(x) +

1

2α

∥∥x− αvk∥∥2 .(1.12)

Therefore, Steps 3 and 4 are rewritten as

xk+1 ← arg min
x
J(x) +

1

2α

∥∥x− αvk∥∥2 ,(1.13a)

vk+1 ← vk +A>(b−Axk+1),(1.13b)

Problem (??) can be quickly solved for various choices of J(x) such as µ‖x‖1, µTV (x), µ‖Φx‖1 with a fast

transform Φ (an orthonormal basis or tight frame), and more generally, for component-separable regulariza-

tion terms in the form of
∑
i φ(xi); see paragraph 2 of subsection ??. For J(·) = µ‖ · ‖1, the solution of (??)

4

is α shrink(vk, µ), so we obtain the simplified iterative scheme [?]

xk+1 ← α shrink(vk, µ),(1.14a)

vk+1 ← vk +A>(b−Axk+1).(1.14b)

Sometimes (??) can stagnate, but the stagnation is easily removed by a technique called kicking [?]. It

can happen that over a sequence of consecutive iterations, the components vi satisfying |vi| > µ stay

constant while the remaining components vi, which satisfy |vi| ≤ µ, are (slowly) updated. Until one of the

latter components finally violates |vi| ≤ µ, x remains unchanged. Kicking detects this stagnation by testing

xk = xk+1 and breaks the stagnation by consolidating all the remaining iterations over which x is unchanged.

It is proved in [?, ?] that the linearized Bregman method converges to the solution of

(1.15) min

{
µ‖x‖1 +

1

2α
‖x‖2 : Ax = b

}
.

By scaling the objective function, (??) can be simplified to P(α), i.e., µ is removed. The convergence

was initially established for convex, continuously differentiable convex functions J(x) in [?] (note that both

`1-norm and total variation must be smoothed to qualify). However, the same paper shows that if the

convergence for J(x) = ‖x‖1 occurs, then the limit is the solution of P(α). The convergence assumption was

later removed in the authors’ follow-up paper [?], which was drafted around the same time when the first

version of this report was written. In addition, it was shown that as α→∞, the solution of P(α) converges

to one of (??). This paper reduces the requirement to α > α∞ for a certain finite α∞.

Before ending this subsection, we list some applications of the linearized Bregman method that have

appeared in the literature: compressed sensing [?, ?, ?], the matrix completion problem [?], and image

deblurring [?, ?, ?]. Good numerical performance is reported in these papers.

1.3. Organization. The remaining of this paper is organized as follows. In section ??, the linearized

Bregman iteration is shown equivalent to a unit-step gradient descent iteration, from which a global conver-

gence result follows directly. In section ??, the dual solution set is analyzed, and the exact regularization

property is proved. Section ?? presents simulation results. Conclusions and discussions are given in section

??.

2. Linearized Bregman as Dual Gradient Descent. Let us introduce a smoothed version of J :

gα(x) := J(x) +
1

2α
‖x‖2,

and let g∗α(·) denote the Fenchel dual (or convex conjugate) of gα(·). The Lagrangian dual of minx{gα(x) :

Ax = b} is

(2.1) min
y
− b>y + g∗α(A>y).

Since gα(·) is strictly convex, g∗α(·) is differentiable [?].

Theorem 2.1. The linearized Bregman iteration (??) is equivalent to the gradient descent iteration

applied to problem (??) with a unit step size.

Proof. We shall relate the dual variable yk in (??) to the variable vk in (??), and then show that (??)

is a gradient descent iteration. From (??), we have vk ∈ R(A>) for all k, so we introduce yk such that

vk = A>yk, and thus (??) yields the iteration yk+1 = yk − (Axk − b). Next, we show that (Axk − b) is a

5

gradient of the objective function of (??) at yk. Because pk is a subgradient of J(·) at xk, we have

pk ∈ ∂xJ(xk)⇐⇒ A>yk = pk +
1

α
xk ∈ ∂xgα(xk)

⇐⇒ xk ∈ ∇g∗α(A>yk)

=⇒ Axk = A∇g∗α(A>yk) = ∇yg∗α(A>yk)

⇐⇒ Axk − b = ∇y(−b>yk + g∗α(A>yk)),

where the second line is a well-known property of Fenchel duality (cf. [?]).

Comments: Dual gradient descent is equivalent to a multiplier method2. Define the Lagrangian L(x, y) :=

gα(x) + 〈y, b − Ax〉. Then, the linearized Bregman iteration (??)–(??) can be exactly obtained from the

multiplier method

1. xk+1 ← minx L(x, yk),

2. yk+1 ← yk +∇yL(xk+1, yk),

and by letting vk = A>yk.

Theorem ?? means that one can apply the general convergence results of gradient descent on the lin-

earized Bregman method. Let us take J(x) = ‖x‖1 as an example (the result for J(x) = µ‖x‖1 is the same),

and show that iterative scheme (??) generates a sequence {xk} that converges to the solution of P(α) if

‖A‖2 < 2/α.

