IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000 325

The Generalized Distributive Law

Srinivas M. Aji and Robert J. McElie¢é&ellow, IEEE

Abstract—in this semitutorial paper we discuss a general (We summarize (1.1) by saying tha{z, w) is obtained by
message passing algorithm, which we call the generalized dis-“marginalizing out” the variableg and » from the function
tributive law (GDL). The GDL is a synthesis of the work of many f(z, y, w)g(x,). Similarly, 3(y) is obtained by marginalizing

authors in the information theory, digital communications, signal t duw f th f fi H ithmeti
processing, statistics, and artificial intelligence communities. It OUtZ, 2, @ndw Irom the same func ion.) How many arithmetic

includes as special cases the Baum-Welch algorithm, the fastOperations (additions and multiplications) are required for this
Fourier transform (FFT) on any finite Abelian group, the Gal- task? If we proceed in the obvious way, we notice that for each
lager—Tanner-Wiberg decoding algorithm, Viterbi's algorithm, of the¢? values of(x, w) there are;® terms in the sum defining
the BCJR algorithm, Pearl’s “belief propagation” algorithm, the alz, w), each term requiring one addition and one multiplica-

Shafer—Shenoy probability propagation algorithm, and the turbo
decoding algorithm. Although this algorithm is guaranteed to give tion, so that the total number of arithmetic operations required

exact answers only in certain cases (the “junction tree” condition), for the computation ot(z, w) is 2q*. Similarly, computing
unfortunately not including the cases of GTW with cycles or ((y) requires2q* operations, so computing bott{(z, w) and
turbo decoding, there is much experimental evidence, and a few B(y) using the direct method requirdg* operations.

theorems, suggesting that it often works approximately evenwhen g the other hand, because of the distributive law, the sum in
it is not supposed to. (1.1) factors ' '

Index Terms—Belief propagation, distributive law, graphical
models, junction trees, turbo codes. <

oz, w) = [3 fla, g, w)

yEA

> ol z)))

|. INTRODUCTION 2CA

HE humble distributive law, in its simplest form, states thdtsing this fact, we can simplify the computation @fz, w).
ab+ ac = a(b+ c). The left side of this equation involvesFirst we compute tables of the functions(z, w) and cs(z)
three arithmetic operations (one addition and two multiplicalefined by
tions), whereas the right side needs only two. Thus the distribu-

tive law gives us a “fast algorithm” for computing + ac. The a1z, w) = > fla,y w)
object of this paper is to demonstrate that the distributive law yCA
can be vastly generalized, and that this generalization leads to () def Z oz,), (1.4)

a large family of fast algorithms, including Viterbi's algorithm
and the fast Fourier transform (FFT).To give a better idea of the
potential power of the distributive law and to introduce the viewwhich requires a total of® 4+ ¢* additions. Then we compute
point we shall take in this paper, we offer the following exampléhe ¢ values ofe(x, w) using the formula (cf. (1.3))

Example 1.1:Let f(z, y,w) and g(z, z) be given alx, w) = au(x, wyas(x) (1.5)
real-valued functions, whete y, z, andw are variables taking
values in a finite setl with g elements. Suppose we are giveRyhich requires;? multiplications. Thus by exploiting the dis-
the task of computing tables of the valueswk, w) andS(y), tributive law, we can reduce the total number of operations re-
defined as follows: quired to computex(z, w) from 2¢* to ¢3 + 2¢2. Similarly, the
def distributive law tells us that (1.2) can be written as
ale, w)= D7 fla,y, wylz, 2) (1.1)

z€EA

Y, zEA
o 3(y) = T, Y, w T, 2
B S S w2 (12) oy = 2, I)<Z§;“’()>
z, 2, wEA
) = 3 fl@ o was(e) (1.6)
z, wCA

Manuscript received July 8, 1998; revised September 23, 1999. This work
was supported by NSF under Grant NCR-9505975, AFOSR under Granh
5F49620-97-1-0313, and a Grant from Qualcomm. A portion of McEliece'@N€reaz(x) is as defined in (1.4). Thus if we precompute a
contribution was performed at the Sony Corporation in Tokyo, Japan, while teble of the values of» () (¢ operations), and then use (1.6)

was a holder of a Sony Sabbatical Chair. Preliminary versions of this pa gq3 further operations) we onIy ne@q?) + q2 operations (as

were presented at the IEEE International Symposium on Information Theo 4 .
Ulm, Germany, June 1997, and at ISCTA 1997, Ambleside U.K., July 1997. compared teq* for the direct method) to compute the values

The authors are with the Department of Electrical Engineering, Californ@f /3(y)

Institute of Technology, Pasadena, CA 91125 USA (e-mail: {mas; rim}@sys- Finally, we observe that to compub®th o(z, w) and 8(y)
tems.caltech.edu). !) L

Communicated by F. R. Kschischang, Associate Editor for Coding Theorwsmg the simplifications aﬁom!ed by (1.3) and (1.6), we only
Publisher Item Identifier S 0018-9448(00)01679-5. need to computes(x) once, which means that we can compute

0018-9448/00$10.00 © 2000 IEEE

326 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000

the values ofv(x, w) and3(y) with a total of only3¢® + 2¢> some recent theoretical work on GDL-like algorithms on graphs

operations, as compared4g* for the direct method. O with a single cycle.

Although this paper is semitutorial, it contains a number of

ngs which have not appeared previously. Beside the gener-

'zt¥ of our exposition, these include:

» A de-emphasis o& priori graphical models, and an em-
phasis on algorithms to construct graphical models to fit
the given problem.

» A number of nonprobabilistic applications, including the
FFT.

« A careful discussion of message scheduling, and a proof
of the correctness of a large class of possible schedules.

The simplification in Example 1.1 was easy to accomplistgh.
and the gains were relatively modest. In more complicate
cases, it can be much harder to see the best way to reorgani
the calculations, but the computational savings can be dramatic.
It is the object of this paper to show that problems of the type
described in Example 1.1 have a wide range of applicability,
and to describe a general procedure, which we called¢ime
eralized distributive law(GDL), for solving them efficiently.
Roughly speaking, the GDL accomplishes its goal by passing
messages in a communications network whose underlying - - A
graph is a tree. » A precise measure of the computational complexity of the

Important special cases of the GDL have appeared many GDL.
times previously. In this paper, for example, we will demon- Finally, we note that while this paper was being written,
strate that the GDL includes as special cases the fast Hadamé&sghischang, Frey, and Loeliger [41] were simultaneously
transform, Viterbi's algorithm, the BCJR algorithm, theand independently working out a similar synthesis. And while
Gallager—Tanner—Wiberg decoding algorithm (when the undde final forms of the two papers have turned out to be quite
lying graph is cycle-free), and certain “probability propagationdifferent, anyone interested in the results of this paper should
algorithms known in the artificial intelligence communityhave a look at the alternative formulation in [41].

With a little more work, we could have added the FFT on any

finite Abelian group, the Baum—-Welch “forward-backward” II. THE MPF FROBLEM

algorithm, and discrete-state Kalman filtering. Although this
paper contains relatively little that is essentially new (fOﬁ.l
example, the 1990 paper of Shafer and Shenoy [33] descri
an algorithm similar to the one we present in Section 111},
believe it is worthwhile to present a simply stated algorith
of such wide applicability, which gives a unified treatment o
a great many algorithms whose relationship to each other W
not fully understood, if sensed at all.