First, we derive (??), which gives xα. The Lagrangian dual problem of P(α) is D’(α). Specifically,

corresponding to J(x) = ‖x‖1, we get gα(x) = ‖x‖1 + 1
2α‖x‖

2 and its Fenchel dual:

g∗α(z) =

n∑
i=1

α

2
(zi − Proj[−1,1](zi))

2 =
α

2
‖z − Proj[−1,1]n(z)‖2.

Plugging g∗α into (??) gives the objective function of D’(α), denoted by

(2.2) Fα(y) := −b>y +
α

2
‖A>y − Proj[−1,1]n(A>y)‖2.

Because ∇g∗α(z) = α(z − Proj[−1,1]n(z)), we have

(2.3) ∇Fα(y) = −b+ αA
(
A>y − Proj[−1,1]n(A>y)

)
.

Hence, the first-order optimality conditions of D’(α) are ∇Fα(y) = 0 or αA
(
A>y − Proj[−1,1]n(A>y)

)
= b.

Since α
(
A>y − Proj[−1,1]n(A>y)

)
= αshrink(A>yα, 1), it is easy to observe that xα defined in (??) satisfies

Ax = b, i.e, is a feasible solution of P(α). The optimality of xα for P(α) are proved in Theorem ?? below

by matching the primal objective value given by xα to that of the dual given by yα.

To establish that {xk} generated by (??) converges to xα, all we need to show is that the ψ(·) := ∇Fα(·)
is Lipschitz continuous with the constant L ≤ α‖A‖2. Then, according to the classical result of gradient

descent, {xk} converges under the condition that the step size (which is 1 in our case) is no more than 2/L,

or equivalently, ‖A‖2 < 2/α. To show that ψ(·) is Lipschitz continuous, we derive

‖ψ(y1)− ψ(y2)‖ = ‖A (∇g(A>y1)−∇g(A>y1))‖

≤ ‖A‖ · α‖(A>y1 − Proj[−1,1]n(A>y1))− (A>y2 − Proj[−1,1]n(A>y2))‖

≤ α‖A‖‖A>(y1 − y2)‖

≤ α‖A‖2‖y1 − y2‖,

where the second inequality holds because |(s− Proj[−1,1]s)− (t− Proj[−1,1]t)| ≤ |s− t| for any s, t ∈ R.

2The authors of [?] pointed out that the linearized Bregman method can be derived from Uzawa’s method [?], which is a

multiplier method motivated by economical equilibria.

6

2.1. Generalizations of the Linearized Bregman Method. It is natural to improve unit-step

gradient descent by methods such as line search, quasi-Newton methods, L-BFGS [?], Nesterov’s recent

algorithm [?], and nonlinear conjugate gradient methods, all of which need only gradient computations.

Our purpose is not to detail the above enhancements one by one but to argue that with any of these

enhancements, the main computation remains almost as simple as (??) and (??), or (??) and (??) for3

J(x) = ‖x‖1, because the gradient of the objective function in (??) is simple to compute. At y =

yk, the gradient is given by Axk − b, where xk is further given by (??) in which vk = A>yk. For

many choices of J(x), computing gradients remains simple. For J(x) = ‖x‖1, we have shown that xk =

α
(
A>yk − Proj[−1,1]n(A>yk)

)
. For J(x) = ‖Φx‖1 where Φ is a non-singular transform, one can introduce

x̄ := Φx and thus solve min{‖x̄‖1 : AΦ−1x̄ = b}. Furthermore if Φ is orthonormal, then Φ−1 = Φ> and thus

x̄k = α
(

ΦA>yk − Proj[−1,1]n(ΦA>yk)
)

. For J(x) = TV (x), problem (??) is the ROF model, which can

quickly solved by many algorithms including the latest graph-cut/max-flow algorithms [?, ?, ?]. The list of

functions J(x) permitting fast solutions is not short.

In section ?? below, we will compare three different implementations of the linearized Bregman method

for J(x) = ‖x‖1. The first implementation is given in Table ?? with kicking enabled. The other two

implementations are based on the algorithm in Table ?? but have additional parts. We add a technique

combining kicking and the Barzilai-Borwein step size accompanied by non-monotone line search and obtain

the kicking+BB line search approach. We refer to [?, ?] for details on the Barzilai-Borwein method with

non-monotone line search. Recent uses of this method on `1-minimization can be found in [?, ?, ?]. Let τk

denote the step size at iteration k. The iterative scheme of kicking+BB line search is based on

xk+1 ← α shrink(vk, µ),(2.4a)

vk+1 ← vk + τkA>(b−Axk+1),(2.4b)

where τk is a step size, instead of (??). The third implementation uses limited memory BFGS (L-BFGS) [?],

a well-known implementation of quasi-Newton optimization. It is based on the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) approximate Hessian update but does not explicitly store either the approximate Hessian or

its inverse. Instead, it implicitly applies the approximate Hessian or its inverse that are generated from the

last m updates of x and ∇f(x) on the fly, where m is generally as small as between 5 and 20. Hence, L-BFGS

is particularly suited for large-scale optimization problems. Let the inverse of the approximate Hessian at

iteration k be denoted by Hk and its step size by τ̄k. The corresponding iterative scheme is based on

xk+1 ← α shrink(vk, µ),(2.5a)

vk+1 ← vk + τ̄kHkA>(b−Axk+1).(2.5b)

A non-monotone line search can be used to select τ̄k. Simulation results are reported in section (??) below.