Here is an outline of the paper. In Section Il, we will state a Definition: A commutative semiring a setk’, together with
general computational problem we call the MPF (“marginaliZ&vo binary operations called” and “.", which satisfy the fol-

a product function”) problem, and show by example thd@wing three axioms:
a number of classical problems are instances of it. These S1. The operationH” is associative and commutative, and

The GDL can greatly reduce the number of additions and

ultiplications required in a certain class of computational

¥Sblems. It turns out that much of the power of the GDL is

Gue to the fact that it applies to situations in which the notions

f addition and multiplication are themselves generalized. The

gropriate framework for this generalization is the commuta-
semiring.

problems include computing the discrete Hadamard transform, there is an additive identity element callédl Such that
maximum-likelihood decoding of a linear code over a memo- k+0 = kforall £ € K. (This axiom make$K, +)
ryless channel, probabilistic inference in Bayesian networks, acommutative monoiyl

a “probabilistic state machine” problem, and matrix chain S2. The operation-"is also associative and commutative,
multiplication. In Section I, we shall give an exact algorithm and there is a multiplicative identity element callad
for solving the MPF problem (the GDL) which often gives suchthat; - 1 =k forall k € K. (Thus(K, -) is also
an efficient solution to the MPF problem. In Section IV we a commutative monoid.)

will discuss the problem of finding junction trees (the formal ~ S3. Thedistributive lawholds, i.e.,
name for the GDL's communication network), and “solve”
the example instances of the MPF problem given in Section (@-b)+(a-c)=a-(b+c)
I, thereby deriving, among other things, the fast Hadamard
transform and Viterbi's algorithm. In Section V we will discuss
the computational complexity of the GDL. (A proof of the The difference between a semiring and a ring is that in a
correctness of the GDL is given in the Appendix.) semiring, additive inverses need not exist, (&, +) is only

In Section VI, we give a brief history of the GDL. Finally,required to be a monoid, not a group. Thus every commutative
in Section VII, we speculate on the possible existence of aing is automatically a commutative semiring. For example, the
efficient class of approximate, iterative, algorithms for solvinget of real or complex numbers, with ordinary addition and mul-
the MPF problem, obtained by allowing the communication netiplication, forms a commutative semiring. Similarly, the set of
work to have cycles. This speculation is based partly on the fagzilynomials in one or more indeterminates over any commu-
that two experimentally successful decoding algorithms, vizative ring forms a commutative semiring. However, there are
the GTW algorithm for low-density parity-check codes, and thmany other commutative semirings, some of which are summa-
turbo decoding algorithm, can be viewed as an application fed in Table I. (In semirings 4-8, the s&tis an interval of
the GDL methodology on networks with cycles, and partly oreal numbers with the possible additionbfc.)

for all triples(a, b, ¢) from K. O

AJlI AND McELIECE: THE GENERALIZED DISTRIBUTIVE LAW 327

TABLE | S;-marginalizationof the global kernel3, which is the function
SOME COMMUTATIVE SEMIRINGS. HERE A . :
DENOTES ANARBITRARY COMMUTATIVE RING, .S IS AN ARBITRARY FINITE ﬁz : Asi - R’ defined by
SET, AND A DENOTES ANARBITRARY DISTRIBUTIVE LATTICE /3i($s_) — Z /3(‘,1:). (2_2)
K “(+,0) “-,1)" short name Tge Edge

1. A (+,0) ;1) In (2.2), 57 denotes the complement of the $etrelative to the
2. Alx] (+0) (1) “universe” {1, ---, n}. For example, ifn. = 4, and ifS; =
3. A[wyyy -] (+$0) (': 1) {1 4} then
4. [0, 00) (+,0) (-,1) sum-product >
5 (0,00] (min,c0) (1) min-product Bi(z1, Ta) = 3(z1, T2, T3, Ta).
6. [0, 0) (max, 0) (,1) max-product filws, w1) . cAz; ca Ao, w2, 25, 24)
7. (—oo0,00] (min,00) (+,0) min-sum) R am s)))
8. [-o00,00) (max,—o0) (+,0) max-sum We will call the functiong;(zs,) defined in (2.2) théth objec-
9. {0’5,1} (OR,0) (AND,1) Boolean tive function or theobjective functiorat S;. We note that the
10. 2 (L, 0) (n,) computation of theth objective function in the obvious way
11. A (v,0) (A1) . dditi M—1 ltioli
12, A (A1) (V. 0). requiresg gz - - - ¢, additions and M — 1)q1 gz - - - g, multipli-

cations, for atotal o ¢; ¢> - - - ¢,, arithmetic operations, where
.) o ¢; denotes the size of the sét. We shall see below (Section V)
For example, consider the min-sum semiring in Table ¢ the algorithm we call the “generalized distributive law” can

(entry 7). HereK is the .set of _real r!umbers, plus the _spemquten reduce this figure dramatically.
symbol “>0.” The operation %" is defined as the operation of \yg conclude this section with some illustrative examples of
taking the minimurmwith the symboko playing the role of the e MPE problem.
corresponding identity element, i.e., we defina (k, co) = k
for all k € K. The operation * is defined to beordinary =~ Example 2.1:Let z1, x2, 3, and x4 be variables taking
addition [sid], with the real number0 playing the role of Vvalues in the finite setsd;, A,, A3 and A4. Suppose
the identity, andk + co = oo for all k. Oddly enough, this f(z1, z2, z4) andg(z1, z3) are given functions of these vari-
combination forms a semiring, because the distributive law #les, and that it is desired to compute tables of the functions

equivalent to a(zry, r4) andB(x2) defined by
min(a+ b, a+ ¢) = a+ min (b, ¢) o1, Ta) = Z f(x1, 22, z4)g(z1, 73)
To €Az, x3EA3
which is easily seen to be true. We shall get a glimpse of the Blas) = Z Flw, 0, 2)g(z1, T3).

importance of this semiring in Examples 2.3 and 4.3, below.
(In fact, semirings 5-8 are all isomorphic to each other; for ex-

ample, 5 becomes 6 via the mapping- 1/, and 6 becomes stThis_ is andirll(stan(ie of fthlelz M?F problem, if we define local
7 under the mapping — — log) omains and kernels as follows:

T1€AL, T3€A3, T4 €A,

Having briefly discussed commutative semirings, we now de- local domain local kernel
scribe the “marginalize a product function” problem, which is Lo Az, w2, 2a} f(21, 22, 24)
a general computational problem solved by the GDL. At the 2. Am, w3} 9(x1, x3)
end of the section we will give several examples of the MPF 3. Awn, w4y 1
problem, which demonstrate how it can occur in a surprisingly 4. {z2} 1
wide variety of settings. The desired functior(x1, 4) is the objective function at local
Let xy, .-+, z, be variables taking values in the finitedomain3, and/3(x.) is the objective function at local domain
sets Ay, -+, A,, with |4;] = ¢ fori = 1,---,n. If 4. This is just a slightly altered version of Example 1.1, and
S = {i, -+, 4.} is asubset off1, ---, n}, we denote the we shall see in Section IV that when the GDL is applied, the
product4;, x ---x A, by Ag, the variable lis{xz;,, ---, z;.) “algorithm” of Example 1.1 results. O

by x5, and the cardinality ofig, i.e.,|As|, by ¢s. We denote
the productAy; ...,y simply by A, and the variable list
{xlv) xn} Slmply byx

Now letS = {51, ---, Sy} be M subsets of 1, ---, n}.
Suppose that for each = 1, ---, M, there is a functio
a;:As, — R, where R is a commutative semiring. The
variable listscs, are called théocal domainsand the functions
«; are called thdocal kernels We define theglobal kernel
B: A — R as follows:

Example 2.2:Let z1, x2, z3, y1, ¥2, andys be six vari-
ables, each assuming values in the binary{§etl}, and let
f(y1, y2, y3) be a real-valued function of the variablgs,

n Y2 andys. Now consider the MPF problem (the commutative
semiring being the set of real numbers with ordinary addition
and multiplication) with the following local domains and
kernels:

local domain local kernel

r L A, w2, 93} fyr, v2, u3)
- 1, 92, §3 1, 92, 43
Blay, s) =[] cilzs,). (2.1) 2) 1y
- - 3 Amnwp (1)
With this setup, the MPF problem is this: For one or more of 4. {3, ys} (—1)7s¥s
the indices = 1, ---, M, compute a table of the values of the 5. {xy, zo, 3} 1

328 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000

Here the global kernel, i.e., the product of the local kernels, is e

F(JCl, L2, 3y Y1, Y2, yz) :f(yb Y2, yz)
. (_1)w1y1+x2y2+w3y3

and the objective function at the local domdiry, z2, 23} is

Fzy, w,x3) = Y fys, g, ys)(—1)7rvrtoevetesys

Y1,¥2,Y3
which is the Hadamard transformof the original function @
f(y1, y2, y3) [17]. Thus the problem of computing the Hada-
mard transform is a special case of the MPF problem. (A
straightforward generalization of this example shows that the
problem of computing the Fourier transform over any finite
Abelian group is also a special case of the MPF problem. While
the kernel for the Hadamard transform is of diagonal form, in “
general, the kernel will only be lower triangular. See [1, Ch.
3] for the details.) We shall see below in Example 4.2 that the
GDL algorithm, when applied to this set of local domains and® *
kernels, yields théastHadamard transform. O

Example 2.3:(Wiberg [39]). Consider thé7, 4, 2) binary
linear code defined by the parity-check matrix

The Bayesian network in Example 2.4.

The global kernel is then

F(zy, -, x7)
1101000 —log p(ys, -+ w7
H=|001 1010 |z, -5 27), if (w1, -+, @7)
000 1 1 0 1 = is a codeword
0, if (xlv "',.1‘7)
Suppose that an unknown codew@td, zz, - - -, x7) from this is not a codeword.
code is transmitted over a@scretg memoryki;s channfl, and LH%S the objective function at the local domdiy } is
the vector(yy, y2, - -+, y7) is received. The “likelihood” of a S
particular codewordzy, x2, - - -, x7) is then Fi(as) = min {—log p(yr, - yelo, -+, @7) :
7 all codewords for which:; = a}.
Py, s yrloy, s z7) = [pluilz:) (2.3)
i=1 It follows that the value ofi; for which F;(a;) is smallest is

. o the value of theth component of a maximum-likelihood code-
where thep(y;|z;)’s are the transition probabilities of theword, i.e., a codeword for which(yy, - - -, yr|a1, - -+, 1) is
channel. Themaximum-likelihood decoding problem that |5rgest. A straightforward extension of this example shows that
of finding the codeword that maximizes the expression ipe problem of maximum-likelihood decoding of an arbitrary
(2.3). Now consider the MPF problem with the followinginear block code is a special case of the MPF problem. We shal
domains and kernels, using the min-sum semiring (semifingsee in Example 4.3 that when the GDL is applied to problems
from Table I). There is one local domain for each codeworgt ihis type, the Gallager—Tanner-Wiberg decoding algorithm

coordinate and one for each row of the parity-check matrix. agits. 0
local domain local kernel Example 2.4: Consider the directed acylic graph (DAG)in

1. {z1} —log p(y1|z1) Fig. 11In a DAG, the “parents” of a vertex denotecpa (v), are

. . those vertices (if any) which lie immediately “abovweThus in

Fig. 1,pa(A) = {B, £}, andpa (B) = 0. Let us associate a
random variable with each of the vertices, and assume that each
random variable is dependent only on its “parents,” i.e., the joint
density function factors as follows:

7. {@7} — log p(y7|z7) -
8. {xlv X2, $4} X(wlv X2, $4)
9. {xs3, x4, w6} x(3, 24, T6)
0.

1 {‘T47 Ts, ‘T7} X(‘T47 L5, ‘T7)
Here x is a function that indicates whether a given parity Pr{B=b E=c¢ A=a R=r, W =w}
check is satisfied, or not. For example, at the local domain =Pr{B =b}Pr{E =c}Pr{A=a|B=0b, F=c}
{z1, z2, 4}, which corresponds to the first row of the ‘Pr{R =7|E = ¢} Pr{W =w|A = a}

parity-check matrix, we have

. IThis example is taken from [29], in whicR stands for burglaryE is for
X(-Tl T2 x4) = 0, !f r1+ 32 +wy =0 earthquake4 is for alarm soundR is for radio report, andV" is for Watson’s
T 00, if x4 +22+ 24 =1. call.

AJlI AND McELIECE: THE GENERALIZED DISTRIBUTIVE LAW 329

Fig. 2. The Bayesian network for the probabilistic state machine in Example 2.5.

or, using streamlined notation where the constant of proportionalityis given by

p(b; ¢, a, 7, w) = p(b)p(e)p(alb, e)p(r|e)p(wl|a). (2.4)

—1

_— | ; o= (L)
A DAG, together with associated random variables whose joint b
density function factors according to the structure of the DAG,
is called aBayesian networklL8]. Similarly, the computation of the conditional probabilities of

Let us assume that the two random variabifésand & are 4 and E can be accomplished via evaluation of the objective
observed to have the valueg andrg, respectively. Th@rob- functions at the local domainsand 5, respectively. Thus the
abilistic inference problemin this case, is to compute the conproblem of probabilistic inference in Bayesian networks is a
ditional probabilities of one or more of the remaining randomspecial case of the MPF problem. We shall see in Section IV
variables, i.e.B, E, and A4, where the conditioning is with re- that when the GDL is applied to problems of this type, the re-
spect to the “evidence{R = ro, W = wo}. Now consider the sult is an algorithm equivalent to the “probability propagation”
MPF problem with the following local domains and kernels: algorithms known in the artificial intelligence community]

Example 2.5: As a more useful instance of the probabilistic

local domain local kernel . ; e ;
inference problem, we considempgobabilistic state machine

;' ?gf ﬁgg Ateachtimet € {0, 1, ---, n—1}, the_ P_SM has state, inp_ut

3' {a b o} p(alb,) uy and outpu_tyt. Th8ut_§lre probabilistically generated, inde-
4' ’{a’} p(w0’|a) pendently, with probabilitieg(«,). The outputy, depends on
.) the states, and input; and is described by the conditional prob-
o {e} p(role) ability distributionp(y:|s:, u¢). The states; 1 also depends on

. i, _ sy andu,, with conditional probabilityp(s:41]ss, u). If the a
Then by (2.4) (using semiring from Table 1, viz. the set of riori distribution of the initial state, is known, we can write

nonnegative real numbers with ordinary addition and muige 5int probability of the inputs, states, and outputs from time
tiplication) the global kernelF'(b, ¢, a) is just the function . "~ .o

p(b, e, a, 19, wp), SO that, for example, the objective function
at local domaint is

p(u07 vy Un—1, S0, "7, Sn—1, Yo, ", yn—l)
F — - = p(s0)p(u0)p(yo|so, uo)
l(b) GZ; p(bv ¢, @, To, wO) el
:p(7b T'o, Wo) : Hp(3t|3t—17 we—1)p(u)p(ye|st, ut). (2.5)
)) N =1
But by Bayes'’ rule This means that the PSM is a Bayesian network, as depicted in
Fig. 2.
p(blro, wo) = p(b, v, wo)/p(wo, 7o) Suppose we observe the output values, denoting these
observations byyg, -- -, v5,_; (“e” for evidence), and wish

to infer the values of the inputs based on this evidence. This

so that the conditional probability d, given the “evidence is a probabilistic inference problem of the type discussed in

0, Wo), IS 2 o
(7o, wo) Example 2.4. We can compute the conditional probability
_ — _ _ . _ 20ur probabilistic state machines are closely related to the “hidden Markov
PriB = bR =70, W = wo} = p(blro, wo) = aF1(b) models” considered in the literature [32].

330 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000

Pr{u, = alys, -+, y5_,} by taking the joint probability in A0 Aq A, As
(2.5) with the observed values gf and marginalizing out all a b
the s;’s and all but one of the,’s. This is an instance of the 1 1
MPF problem, with the following local domains and kernels
(illustrated forn = 4):
local domain local kernel a2 b2
1. {uo} p(uo)
2. {us} p(u1)
3. {u2} p(u2)
4. {us} p(us)
5. {s0} p(s0)
6. {uo, 30} P y8|u0, S0 Fig. 3. The trellis corresponding to the multiplication of three matrices, of
7 {ul7 81} p Zlf’|uly s sizes2 x 3,3 X 3, and3 x 2. The(i, j)th entry in the matrix product is the
sum of the weights of all paths from to b;.
8 {uz, s2} p(ysluz, s2
9. 5

multiplying » matrices can be formulated as the following MPF

10. {uo, S0, s1} p(s1|uo, so

roblem:
11, {uq, s1, s2} p(s2u1, s1 P
12, {U'Qa S2, 83} D 33|U/2, 52

()
()
()
{us, s3} p(ys|us, s3)
()
()
()

local domain local kernel

This model includes, as a special case, convolutional ; {0, 41} %1 [0, 1]
codes, as follows. The state transition is deterministic, which : {wn, 22} 2[z1, 7]
means thap(8t+1|8t, ut) = 1 when St41 = St+1(8t, ut)
and p(si41]s+, uz) = 0 otherwise. Assuming a memoryless n {&n_1, 2n} Mgpl[rp_1, 2]
channel, the outpuf; is probabilistically dependent on,, n+1 {zo, 2} 1

which is a deterministic function of the state and input, and so

p(ye|se, we) = p(ye|ze(se, ue)). Marginalizing the product of the desired result being the objective function at local domain
functions in (2.5) in the sum-product and max-product semis-+4 1.

ings will then give us the maximume-likelihood inpsgmbolor As an alternative interpretation of (2.7), consider a trellis of
input block respectively. As we shall see below (Example 4.5)epthr, with vertex setdo U A; - - -UA,,, and an edge of weight
when the GDL is applied here, we get algorithms equivalent fd;[x;_1, ;] connecting the vertices_; € A;_; andz; € A;.

the BCJR and Viterbi decoding algorithis. O If we define the weight of a path as the sum of the weights of
the component edges, théif[zg, x| as defined in (2.7) rep-
resents the sum of the weights of all paths frepto z,,. For
example, Fig. 3 shows the trellis corresponding to the multipli-
cation of three matrices, of sizsx 3, 3 x 3, and3 x 2. If the
computation is done in the min-sum semiring, the interpretation
is thatM [xq, z,] is the weight of a minimum-weight path from
xo to z,,.