3. Exact Regularization. In this section we prove the exact regularization property: there exists a

finite scalar α∞ > 0 such that whenever α > α∞, the solution xα of P(α) is also a solution of the basis

pursuit problem (??). The approach presented below is not concise as it could be (compared to the one in

[?]), but the steps in the approach help us develop insights and ideas for checking α > α∞, leading us to the

results in subsections ?? and ??.

First, we introduce necessary definitions and then go over the sketch of the proof. Let Yα denote the set

of solutions of D’(α) and yα ∈ Yα. For the convenience of subsequent analysis, we partition the index set

3We work with ‖x‖1 instead of µ‖x‖1 because of the scaling redundancy with both µ and α.

7

{1, . . . , n} into three subsets according to the values of (A>y)i, i = 1, . . . , n. Define

q1i (y) :=

1, (A>y)i < −1,

0, o.w.,
q2i (y) :=

1, −1 ≤ (A>y)i ≤ 1,

0, o.w.,
q3i (y) :=

1, (A>y)i > 1,

0, o.w.

for i = 1, . . . , n. Let Qj(y) := Diag(qj) for j = 1, 2, 3, which act as “partition” or “selection” matrices. For

any i and y, exactly one of Q1
ii(y), Q2

ii(y), and Q3
ii(y) equals 1. The following example illustrates the above

definitions:

A>y =


2

−4

−1
1
2


> 1

< −1

∈ [−1, 1]

∈ [−1, 1]

=⇒ Q1(y) =


0

1

0

0

 , Q2(y) =


0

0

1

1

 , Q3(y) =


1

0

0

0

 .

Furthermore, we let Q(y) := (Q1(y), Q2(y), Q3(y)).

Proof sketch: The proof analyzes the partitions Q(yα), which are shown to be uniquely determined by α.

For each feasible partition Q, there exist a set of α values such that Q(yα) = Q. Such set is either a singleton

or an interval. There are finitely many partitions and thus finitely many corresponding intervals, the union

of which covers (0,∞), so the right most interval is unbounded toward +∞. This right most interval is

denoted by IJ and its lower bound is defined as α∞. All α ∈ IJ not only give the same partition Q(yα)

but also the same xα, denoted by x∗. x∗ is shown to be optimal for both P(α), α ∈ IJ , and (??) through

constructing corresponding dual solutions yα and y∞, respectively. Specifically, given any yα, α ∈ IJ , there

exists a vector ∆y which gives yβ := yα + (β−1 − α−1)∆y ∈ Yβ , β > α, and y∞ := yα − α−1∆y ∈ Y∞. This

proof is detailed in subsection ?? below, which is based on the results in next subsection.

3.1. Solutions of P(α) and D’(α). Given a partition Q, A can be correspondingly divided column-

wise into three submatrices. For j = 1, 2, 3 each, let Aj be submatrix of A formed by the columns i of A

that correspond to (Qj)ii = 1, and let ej = [1 1 . . . 1]> with the dimension equal to the number of columns

of Aj .

Definition 3.1. We say that y is consistent with a given Q if Q(y) = Q.

The following theorem states that it is straightforward to obtain a primal solution from a dual solution.

Theorem 3.2. Let α > 0. For any solution yα ∈ Yα of D’(α), xα given by (??) is the unique solution

of P(α). In particular, Axα = b.

Proof. The proof uses classical convex duality. According to (??) and combining (??) with the dual

optimality conditions ∇yFα(yα) = 0, we obtain Axα = b, i.e., xα is feasible. It remains to show that the

duality gap vanishes, namely, b>yα−g∗α(A>yα) = ‖xα‖1+ 1
2α‖xα‖

2
2. Let p := Proj[−1,1]n(A>yα). Since (xα)i

is strictly positive (strictly negative) if and only if pi equals 1 (−1, respectively), we have pi · (xα)i = |xi|
and thus p>xα = ‖xα‖1. Furthermore, xα = αshrink(A>yα, 1) = α(A>yα − p). Hence,

b>yα − g∗α(A>yα) = (Axα)>yα −
α

2
‖A>yα − p‖22

= (A>yα)>xα −
1

2α
‖α(A>yα − p)‖22

=
1

α
(α(A>yα − p))>xα + p>xα −

1

2α
‖α(A>yα − p)‖22

=
1

α
‖xα‖22 + ‖xα‖1 −

1

2α
‖xα‖22

= ‖xα‖1 +
1

2α
‖xα‖22.

Finally, because the objective function of P(α) is strictly convex, its solution xα is unique.

8

Comments: This theorem lets one recover the primal solution xα from any dual solution yα ∈ Yα. In

case that yα is not an exact but approximate solution, xα is not an exact solution of P(α) either, and the

primal feasibility measure ‖Axα − b‖2 is equal to the first-order dual optimality measure ‖∇Fα(yα)‖ while,

on the other hand, the duality gap given by this pair of xα and yα is always zero.

Whether Yα is a singleton or not, xα = α(A>yα − Proj[−1,1]n(A>yα)) is unique, so we have

Corollary 3.3. Let α > 0. Both A>yα − Proj[−1,1]n(A>yα) and Q(yα) are constant over yα ∈ Yα.