M=DM, -My---M,. We shall see in Section IV that if the GDL is applied to the
matrix multiplication problem, a number of different algorithms
result, corresponding to the different ways of parenthesizing the
expressiom\i; M, - - - M,,. If the parenthesization is

Example 2.6:Let M; be ag;_; x ¢; matrix with entries in
a commutative semiring, far= 1, ---, n. We denote the en-
tries in M; by M;[x; 1, x;], where fori =0, 1, ---, n, z; isa
variable taking values in a sdt; with ¢; elements. Suppose we
want to compute the product

Then forn = 2 we have by definition

Mz, x2] = Z M [xo, v1]Ma[x1, 73] (2.6)

1

(((MyMa)M3) M) M;

and an easy induction argument gives the generalization ~ (illustrated forn = 5), and the computation is in the min-sum

semiring, Viterbi’'s algorithm results. |
Mlzo, en] = 37 Mufwo, 21] -+ Ma[zns, @], Ill. THE GDL: AN ALGORITHM FOR SOLVING THE MPF
FL L @2.7) PROBLEM

(Note that (2.7) suggests that the number of arithmetic operadif the elements ofS stand in a certain special relationship
tions required to multiply thesematrices i2q¢oq; - - - ¢,.) Thus to each other, then an algorithm for solving the MPF problem

can be based on the notion of “message passing.” The required
3To obtain an algorithm equivalent to Viterbi's, it is necessary to take the ne gep 9 q

ative logarithm of (2.5) before performing the marginalization in the min-sur??latipnsmp is that the qual domaiqs can be Organized into a
semiring. junction tree[18]. What this means is that the elementsSf

AJlI AND McELIECE: THE GENERALIZED DISTRIBUTIVE LAW 331

Fig. 4. A junction tree.

can be attached as labels to the vertices of a graph-theoretic tree

T, such that for any two verticeg andv;, the intersection of 2
the corresponding labels, vig; N S;, is a subset of the label on
each vertex on the unique path framto »;. Alternatively, the o o
subgraph off” consisting of those vertices whose label includéfég' 5. Ajunction tree which includes the local domafns;, 2}, {2, s},

. . s, xa}, and{xy, x4},
the element, together with the edges connecting these vertices,

is connected, foi = 1, ---, n. _ . .
For example, consider the following five local domains: ~and when a particular messagg ; is updated, the following
rule is used:
local domain

L. {w} pi, j(xs;ns;) = Z ai(zs,) H pk, i{T s,)

2. {.751, .7}2} g5 EASZ.\SJ. ’Ukkad‘]j"lig

3. {:L’l, ./173} ?é’] (31)

é' {22} A good way to remember (3.1) is to think of the junction tree
2 {2, 24} as a communication network, in which an edge froyto v;

_ _ _ o is a transmission line that “filters out” dependence on all vari-
These local domains can be organized into a junction tree, @ifles but those common 1@ andv,. (The filtering is done by
shown in Fig. 4. For example, the unique path from ve#éX marginalization.) When the vertex wishes to send a message
vertex3 isvz — v1 — vz, andSz N 53 C 51, as required. tov;, it forms the product of its local kernel with all messages it

On the other hand, the following set of four local domaingas received from its neighbors other thanand transmits the
cannot be organized into a junction tree, as can be easily vejfipduct tov; over the(v;, v;) transmission line.

fied. Similarly, the “state” of a vertex; is defined to be a table
containing the values of a functian : As, — R. Initially, o;
local domain is defined to be the local kernel(zs,), but whens; is updated,
L. {z1, m2} the following rule is used:
2. {.TQ, .Tg}
3. T3, T
R b rs)=autas) TT mstescs) @2
vy adjv;

However, by adjoining two “dummy domains”
In words, the state of a vertex is the product of its local kernel

local domain with each of the messages it has received from its neighbors. The
5. {x1, zo, T4} basic idea is that after sufficiently many messages have been
6. {x2, v, x4} passedg;(zs,) will be the objective function af;, as defined
in (2.2).

to the collection, we can devise a junction tree, as shown in 1 N€ gquestion remains as to the scheduling of the message
Fig. 5. passing and the state computation. Here we consider only two

(In Section IV, we give a simple algorithm for Oleciolingspecial cases, thengle-vertexproblem, in which the goal is to

whether or not a given set of local domains can be organiz(éf?mpu_te the obt;jectlvehfunctr:on at lqnly one vert@;handb'Fhe .
into a junction tree, for constructing one if it does exist, and fﬁj -verticesproblem, where the goal is to compute the objective

L ; g function at all vertices.
finding appropriate dummy domains if it does not.) X ,

In the “junction tree” algorithm, which is what we call the _For the smgle-verte_x proble_m, f[he natural (serial) sched-
generalized distributive layGDL), if v; andv; are connected uling of the GDL begins by directing each edge toward the
by an edge (indicated by the notatiopadjv;), the (directed)

“message” fromw; to v, is a table containing the values of a 4We do not consider the problem of evaluating the objective functiérvat-
‘ J tices, wherd < k& < M. However, as we will see in Section V, the complexity

f_L‘nCt'onNi,y' : ASz‘ﬂSj — R m't'.a"y' all Such anCF'On_S are_ de- of the /-vertex GDL is at most four times as large astheertex GDL, soitis
fined to be identicallyl (the semiring’s multiplicative identity); reasonably efficient to solve thevertex problem using th&/-vertex solution.

332 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000

1 TABLE I
A “HYBRID” SCHEDULE FOR THEALL-VERTICESGDL FOR THE
JUNCTION TREE OFFig. 4

2 @ 3 @ Round Message and State Computations
pa,2(z2) = au(z2)

ws2(T2) = Zn as(zs, 74)

Fig. 6. The junction tree of Fig. 4 with the edges directed towagds 2 p,2(x1) = Zzz ar(z1,%2) - p3a (1)
p2a(T1) = 32, a1, 22) - pa,2(ze) - pis 2(22)

3 pra(x1) = ax () - poi(z)

#2,4(932) = Ezl 02(z1,$2) . /1'1,2(151) : ﬂ5,2(332)
TABLE I p2,5(%2) = 325, 02(21,2) - p,2(21) - paa(e2)
A SCHEDULE FOR THESINGLE-VERTEX GDL FOR THE JUNCTION TREE OF or(z1) = en(21) - p2(21) - 3 (21)
Fig. 4, WITH TARGET VERTEX v, o2(21,22) = o1, T2) - p1,2(21, T2) - pa2(22) - ps,2(22)
4 o3(z1,23) = az(1,23) - p1,3(1)
Round Message or State Computation o4(z2) = ag(x2) - paa(z2)

05(12714) = as(zz,u) ‘/12,5(12)
1 us1(z1) = 3o, as(zy, z3)
2 pa2(22) = aq(z2) _ . _
3 s 2(22) = Ty, as(@2, 7) at most equal to the d_lameter of the tree, at Whl(_:h point the
. states of the vertices will be equal to the desired objective func-
tions, and the algorithm terminates. Alternatively, the GDL can
5 o1(z1) = enle1) - p2a(zn) - paa (). be scheduled fully serially, in which case each message is sent
only once, and each state is computed only once. In this case, a
vertex sends a message to a neighbor when, for the first time, it
target vertexvy. Then messages are sent only in the diregps received messages from all of its other neighbors, and com-
tion towardwo, and each directed message is sent only oNnggstes its state when, for the first time, it has received messages
A vertex sends a message to a neighbor, when, for the fifggdm all its neighbors. In this serial mode, messages begin at
time, it has received messages from each of its other neigRe |eaves, and proceed inwards into the tree, until some nodes
bors. The target, computes its state when it has receiveglaye received messages from all their neighbors, at which point
messages from each of its neighbors. With this schedulingessages propagate outwards, so that each vertex eventually re-
messages begin at the leaves (vertices with degye@nd cejves messages from all of its neighboie will see in Sec-
proceed towardo, until vo has received messages from alfion |v that the fully serial all-vertices GDL requires at most
its neighbors, at which pointy computes its state and they > ev d(v)| Ase| arithmetic operations.
algorithm terminates. There are also a variety of possible hybrid schedules, inter-
Forexample, if we wish to solve the single-vertex problem fgpediate between fully parallel and fully serial. For example,
the junction tree of Fig. 4, and the target vertexisthe edges Taple 111 shows a hybrid schedule for the junction tree of Fig. 4,
should all be directed towards, as shown in Fig. 6. Then onejn which the computation is organized into four rounds. The

possible sequence of messages and state computations rurgafutations in each round may be performed in any order, or

p21(21) = 2, 02(x1,%2) - pa,2(2) - ps,2(x2)

shown in Table II. _ _ _ ~even simultaneously, but the rounds must be performed sequen-
Itwill be shown in Section V that this scheduling of the singlggy.
vertex GDL requires at most That concludes our informal discussion of GDL scheduling.