Hence, Q(yα) only depends on α, so we introduce the y-independent notation Qjα := Qj(yα), j =

1, 2, 3, yα ∈ Yα. We similarly define Ajα, j = 1, 2, 3, as the submatrices of A corresponding to Qjα. The

corollary below characterizes the dual solution set Yα and exhibits the roles played by Ajα, j = 1, 2, 3.

Corollary 3.4. Let yα ∈ Yα. Then,

Yα =
(
{yα}+ Null

(
A(Q1

α +Q3
α)A>

))
∩ {y : Q(y) = Qα} ,

where Null
(
A(Q1

α +Q3
α)A>

)
= Null

(
A1
α(A1

α)> +A3
α(A3

α)>
)
.

This corollary is easy to prove by noticing

min
y
Fα(y) =

min
y
− b>y +

α

2

∥∥(A1
α)>y + e1α

∥∥2
2

+
α

2

∥∥(A3
α)>y − e3α

∥∥2
2
,(3.1)

where e1α and e3α are vectors of all ones of appropriate dimensions. The above equation only means the

two problems have the same optimal objective value but not necessarily the same solution set. A1
α and A3

α

together determine the optimal value but, generally, not enough to determine Yα because yα ∈ Yα must

be consistent with the partition Qα, in particular, satisfying −e2α ≤ A2
αyα ≤ e2α. An exception arises when

A(Q1
α +Q3

α)A> has a full rank because then, the normal equations of (??) have a unique solution yα, which

must lie in Yα and thus satisfy Q(y) = Qα.

Given x and α, it can be costly to test whether x solves P(w) by computing a dual solution yα ∈ Yα since

yα must satisfy both equality and inequality equations. This is the case for sparse optimization where one

computes xα and then is interested in knowing whether this xα is optimal to (??). Fortunately, alternative

means exist for highly sparse solutions; see the discussions in subsection ?? below.

3.2. The Exact Regularization Proof. In this subsection, through analyzing the point set

(3.2) I(α) = {β > 0 : Qβ = Qα} ⊂ R,

we show that for α sufficiently large, the solution xα of P(α) is also a solution of (??).

Lemma 3.5. Let α > 0. I(α) is nonempty and connected, so it is either a singleton or an interval

(possibly unbounded).

Proof. Since α ∈ I(α), I(α) is nonempty. It remains to show that for α1, α2 ∈ I(α) and γ ∈ (0, 1),

β := γα1 + (1 − γ)α2 ∈ I(α). From α1, α2 ∈ I(α), it follows that A1
α = A1

α1
= A1

α2
, A3

α = A3
α1

= A3
α2

, and

there exist yα1
∈ Yα1

and yα2
∈ Yα2

, which satisfy the optimality conditions of (??) in the following form:

for ν = α1, α2 each

(3.3)
(
A1
α(A1

α)> +A3
α(A3

α)>
)
yν = (A1

αe
1
α −A3

αe
3
α) + ν−1b.

Define ∆y := (yα1 − yα2)/(α−11 − α−12) and yβ := yα2 + (β−1 − α−12)∆y. Since yβ is on the line segment

connecting yα1
and yα2

, we have Q(yβ) = Qα following from the definition of Q and the assumption Qα1
=

Qα2
= Qα. From Q(yβ) = Qα and the fact that yβ satisfies (??) for ν = β, it is easy to derive that

9

∇Fβ(yβ) = 0 and, therefore, both yβ ∈ Yβ and Q(yβ) = Qβ . So, we get Qβ = Qα and thus, β ∈ I(α).

The key of the above proof is the looking for a direction ∆y that linearly connects yα1 and yα2 and generating

dual solutions yβ for β ∈ (α1, α2). The proof of Lemma ?? uses the same technique.

Let I = {I(α) : α > 0}. Since there are finitely many distinct Qa’s, I is a finite set. Since I ∩ I ′ = ∅
for any two distinct I, I ′ ∈ I, Lemma ?? lets us order the elements of I increasingly as I1, I2, . . . , Ij , . . . , IJ ,

where J <∞. Since Qα does not depend on the choice of α ∈ Ij , we introduce the α–independent notation

Qj := Qα, α ∈ Ij , j = 1, . . . , J.

Similarly, we define A1
j := A1

α, A2
j := A2

α, and A3
j := A3

α, where α ∈ Ij , for j = 1, . . . , J .

Because ∪I = {α : α > 0} and I is a finite set, we have

Lemma 3.6. J = |I| is finite and sup IJ = +∞.

To proceed we need the following assumption, which leads to the boundedness of ∪β≥αYβ for any α > 0

(otherwise, it is easy to show that (??) is unbounded, violating the fact that (??) is feasible and finite.).

Assumption 1. A has full row rank, and Ax = b is consistent.

When this assumption does not hold, there exists at least one redundant constraint in the system Ax = b.

Next, we prove that xα, ∀α ∈ IJ , is unique and solves problem (??) by identifying a corresponding dual

solution y∞ for (??). The following lemma proves that given yα, α ∈ IJ , a set of key equations have a joint

solution ∆y, from which we construct

(3.4) y∞ := yα − α−1∆y.