We end this section with what we call the “scheduling theorem”
> d(v)|As(| arithmetic operations @3 fortheGDL. .
> Thus let?” be a junction tree with vertex sét and edge set
E. In the GDL, messages can be passed in both directions on

whereS(v) is the label ofv, andd(v), the degreeof v, is the each edge, so it will be convenient to regard the edgeses
number of vertices adjacent to This should be compared toconsisting of ordered pairs of vertices. Thus for example for the
the complexity of the “obvious” solution, which as we notedf€€ ©f Fig. 4, we have
above isM ¢, - - - g, operations. For example, for the junction
tree shown in Fig. 6, the complexity of the single-vertex GDL E={(1,2),(2,1), (1, 3), (3, 1),
is by (33) at mosfqg; + 3q192 + q193 + q2 + q2q4 arlt_hmetlc (2, 4), (4, 2), (2, 5), (5, 2)}.
operations, versusy g2gsq4q4 for the direct computation.

For the all-vertices problem, the GDL can be scheduled in) _ o
several ways. For example, in a fully parallel implementatioft Schedulefor the GDL is defined to be a finite sequence
at every iteration, every state is updated, and every mess@§esubsets ofE. A typical schedule will be denoted by
IS CompUted and transm'tted* ?!munaneous'y- In this _Case_ theWe might therefore call the fully serial all-vertices GDL an “inward
messages and states will stabilize after a number of iteratiafsd” algorithm.

—out-

AJlI AND McELIECE: THE GENERALIZED DISTRIBUTIVE LAW 333

vy (t)
vi{t)
v (t)
va(t)
v3(t) va(t)
va () vgit)
ve (t)

vs{t)

Fig. 8. The message trellis for the junction tree in Fig. 4, under the schedule

Fig. 7. The message trellis for the junction tree in Fig. 4 under the sched@@0!e Il viz., By = {./(3?1)’ (4,2), (5. 2)}, B2 = {(1. 2), (2, 1)}, and
of Table Il viz., B, = {(3, 1)}, B> = {(4,2)}, Es = {(5,2)}, By = 15 = {(1,3).(2.4), (2, 5)}.
{2, 1)}

E = (F1, B, ---, Ex). The idea is thaF,; is the set of mes-
sages that are updated during ttieround of the algorithm. In
Tables Il and I, for example, the corresponding schedules are

Tablell: & =({(3, D}, {(4, 2)}, {(5, 2)}, {(2, D}
Table lIl: € =({(3, 1), (4, 2), (5, 2)}, {(1, 2), (2, 1)},
{(1,3),(2,4), (2,5}).

Givenaschedulé = (E,, Es, ---, Ey), the corresponding
message trelliss a finite directed graph with vertex sét x
{0, 1, ---, N}, in which a typical element is denoted by(¢),
fort € {0, 1, ---, N}. The only allowed edges are of the form
(v (t = 1), v;(¢)); and(w;(t — 1), v;(¢t)) is an edge in the mes-
sagetrellisif eithefv,, v;) € E, ori = j. The message trellises
for the junction tree of Fig. 4, under the schedules of Tables I
and lll, are shown in Figs. 7 and 8, respectively. (In these fig-
ures, the shaded boxes indicate which local kernels are known
to which vertices at any time. For example, in Fig. 7, we can see
that knowledge of the local kernels, a4, anda; has reached
v at timet = 3. We will elaborate on this notion of “knowl-
edge” in the Appendix.)

Theorem 3.1 (GDL Scheduling)After the completion of the (b)
message passing described by the schedule

Fig. 9. (a) The local domain graph and (b) one junction tree for the local
domains and kernels in Example 2.1.

&= (&, Bz, -, EN)

the single-vertex and all-vertices serial GDL described earlier
the state at vertex; will be the jth objective as defined in (3.2) in this section.
if and only if there is a path from;(0) to v;(V) in the corre-
sponding message trellis, for=1, -- -, n. IV. CONSTRUCTINGJUNCTION TREES

A proof of Theorem 3.1 will be found in the Appendix, but In Section Ill we showed that if we can construct a junction
Figs. 7 and 8 illustrate the idea. For example, in Fig. 8, we stree with the local domains as vertex labels, we can devise a
that there is a path from each of(0), - - -, v5(0) to v2(2), message-passing algorithm to solve the MPF problem. But does
which means (by the scheduling theorem) that after two rounsisch a junction tree exist? And if not, what can be done? In this
of message passing, the state-awill be the desired objective section we will answer these questions.
function. This is why, in Table I, we are able to computg It is easy to decide whether or not a junction tree exists. The
in round 3. Theorem 3.1 immediately implies the correctnessk#y is thelocal domain graph(1.p, which is a weighted com-

334 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000

1 @ QO
G

(a) (b)

&
<
D
SENT ®
(c) (d)

Fig. 10. Constructing a junction tree for the local domdfins 2}, {2, 3}, {3, 4}, and{4, 1} by triangulating the moral graph.

plete graph with/ verticesuy, - - -, vy, One for each local do- that can easily be checked directly. If we apply the GDL to this
main, with the weight of the edgg_; : v; < v; defined by junction tree, we get the “algorithm” described in our introduc-
tory Example 1.1 (if we use the scheddle= {£y, E», E3},
wi, j = |5 N S5l whereE; = {(4, 1), (2, 3)}, E> = {(1, 3), (3, 1)}, andE; =
If x5 € S;NS;, we will say thatey, is contained ire; ;. Denote @, 9. =
by wy,.x the weight of a maximal-weight spanning tre€fp .6 If no junction tree exists with the given vertex labgls all is
Finally, define not lost. We can always find a junction tree with vertices such
" that eachsS; is asubsebf theith vertex label, so that each local
Wt = Z 15| = n. kernel«; may be associated with théh vertex, by regarding
— ¢ it as a function of the variables involved in the label. The key

to this construction is theoral graph which is the undirected
graph with vertex set equal to the set of varialiles, - - -, z,,},
and having an edge betweenandz; if there is a local domain
which contains botk:; andx;.

Given a cycle in a graph, ehordis an edge between two
vertices on the cycle which do not appear consecutively in the
cycle. A graph igriangulatedif every simple cycle (i.e., one

Theorem 4.1:w,,,. < w*, with equality if and only if there
is a junction tree. Ifw,.. = w*, then any maximal-weight
spanning tree of7rp is a junction tree.

Proof: Foreacht =1, ---, n, denote byn; the number
of setsS; which contain the variable;,. Note that

" M with no repeated vertices) of length larger than three has a chord.
Z mp = Z |53l In [18], it is shown that the cliques (maximal complete sub-
k=1 =1 graphs) of a graph can be the vertex labels of a junction tree if
Let 7" be any spanning tree dfyp, and letw; denote the and only if the graph is triangulated. Thus to form a junction
number of edges ifi” which containz;,. Clearly tree with vertex labels such that each of the local domains is
" contained in some vertex label, we form the moral graph, add
w(T) = Z W enough edges to the moral graph so that the resulting graph is
=1 triangulated, and then form a junction tree with the cliques of

d this graph as vertex labels. Each of the original local domains

Furthermorew;. < my —1, since the subgragh, of T"induce b b fatl fth li h
by the vertices containing;. has no cycles, and equality holgg!l b€ & subset of at least one of these cliques. We can then at-

if and only if 7}, is connected, i.e., a tree. It follows then that tach the original |QC<_’31| domaing as “leaves”to th? f:liquejunction
.) o gree, t_hereb)é (l)<bta|n||ng filjuncnonltreeI f((j)r the_ original set ofdl_ocal
. omains and kernels, plus extra local domains corresponding to
w(l) = Z Wi < Z (my — 1) = Z |Si] =n=w the cliques in the moral graph. We can then associate one of
_ k=t =t =t ~ the local kernels attached to each of the cliques to that clique,
with equality if and only if each subgragf), is connected, i-e., and delete the corresponding leaf. In this way we will have con-
if 7"is a junction tree. L' structed a junction tree for the original set of local kernels, with
Example 4.1: Here we continue Example 2.1. The LD grapi§ome of the_ local doma_ins _enlarged to ir_10|ude extra varial_oles.
is shown in Fig. 9(a). Here* = (3+2+2+1) —4 = 4, However, this construction is far from unique, and the choices
A maximal weight spanning tree is shown in Fig. 9(b), and it§at must be made (which edges to add to the moral graph, how

weight is4, so by Theorem 4.1, this is a junction tree, a fad® assign local kernels to the enlarged local domains) make the
procedure more of an art than a science.
6A maximal-weight spanning tree can easily be found with Prim’s “greedy”
algorithm [27, Ch. 3], [9, Sec. 24.2]. In brief, Prim’s algorithm works by 7The whimsical term “moral graph” originally referred to the graph obtained
growing the tree one edge at a time, always choosing a new edge of maxifnam a DAG by drawing edges between—"marrying"—each of the parents of a
weight. given vertex [23].