Lemma 3.7. Let α ∈ IJ and yα ∈ Yα. Under Assumption ??, the following system has a solution ∆y:(
A1
α(A1

α)> +A3
α(A3

α)>
)

∆y = b,(3.5a)

‖A>(yα − α−1∆y)‖∞ ≤ 1,(3.5b)

(A1
α)>(yα − α−1∆y) = −e1α,(3.5c)

(A3
α)>(yα − α−1∆y) = e3α.(3.5d)

Before proving the lemma, let us describe where (??) and (??) come from. (??) is obtained by taking

the limit β → ∞ in (??) below. Equation (??) is a result of (??) after varying ν. (??) is the feasibility

condition. The remaining equations (??) and (??) follow from (??) and (??) when α ∈ IJ and yα ∈ Yα, as

shown in Theorem ?? below. They are explicitly given in the lemma because when α ∈ Ij and α < α∞,

they sometimes still hold while (??) does not; we can show that for a given j, if (??), (??), and (??) are

consistent, then xα is constant over α ∈ Ij .
Proof. [Lemma ??] Let α′ > α ∈ IJ , and according the proof of Lemma ??, one can pick yα′ ∈ Yα′

satisfying (??) with ν = α′. So does yα ∈ Yα with ν = α. By taking the differences between two copies of

(??) with ν = α and ν = α′, we get

(3.6) ∆yα′ :=
yα′ − yα

α′−1 − α−1
,

which satisfies (??). Hence, the equations in (??) are consistent. In addition, we have yα′ = yα + (α′
−1 −

α−1)∆yα′ ∈ Yα′ and Q(yα′) = QJ . Therefore, the set

Sα′ := {∆y : ∆y satisfies (??)} ∩ {∆y : Q(yα + (α′
−1 − α−1)∆y) = QJ}

contains ∆yα′ and thus is nonempty. Following the argument in the proof of Lemma ??, one can show

that Q(yα + (β−1 − α−1))∆y = QJ and thus ∆y ∈ Sβ hold for any ∆y ∈ Sα′ and β ∈ [α, α′]. This

10

means Sα′ is monotonically non-increasing in α′. From Assumption ??, Tα := ∪β≥αYβ is bounded, so

Sα′ ⊂ {u − v : u, v ∈ Tα} is bounded. From the theorem of nested sets, there exists ∆y ∈ ∩α′>αcl(Sα′)

satisfying (??) and using this ∆y, we have

(3.7) yβ := yα + (β−1 − α−1)∆y ∈ Yβ ,

for all β ≥ α.

It is a classical result of the quadratic penalty method that in D’(α), the penalized terms vanish as the

penalty parameter goes to infinity, i.e.,

(3.8) lim
β→∞

‖(A1
α)>yβ + e1α‖ = 0, lim

β→∞
‖(A3

α)>yβ − e3α‖ = 0, ∀yβ ∈ Yβ .

Combining (??) and (??) and letting β →∞, we get (??) and (??).

Finally, yβ defined in (??) is optimal and thus consistent with QJ for all β ≥ α and, in particular, satisfy

−e2α ≤ (A2
α)>yβ ≤ e2α. Letting β → ∞ gives −e2α ≤ (A2

α)>(yα − α−1∆y) ≤ e2α. From this result, as well as

(??) and (??), (??) follows.

It is worth noting that (??) can have multiple solutions, not all satisfying (??)–(??). The whole system of

(??)–(??) can have multiple solutions as well. However, it can be referred from the above Lemma that if

(??) has a unique solution ∆y, ∆y must satisfy (??)–(??) . Next, we prove the main result of this section.

Theorem 3.8. xα is constant for α ∈ IJ , and it is a solution of problem (??).

Proof. Let α ∈ IJ , β ≥ α, and yα ∈ Yα, ∆y be a solution of (??)–(??). Define y∞ and yβ as in

(??) and (??), respectively. We have y∞ = yβ − β−1∆y and, from (??) and (??), Q1
J(A>y∞ + e) = 0 and

Q3
J(A>y∞ − e) = 0. Therefore,

xβ = β(A>yβ − Proj[−1,1]n(A>yβ))

= βQ1
J(A>yβ + e) + βQ3

J(A>yβ − e)

= βQ1
J(A>y∞ + e) + βQ3

J(A>y∞ − e) + (Q1
J +Q3

J)A>∆y

= (Q1
J +Q3

J)A>∆y.

Since both α ∈ IJ and β ≥ α are arbitrary and xβ is independent of β, the first half of the theorem is proved.

The second half following from the strong duality theorem, which holds given that xα is primal feasible

(i.e., Axα = b), y∞ is dual feasible (from (??)), and the primal and dual have equal objectives:

‖xα‖1 = x>αQ
3
Je− x>αQ1

Je = x>αQ
3
J(A>y∞) + x>αQ

1
J(A>y∞) = x>α (Q1

J +Q3
J)A>y∞ = x>αA

>y∞ = b>y∞.

3.3. An Pathological Example. For a given α, it is generally tricky to test α ∈ IJ based only on

a primal-dual solution pair xα and yα ∈ Yα. One needs to solve (??)–(??) (in fact, only (??) and (??)

will suffice as is shown below), which include inequality constraints implicitly in (??). Is there a simple

alternative to avoid the inequalities?

Theorem ?? states that xα is constant over α ∈ IJ , so one may wonder the sufficiency of this property,

namely, if xα = xβ for α 6= β, then xα solves (??)? This does not hold in the following example.

Let

A =

[
1 1 2

1 0 −2

]
, b =

[
4

3

]
.

Then, for α = 1, 2, 3, 4, 8, as well as ∞ (for problem (??)), the primal and dual solutions xα and yα of P(α)

are given in the following table:

11

α xα yα ‖xα‖1

1 [3 1 0]> [2 2]> 4

2 [3 1 0]> [32 1]> 4

3 [6521
17
21

1
21]> [8063

16
21]> 83

21

4 [6721
13
21

2
21]> [9784

9
14]> 82

21

8 [72 0 1
4]> [125128

59
128]> 15

4

∞ [72 0 1
4]> [34

1
4]> 15

4

For α = 1, 2, the primal solution xα of P(α) remain the same but is not optimal to (??). Therefore, one

cannot conclude the optimality of xα only because it is constant over an interval of α. Suppose α, α′ ∈ Ij ∈ I
and α 6= α′. From the proof of Theorem ??, it is easy to see when equations (??), (??) and (??) hold for

∆y := yα′−yα
α′−1−α−1 for yα ∈ Yα and yα′ ∈ Yα′ , then xα = xα′ and it is unique over α ∈ Ij . Therefore, condition

(??) is indispensable for α ∈ IJ .

The above example also demonstrates that xα can vary over α lying in the same interval Ij . xα for

α = 3 and α = 4 have the same signs, so 3 and 4 belong to the same interval Ij . However, x3 6= x4.

Since minimizing ‖x‖1 and ‖x‖2 tend to yield sparse and non-sparse solutions, respectively, it is natural

to conjecture that the solution xα of P(0) becomes monotonically sparser as α increases. However, in the

above example xα has more nonzero entries for α = 4 than α = 1 or 2, so the number of nonzero entries in

xα are generally not monotonic in α.

Finally, exact regularization holds for α = 8 since x8 = x∞.

3.4. Recognize α ∈ IJ . As stated in the following theorem, in order to verify α ∈ IJ , one generally

needs to solve (??) and (??).

Theorem 3.9. α ∈ IJ if and only if (??) and (??) have a solution.

The proof of this theorem is given in Appendix ??.

Corollary 3.10. Equations (??) and (??) are implied by (??) and (??).

Next we study the special cases in which α ∈ IJ or α 6∈ IJ can be determined without fully solving (??)

or (??).

Case 1. If (??) has a unique solution or, equivalent, the matrix [A1
α A3

α] has full row rank, then one can

solve (??) and test its solution against (??). If (??) is satisfied, then α ∈ IJ and xα is optimal to

(??); otherwise, α 6∈ IJ and xα is not optimal.

Case 2. For sparse optimization, there are results stating that there exists a number M depending on A

such that any x satisfying Ax = b and ‖x‖0 ≤M is the sparsest representation. Similar results exist

for compressed sensing problems with sparse solutions. See papers [?, ?, ?, ?, ?, ?, ?] and references

therein. For compressed sensing, cross validation [?, ?] can also be applied.

Case 3. If two solutions xα and xα′ , α 6= α′, have the same signs but different values, then we can conclude

neither α nor α′ is in IJ .

Case 4. Assume that (??) has a unique solution. Then, the solution has no more than m nonzeros. Con-

sequently, if xα has more than m nonzeros, then α 6∈ IJ .

In a compressed sensing problem where the entries of A independently are drawn randomly, the expected

solution is almost always either highly sparse or has exactly m nonzero elements. In the former situation,

Case 3 applies. In the latter situation, [A1
α A

3
α] often has full rank so Case 1 applies. Therefore, it is often

straightforward to test the optimality for a compressed sensing problem.

12

(a)

Test

1

(b)

Test

2

(c)

Test

3

Test 1 2 3

Dim. 1024 1024 1024

#.Meas. 512 307 307

Sparsity 102 31 61

Meas.Mtrx. Gassian/QR Gaussian Bernoulli

Nonzero ±1 Gaussian Gaussian

α 1 5 5

(d) Summary

Fig. 4.1. Kicking v.s. kicking+BB line search v.s. L-BFGS: absolute errors in 2-norm v.s. iterations .

4. Numerical Simulation. In this section, we report numerical results to demonstrate the effectiveness

of two implementations of the linearized Bregman algorithm: one using Barzilai-Borwein steps with non-

monotone line search and the other using L-BFGS. The results also illustrate that exact regularization is

easily satisfied for a moderate α, at least for the tested problems. We refer the reader to [?] for a series of

numerical simulations that study the efficiency and robustness of the linearized Bregman algorithm (using

the basic implementation with kicking; see subsection ??) on various sparse optimization problems.