AJlI AND McELIECE: THE GENERALIZED DISTRIBUTIVE LAW 335

local kernel

fly1.¥2.¥3)

Fig. 11. The LD graph for the local domains and kernels in Example 2.2. (All
edges have weight) There is no junction tree.

Y1 Y3
(a) (b)
Fig. 13. Constructing a junction tree for Example 4.2.
Xq X3

a of them, and viewing the associated local kernels as functions

(a)
on the enlarged local domains:
’ PR
/ < 7
/ - Ve
ad /
(el

1

Y1 Y3

local domain local kernel
1. {.751, .7}2} Oél(xl, .1‘2)
2. {372, 373} 042(372, 373)

3. A{wo, 3, w4} as(wa, w3, 21) = az(w3, T4)
4. Az, xo, w4} ay(xy, T2, 21) = (1, 4)

%3
The difficulty is that we must enlarge the local domains enough
so that they will support a junction tree, but not so much that
Fig. 12. The moral graph (top) and a triangulated moral graph (bottom) fortﬁre]e resulting ?"gor'thm WI”.be unmanageab_ly c_omple>_(. we will
local domains and kernels in Example 2.2, return to the issue of junction tree complexity in Section V.
The next example illustrates this procedure in a more practical

setting.
For example, suppose the local domains and local kernels are .
Example 4.2: Here we continue Example 2.2. The local do-

(b)

local domain local kernel main graph is shown in Fig. 11. Since all edges have weight
1. Az, 2} ay(z1, o2) any spanning tree will have weight butw* = 12 — 6 = 6.
2. {xo, x3} oz, T3) Thus by Theorem 4.1, the local domains cannot be organized
3. {z3, 74} (w3, 74) into a junction tree, so we need to consider the moral graph,
4. {z1, 4} ay(xy, T4) which is shown in Fig. 12(a). It is not triangulated (e.g., the

cycle formed by vertices,, 42, 22, andz; has no chord), but it

As we observed above, these local domains cannot be organizad be triangulated by the addition of three additional edges, as
into a junction tree. The moral graph for these domains is showhown in Fig. 12(b). There are exactly three cliques in the trian-
in Fig. 10(a) (solid lines). This graph is not triangulated, but thgulated moral graph, viz{y1, vz, ys, 1}, {y2, ys, x1, 2},
addition of the edge 2—4 (dashed line) makes it so. The cliquesd{ys, =1, x2, x3}. These three sets can be organized into a
in the triangulated graph afd, 2, 4} and{2, 3, 4}, and these unique junction tree, and each of the original five local domains
sets can be made the labels in ajunction tree (Fig. 10(b)). We déaia subset of exactly one of these, as shown in Fig. 13(a). If we
attach the original four local domains as leaves to this junctievant a unique local domain for each of the five local kernels, we
tree, as shown in Fig. 10(c) (note that this graph is identicahn retain two of the original local domains, thus obtaining the
to the junction tree in Fig. 5). Finally, we can assign the loc@nction tree shown in Fig. 13(b). Since this is a “single-vertex”
kernel at{1, 4} to the local domain{1, 2, 4}, and the local problem, to apply the GDL, we first direct each of the edges
kernel at{3, 4} to the local domaif 2, 3, 4}, thereby obtaining towards the target vertex, which in this cas€lis, z2, z3}.

the junction tree shown in Fig. 10(d). What we have done, Ihis now a straightforward exercise to show that the (serial,
effect, is to modify the original local domains by enlarging twone-vertex) GDL, when applied to this directed junction tree,

336 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000

Fig. 15. A junction tree for Example 4.4. This figure should be compared to

yields the usual “fast” Hadamard transform. More generally, b':)'/g L

extending the method in this example, it is possible to show that

the FFT on any finite Abelian group, as described, e.g., in [8] or Example 4.6:Here we continue Example 2.6, the matrix
[31], can be derived from an application of the GBL. O multiplication problem. It is easy to see that for> 3, there is

Example 4.3: Here we continue Example 2.3. In this case™© junction tree for the original set of local domains, because

the local domains can be organized as a junction tree. Othg corresponding moral graph is a cycle of lengti 1. Itis

such tree is shown in Fig. 14. It can be shown that the GDé‘ossible to show that for the producteimatrices, there are
when applied to the junction tree of Fig. 14, yields the Gal- 1 /2 9

lager—Tanner—Wiberg algorithm [15], [34], [39] for decoding _< e)

linear codes defined by cycle-free graphs. Indeed, Fig. 14 ni\n-—1

is identical to the “Tanner graph” cited by Wiberg [39] for)) . . .
decoding this particular code. 0 possible triangulations of the moral graph, which are in one-to-

one correspondence with the different ways to parenthesize the
Example 4.4: Here we continue Example 2.4. The local doexpressioni/; - - - M,,. For example, the parenthesization
mains can be arranged into a junction tree, as shown in Fig. 15.
(In general, the junction tree has the same topology as DAG, (- (MyMy) - - YM,_)M,
if the DAG is cycle-free.) The GDL algorithm, when applied

to the junction tree of Fig. 15, is equivalent to certain algqsprresponds to the triangulation shown in Fig. 17.
ritth Wh|Ch are knOWn in the artiﬁcial inte”igence commu- Thus the prob|em of f|nd|ng an opt|ma| junction tree is iden_
nity for solving the probabilistic inference problem on Bayesiafical to the problem of finding an optimal parenthesization. For
networks whose associated DAG'’s are cycle-free; in particulaample, in the case = 3, illustrated in Fig. 18, there are two
Pearl’s “belief propagation” algorithm [29], and the “probabilitydifferent triangulations of the moral graph, which lead, via the
propagation” algorithm of Shafer and Shenoy [33]. [0 techniques described in this section, to the two junction trees
Example 4.5:Here we continue Example 2.5, the probashown in the lower part of Fig. 18. With the top vertex as the
bilistic state machine. In this case the local domains can t&get, the GDL applied to each of these trees computes the
organized into a junction tree, as illustrated in Fig. 16 for theroductid; M, M. The left junction tree corresponds to paren-
casen = 4. The GDL algorithm, applied to the junction tree othesizing the producd/; M, M3 as (M1 M»)M3 and requires
Fig. 16, gives us essentially the BCJR [5] and Viterbi [37][1132091 92 +2q0g2¢3 arithmetic operations, whereas the right junc-
algorithms, respectively. (For Viterbi's algorithm, we take thl0n tree corresponds t87,(M> M) and requireSq; gags +
negative logarithm of the objective function in (2.5), and use tfgo¢1¢3 Operations. Thus which tree one prefers depends on the
min-sum semiring, with a single target vertex, preferably tHg'ative size of the matrices. For examplegif= 10, g1 = 100,
“last” {u;}, which in Fig. 16 is{us}. For the BCJR algorithm, %2 = 5, andgs = 90, t_he Ie_ftjunctlon tree requires 15 O_OO oper-
we use the objective function in (2.5) as it stands, and use fons and the right junction tree takes 150 000. (This example
- o . 1s taken from [9].)
sum—product semiring, and evaluate the objective function at . . . S
; . As we discussed in Example 2.6, the matrix multiplication
each of the'vertlcefpfui}, fqr t=0,---,n—1In both cases, problem is equivalent to a trellis path problem. In particular,
the appropriate schedule is fully serial.) if the computations are in the min-sum semiring, the problem
is that of finding the shortest paths in the trellis. If the moral
SFor this, see [1], where it is observed that the moral graph for the DFT ovgtaph is triangulated as shown in Fig. 17, the resulting junction
a finite Abelian groupG is triangulated if and only if7 is a cyclic group of drge yields an algorithm identical to Viterbi's algorithm. Thus

prime-power order. In all other cases, it is necessary to triangulate the mara :))])
graph, as we have done in this example. Viterbi's algorithm can be viewed as an algorithm for multi-

Fig. 14. A junction tree for Example 4.3.