In Figure ??, we present comparison results of three different implementations of the linearized Breg-

man method applied to J(x) = ‖x‖1: (i) kicking–only, (ii) kicking+BB line search, and (iii) L-BFGS4. The

kicking–only implementation is described in Table ??. Kicking+BB line search and L-BFGS implementa-

tions are based on the iterative schemes (??) and (??), respectively.

Figure ?? depicts absolute errors in 2-norm versus the number of iterations, corresponding to the three

tests described in subfigure (d). For kicking and kicking+BB line search, exactly two matrix–vector multipli-

cations, one involving A and the other involving A>, are performed at each iteration; however, the L-BFGS

implementation can perform more than one pair of such multiplications at each iteration. For fairness of

comparison, we count each pair of A and A> multiplications as one iteration in all of the three implemen-

tations. The comparison results clearly show that standard optimization enhancements can significantly

accelerate the linearized Bregman method. It is worth noting that because of the use of non-monotone line

search, the objective values of kicking+BB line search and L-BFGS do not always decrease.

Table ?? reports the performance of three implementations on a larger set of sparse optimization tests.

All test sets used the same type of sensing matrix: orthogonalized Gaussian matrices whose elements were

generated from i.i.d. normal distributions and whose rows were orthogonalized by QR decompositions.

Although different matrix types lead to varying performance, the relative speed and robustness of the three

implementations remain roughly the same across different matrix types. We chose the matrix type above for

our test since it is the one used in the recent report [?], which compares the kicking-only implementation

4Courtesy of Zaiwen Wen for a pure MATLAB implementation of L-BFGS.

13

Table 4.1

Simulation results three implementations using 20 random instances for each configuration of (n,m, ‖ū‖0).

Results of (KO)kicking-only, (KB)kicking+BB line search, (LB)L-BFGS

Stopping tol. ‖Auk − b‖/‖b‖ < 10−5; up to 6000 total A/A> multiplications

Signal type sparse, i.i.d. standard Gaussian

A and A> mult’s relative error ‖uk − ū‖/‖ū‖ time (sec.)

KO KB LB KO KB LB KO KB LB

#Dim. #Meas. ‖ū‖0 = 50

1000 300 2410 324 193 2.54e-004 7.71e-006 6.62e-006 0.5 0.1† 0.1†

2000 600 3309 1297 286 3.76e-004 1.58e-005 7.16e-006 7.1 2.9 0.7†

4000 1200 3850 1018 339 7.66e-004 6.11e-006 6.94e-006 31.3 8.4 2.8

#Dim. #Meas. ‖ū‖0 = 20

1000 300 629 102 128 1.12e-005 5.14e-006 3.75e-006 0.1 0.0† 0.0†

2000 600 863 145 152 1.08e-005 5.67e-006 5.46e-006 1.9 0.3† 0.4†

4000 1200 1313 275 215 1.08e-005 5.39e-006 6.43e-006 10.7 2.3 1.8

Signal type sparse, uniformly random [−1, 1]

A and A> mult’s relative error ‖uk − ū‖/‖ū‖ time (sec.)

KO KB LB KO KB LB KO KB LB

#Dim. #Meas. ‖ū‖0 = 50

1000 300 2287 343 214 4.33e-004 7.17e-006 6.60e-006 0.5 0.1† 0.1†

2000 600 3346 968 282 8.12e-004 8.40e-006 5.87e-006 7.2 2.2 0.7†

4000 1200 3851 1183 370 9.52e-004 9.74e-006 5.94e-006 31.3 9.9 3.1

#Dim. #Meas. ‖ū‖0 = 20

1000 300 753 119 141 1.06e-005 4.77e-006 4.42e-006 0.2 0.0† 0.0†

2000 600 903 269 167 1.10e-005 6.33e-006 4.82e-006 2.0 0.6† 0.4†

4000 1200 1395 435 257 1.09e-005 5.83e-006 5.42e-006 11.4 3.7 2.2

†: A sub-second timing result may be inaccurate. A more reliable indicator of the computing cost is the number of A and A>

multiplications.

to various other `1 codes. Therefore, the reader can easily infer how efficient the two novel implementations

are compared to those `1 codes tested in [?]. The tested sparse signals ū had numbers of nonzeros equal to

either 20 on 50 depending on test sets. The positions of the nonzero entries of ū were selected uniformly at

random, and each nonzero value was sampled either from standard Gaussian (randn in MATLAB) or from

[−1, 1] uniformly at random (2*rand-1 in MATLAB) depending on test sets. No noise was added to either

ū or the measurements Aū. We set α = 5 uniformly for all tests for the kicking+BB line search and L-BFGS

implementations, i.e., they solve P(5). To ensure convergence, we had to use α = 1 and thus µ = 5 (see

(??)) for the kicking-only implementation so that it also solves P(5).

The three implementations were written in MATLAB 2009b, and simulations were run on a Lenovo

T400s laptop running Windows 7 32-bit with a P9600 CPU and 3GB of memory.

From Table ?? it is easy to see that the L-BFGS implementation was the fastest among the three, and the

kicking+BB line search implementation was faster than the kicking-only implementation. Under the same

stopping rule, L-BFGS required significantly fewer total numbers of matrix-vector multiplications than the

14

other two while it returned more accurate solutions. Kicking+BB line search was not as good but not too

far off either. Kicking-only was the slowest and also returned solutions with the worst mean relative errors.

The large mean relative errors were caused by at least a couple tests in each set of 20 independent tests that

reached the 6000-multiplication limit and thus were terminated before achieving ‖Auk − b‖/‖b‖ < 10−5. We

have compared the three tested implementations on other types of sensing matrices and sparse signals and

arrived at the same conclusion.

For α = 5, exact regularization holds for all the tested problems. This can be seen from the low relative

errors of O(10−6) achieved by the L-BFGS implementation. Increasing α will maintain exact regularization

but make the three implementation to take more iterations.

5. Conclusions and Discussions. One of the main results of this paper is the exact regularization

property, which implies that to solve the basis pursuit problem (??), one can choose to solve the simpler

unconstrained problem P(α) with α greater than a certain threshold using, for example, the fast implemen-

tations of the linearized Bregman method. In many applications, a moderate α such as 10 is large enough.

Generally, however, it is tricky to choose α because too large an α will slow down the linearized Bregman

method. This leaves us the following questions: how to choose α and how to check if it is large enough.

In papers [?, ?, ?, ?], the authors have demonstrated good numerical results with relatively small α

values in their tested compressed sensing and matrix completion problems. Their empirical choices of α

worked fine. For problems with sparse solutions (or low-rank solutions in the matrix completion problem),

simple posterior optimality tests are available. For non-degenerate, non-sparse solutions, solving the linear

system (??) seems unavoidable. In the worst case with degenerate yet non-sparse solutions, both (??) and

(??) need to be solved. A forthcoming report will introduce an alternative algorithm, related to but not the

same as P(α), which works for any α > 0 and returns a solution of (??).

Acknowledgements. The author wants to thank Donald Goldfarb (Columbia), Wenye Ma (UCLA),

Yangyang Xu (Chinese Academy of Sciences), and Zaiwen Wen (UCLA and Rice) for proofreading this

paper and Michael Friedlander and Defeng Sun for contributing important references. The comments from

the associate editor and two anonymous referees helped the author improve this paper significantly.

Appendix A. Proof of Theorem ??.

Proof. The “only if” part is shown in Lemma ??.

We show the “if” part by contradiction. Let α ∈ Ij . Suppose (??) and (??) hold for ∆y but j 6= J .

First, we show that some equation in (??) or (??) must be violated by contradiction (to the assumption

j 6= J). Suppose that all equations in (??) and (??) hold for ∆y. Then, we know yβ = yα+(β−1−α−1)∆y ∈
Yβ from (??) in the proof of Lemma ??. From (??), (??), and the fact (A1

α)>yα < −e1α and (A3
α)>yα > e3α,

we have

(A.1) (A1
α)>(yα + (β−1 − α−1)∆y) < −e1α and (A3

α)>(yα + (β−1 − α−1)∆y) > e3α, ∀β ≥ α.

Recalling the definition of A2
α, we have −e2α ≤ (A2

α)>yα ≤ e2α, and from (??), we also have

(A.2) −e2α ≤ (A2
α)>(yα + (β−1 − α−1)∆y) ≤ e2α, ∀β ≥ α.

From (??) and (??), we conclude that yβ = yα + (β−1 −α−1)∆y is compatible with Qα for all β > α. From

this and α ∈ Ij , it follows that Ij = IJ , which contradicts j 6= J .

Let V 1 and V 3 denote the index sets of violated equations in (??) and (??), respectively. Therefore, we

15

have shown V 1 ∪ V 3 6= ∅. Together with (??), we have

−1 ≤ A>i (yα − α−1∆y) < 1,i ∈ V 1,(A.3)

−1 < A>i (yα − α−1∆y) ≤ 1,i ∈ V 3.(A.4)

Second, we show that there exists a vector z 6= 0 such that Az = 0 and

(A.5) zi


< 0, i ∈ V 1,

= 0, i ∈ (V 1 ∪ V 3)C ,

> 0, i ∈ V 3.

From (??) and (??), it is easy to derive(
A1
α(A1

α)> +A3
α(A3

α)>
)

(yα − α−1∆y) = A3
αe

3
α −A1

αe
1
α,

or using the convention A = [A1
α A

2
α A

3
α],

A


−e1α − (A1

α)>(yα − α−1∆y)

0

e3α − (A3
α)>(yα − α−1∆y)

 = 0.

Let z be the vector in the brackets. We know that the entries in (A1
α)>(yα − α−1∆y) equal -1 except those

in V 1 and the entries in (A3
α)>(yα − α−1∆y) equal 1 except those in V 3. From (??) and (??), we obtain

(??).

Finally, we show that xα defined in Theorem ??, which assumed to be optimal to P(α) as α ∈ J , is

however not optimal. According to the definition of V 1 and V 3, we have (xα)i < 0, i ∈ V 1, and (xα)i > 0,

i ∈ V 3. From (??), there exists a small scalar ρ > 0 such that xα − ρz yields a strictly smaller objective of

P(α). Moreover, since Axα = b and Az = 0, we have A(xα − ρz) = b. Hence, xα − ρz is a better solution

than xα, meaning that xα is not optimal. This contradicts to the optimality of xα.

16