AJlI AND McELIECE: THE GENERALIZED DISTRIBUTIVE LAW 337

1 2 3 4

5 6 10 7 11 8 12 9
Fig. 16. A junction tree for the probabilistic state machine (illustrated:fet 4).

0 1 We begin by rewriting the message and state computation for-
mulas (3.1) and (3.2), using slightly different notation. The mes-
sage from vertex to vertexw is defined as (cf. (3.1))

n M, w(x'vﬂw) = Z (877} (xb) H Mo, v (x'uﬂ'v)
Lo\ w €5 (o) \5(w) wadjv
uFgv
(5.1)

and the state of vertexis defined as (cf. (3.2))

a'v(x'v) :Oé'v(x'v) H N'u,'v(xuﬂ'v)- (52)
Fig. 17. The triangulation of the moral graph corresponding to the uadjv
parenthesizatioq(- - - (M1 Mz) - - -) My —1) M. We first consider the single-vertex problem, supposing that
vg IS the target. For each # wg, there is exactly one edge
directed fromw towardv,. We suppose that this edge(is w).

0 - 0 - To compute the message, () as defined in (5.1) for a
\ ’ particular value of ., require8|As,)\ s(.)|—1 additions and
AN e | A s\ s(w)|(d(v)—1) multiplications, wherel(v) is the degree
\ Y of the vertexv. Using simplified but (we hope) self-explanatory
t4 notation we rewrite this as follows:
3 2 3 2

9s\w — 1 additions, and
Zu\w * (d(v) — 1) multiplications.
But there are

def
Qurw — |AS(u)ﬂS(w)|

Ms My
@ @ possibilities forz,n,, SO the entire messageg, ,(zyrw) re-
quires
M M
2 @ 8 @ (@wnw)(@nw — 1) = v — qurw additions, and
(o) @o\w - (d(v) — 1) = (d(v) — 1)¢, multiplications.

M4 o M2 o The total number of arithmetic operations required to send mes-
sages toward, along each of the edges of the tree is thus

Fig. 18. The moral graph for Example 4.6, triangulated in two ways, and Z (¢ — qurw) additions
the corresponding junction trees. The left junction tree corresponds to the e
parenthesizatior(MlMZ)MS, and the one on the right corresponds to v7vo
My (M;Ms). > (d(v) —1)g, multiplications.
vFE g
plying a chain of matrices in the min-sum semiring. (This conVhen all the messages have been computed and transmitted,
nection is explored in more detail in [4].) 0 the algorithm terminates with the computation of the state at

vo, defined by (5.2). This state computation requitésy)q.,,
further multiplications, so that the total is

V. COMPLEXITY OF THE GDL Z (¢s — Gurw) additions
In this section we will provide complexity estimates for the V7o o
serial versions of the GDL discussed in Section Ill. Here by Z (d(v) — 1)q. + d(vo)q.,, multiplications.
complexity we mean tharithmetic complexityi.e., the total v#vo

number of (Semifing) addit.iong and/or multiplications requiredeere we are assuming that the addition (multiplication)Noélements of5
to compute the desired objective functions. requiresN — 1 binary additions (multiplications).

338 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000

Thus the grand total number of additions and multiplications &s in the single-vertex case, and, summed over all messages, re-

X(T) =" dwv)g. - > a (5.3) dure
veV eCck

where ife = (v, w) is an edge, its “size?. is defined to be > dw)es =2 g
Jorw- vCV eCE

Note that the formula in (5.3) gives the upper bound additions. Thus the total number of arithmetic operations is no

x(T) < Z d(v)q, (5.4) more thand)" d(v)q,, which shows that the complexity of
veV the all-vertices GDL is at worst a fixed constant times that of

mentioned in Section l. the single-vertex GDL. Therefore, we feel justifieddafining

The formula in (5.3) can be rewritten in a useful alternativilne complexity of a junction tree, irrespective of which objec-
way, if we define the “complexity” of the edge= (v, w) as tive functions are sought, by (5.3) or (5.6). (In [23], the com-
plexity of a similar, but not identical, algorithm was shown to be

o o x(©) =av+ qw_ o ®9) upper-bounded by, ¢,+M max, g,. Thisboundis strictly
With this definition, the formula in (5.3) becomes greater than the bound in (5.4).)
x(T) = Z x(e). (5.6) In Section IV, we saw that in many cases.., = w* and the
eCE LD graph has more than one maximal-weight spanning tree. In
For example, for the junction tree of Fig. 4, there are four edgeiew of the results in this section, in such cases it is desirable
and to find the maximal-weight spanning tree wit{Z) as small
(o, v2) = g1 + Q1o — 1 = Qi as possible. It is easy to modify Prim’s algorithm to do this. In
’ Prim’s algorithm, the basic step is to add to the growing tree
x(vi, v3) =@+ gz — = quas a maximal-weight edge which does not form a cycle. If there
x(v2, v4) =@+ @2 — @ = ag are several choices with the same weight, choose one whose
x (2, v3) = 12 + G244 — @2 complexity, as defined by (5.5), is as small as possible. The tree

that results is guaranteed to be a minimum-complexity junction
tree [19]. In fact, we used this technique to find minimum-com-
plexity junction trees in Examples 4.1, 4.3, 4.4, and 4.5.

We conclude this section with two examples which illustrate

We next briefly consider the all-vertices problem. Here ametie difficulty of finding the minimum-complexity junction
sage must be sent over each edge, in both directions, andfg€ for & given marginalization problem. Consider first the
state must be computed at each vertex. If this is done followilRf@ domains{z1}, {2}, {z3}, and{w1, xo, 23}. There is
the ideas above in the obvious way, the resulting complexity3sUnidue junction tree with these sets as vertex labels, shown
O(,, d(v)2q,). However, we may reduce this by noticing thath Fig. 19(a). By (5.3), the co_r_nplexny of this junction tree is
if {ar, -, aq} is a set ofd numbers, it is possible to compute3?192¢3- Now suppose we artificially enlarge the local domain
all the d products ofd — 1 of the a;’s with at most3(d — 2) {z2} to {x1, z2}. Then the modified set of local dom.ams,_wz.,
multiplications, rather than the obviodéd — 2). We do this by {z1}, {1, 2}, {ws}, and{z,, xs, 23} can be organized into
precomputing the quantitids = ay, by = by - az = agas, the junction tree shown in Fig. 19(b), whose complexity is

so that

x(T) = 3q192 + q193 + Q24 — ¢o.

o bgey = byo - Qg1 = a1a3---ag_1, andcy = ay, 29019293 + q1g2, Which is less than that of the original tree as
Cdol = g 1Cq = Gg_1Gg, -~ Co = G - C3 = asas---ag, 10NGaS¢3 > 1. _ _

using2(d — 2) multiplications. Then ifz; denotes the product AS the second example, we consider the domains 4,

of all thea;’s except fora;, we havei, = ¢y, dy = by - cs, -+, %2 5} 123, @6}, and{zy, @, w3}, which can be organized
Gg 1 = bg_o - Ca» Gq = bg_1, Using a furthed — 2 multipli- 1NtO & unique junction tree (Fig. 20(a)). If we adjoin the domain
cations, for a total 08(d — 2). With one further multiplication {%2- 3. &5}, however, we can build a junction tree (Fig. 20(b))
(ba_1 - aq), We can computéy = aias - - - aq.20 whose complexity is lower than the original one, provided that

Returning now to the serial implementation of the all-verte% IS much larger than any of the othgfs. (Itis known that the
GDL, each vertex must pass a message to each of its neigfgblem of finding the “best” triangulation of a given graph is
bors. Vertexs will have d(v) incoming messages, and (prior tdVP-complete [40], where “best” refers to having the minimum
marginalization) each outgoing message will be the product ®ximum clique size.)
d(v) — 1 of these messages with the local kernel aFor its
own state computation;, also needs the product of al{v) in-
coming messages with the local kernel. By the above argument,
all this can be done with at mo3#(v) multiplications for each Important algorithms whose essential underlying idea is the
of the ¢,, values of the variables in the local domairvafThus exploitation of the distributive law to simplify a marginaliza-
the number of multiplications required is at m8s} °, d(v)q,. tion problem have been discovered many times in the past. Most
The marginalizations during the message computations remafrthese algorithms fall into one of three broad categoudes:

N , T coding algorithmsthe“forward—backward algorithm,”andar-

00ne of the referees has noted that the trick described in this paragrap|

his. =
itself an application of the GDL; it has the same structure as the forward—ba&flc'aI intelligence algorithmsin this section we will summa-
ward algorithm applied to a trellis representing a repetition code of lehgth rize these three parallel threads

VI. A BRIEF HISTORY OF THEGDL

AJlI AND McELIECE: THE GENERALIZED DISTRIBUTIVE LAW 339

sum-product and min-sum semirings, and speculated on the pos-
sibility of further generalizations to what he called “universal
algebras” (our semirings).

In an independent series of developments, in 1967 Viterbi
[37] invented his celebrated algorithm for maximum-likelihood
decoding (minimizing sequence error probability) of convolu-
tional codes. Seven years later (1974), Bahl, Cocke, Jelinek, and
(@) Raviv [5] published a “forward—backward” decoding algorithm
(see next bullet) for minimizing the bit-error probability of con-
volutional codes. The close relationship between these two al-
gorithms was immediately recognized by Forney [11]. Although
these algorithms did not apparently lead anyone to discover a
class of algorithms of GDL-like generality, with hindsight we
can see that all the essential ideas were present.

(b) » The Forward—Backward Algorithm

Fig. 19. Enlarging a local domain can lower the junction tree complexity. ~ The forward—backward algorithm (also known as Mestep

in the Baum-Welch algorithm) was invented in 1962 by Lloyd
Welch, and seems to have first appeared in the unclassified liter-
ature in two independent 1966 publications [6], [7]. It appeared
explicitly as an algorithm for tracking the states of a Markov
chain in the early 1970’s [5], [26] (see also the survey arti-
cles [30] and [32]). A similar algorithm (in min-sum form) ap-
peared in a 1971 paper on equalization [35]. The algorithm was
connected to the optimization literature in 1987 [36], where a
@) semiring-type generalization was given.

« Artificial Intelligence

The relevant research in the artificial intelligence (Al) com-
munity began relatively late, but it has evolved quickly. The
activity began in the 1980’s with the work of Kim and Pearl
[20] and Pearl [29]. Pearl’s “belief propagation” algorithm, as
it has come to be known, is a message-passing algorithm for

(b) solving the probabilistic inference problem on a Bayesian net-

work whose DAG contains no (undirected) cycles. Soon after-

Fig. 20. Adding an extra local domain can lower the junction tree complexi%ards' Lauritzen and Spiegelhalter [23] obtained an equivalent
algorithm, and moreover generalized it to arbitrary DAG’s by
« Decoding Algorithms introducing the triangulation procedure. The notion of junction
trees (under the name “Markov tree”) was explicitly introduced

The earliest occurrence of a GDL-like algorithm that we argy Shafer and Shenoy [33]. A recent book by Jensen [18] is a

aware of is Gallager's 1962 algorithm for decoding IoW_den_ood introduction to most of this material. A recent unification

sity parity-check codes [15] [16]. Gallager was aware that h many of these concepts called “bucket elimination” appears

?Ii%orltkg ﬁ%lg;js?fustrﬁrveeﬂaig ?\i iorcrleezt %letya\lllvshoeﬂ(;?: dutﬂg?ﬁ[lo], and arecent paper by Lauritzen and Jensen [22] abstracts
ying grap . ycles, th? MPF problem still further, so that the marginalization is done
gave good experimental results even when cycles were present. . :

.axiomatically, rather than by summation.

Gallager’'s work attracted little attention for 20 years, but in In any case, by early 1996, the relevance of these Al algo-

1981 Tanner [34], realizing the importance of Gallager's Worl?%thms had become apparent to researchers in the information

made an important generalization of low-density parity—che(% eory community [21] [28]. Conversely, the Al community has

codes, introduced the "Tanner graph” viewpoint, and recaStGSécome excited by the developments in the information theory

Iager_s algorithm in Ef\Xp“C't message-passing form. Tan.ner%mmunity [14] [38], which demonstrate that these algorithms
work itself went relatively unnoticed until the 1996 thesis o . ; o
. .) can be successful on graphs with cycles. We discuss this is in
Wiberg [39], which showed that the message-passing Tannﬁr ;
: X .fhe next section.
graph decoding algorithm could be used not only to describe

Gallager’s algorithm, but also Viterbi's and BCJR’s. Wiberg
too understood the importance of the cycle-free condition, buy”'
nevertheless observed that the turbo decoding algorithm was aAlthough the GDL can be proved to be correct only when the
instance of the Gallager—Tanner—Wiberg algorithm on a gragheal domains can be organized into a junction tree, the com-
ical structure with cycles. Wiberg explicitly considered both theputations of the messages and states in (3.1) and (3.2) make

| TERATIVE AND APPROXIMATE VERSIONS OF THEGDL

340 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000

sense whenever the local domains are organized as vertex la-

bels on any kind of a connected graph, whether it is a junction
tree or not. On such a junction graph, there is no notion of “ter-

mination,” since messages may travel around the cycles indef; 1. a junction tree for Lemma A.1.

nitely. Instead, one hopes that after sufficiently many messages

have been passed, the states of the selected vertices aj-be

proximately equato the desired objective functions. This hope

is based on a large body of experimental evidence, and some
emerging theory.

» Experimental Evidence

It is now known that an application of the GDL, or one of
its close relatives, to an appropriate junction graph with cycles,
gives both the Gallager—Tanner—Wiberg algorithm for low-defig. 22. A junction tree for Lemma A.2.
sity parity-check codes [24], [25], [28] ,[39], the turbo decoding
algorithm [21], [28], [39]. Both of these decoding aIgorithqu ---, n}. We denote by f(zs)]T the function of the vari-

have proved to be extraordinarily effective experimentally, dgple listz s~ obtained by “marginalizing out” the variables in
spite the fact that there are as yet no general theorems that exvhich are not inZ™:

plain their behavior. [f(zs)]F & > flzs).

» Emerging Theory: Single-Cycle Junction Graphs T
Recently, a number of authors [1]-[3], [12], [38], [39] have Lemma A.1:1f SO U ng then v

studied the behavior of the iterative GDL on junction graphs [[f (=)']" = [f(zs)]”-

which have exactly one cycle. It seems fair to say that, atleastfor proof: (Note first that Lemma A.1 is a special case of the

the sum-product and the min-sum semirings, the iterative GLakngle-vertex GDL, with the following local domains and ker-
is fairly well understood in this case, and the results imply, fg{e|s.

example, that iterative decoding is effective for most tail-biting
codes. Although these results shed no direct light on the problem
of the behavior of the GDL on multicycle junction graphs, like
those associated with Gallager codes or turbo codes, this is nev-
ertheless an encouraging step.

local domain local kernel
L. {ws} fzs)
2. {.’IZT} 1
3. {.’L'U} 1.

The appropriate junction tree is shown in Fig. 21.)
To see that the assertion is true, note that the variables not

APPENDIX A marginalized out in the functioffif (zs)]%]¥ are those indexed
PROOF OF THESCHEDULING THEOREM by S N7 NU. The variables not marginalized out[if{xs)]"
are those indexed by N /. But by the hypothesiS NI/ C T,

_Summaryln this app_endi>_<, we will give a proof of the Schedy o6 o sets are equal. 0
uling Theorem 3.1, which will prove the correctness of the GDL.
The key to the proof is Corollary A.4, which tells us that at every LemmaA.2: Let f;(zs,), fori =1, -- -, K be local kernels,
stage of the algorithm, the state at a given vertex is the appésd consider the MPF problem of computing
priately marginalized product of a subset of the local kernels. K T
Informally, we say that at time, the state at vertex is the /j(a;(slu,,,SK)ﬂT)dg [H files;)
marginalized product of the local kernels which are currently =1
“known” to v. Given this result, the remaining problem is to unif no variable which is marginalized out in (A.1) occurs in more
derstand how knowledge of the local kernels is disseminatedit@n one local kernel, i.e., §; N S; C T for ¢ # j, then

(A1)

the vertices of the junction tree under a given schedule. As we K
shaII_ see, this “knowledge dissemination” can be described re- BB (510 5500nT) = H [fi(zs)]
cursively as follows: iy
* Rule (1): Initially (+ = 0), each vertex; knows only its Proof: (Lemma A.2 is also a special case of the single-
own local kerneky;. vertex GDL, with the following local domains and kernels:
* Rule (2): If a directed edgéy;, v;) is activated at time local domain local kernel
t,i.e., if (v;, v;) € Ey, then vertexy, learns all the local 1 {zs,} fi(zs,)
kernels known tay; at timet — 1. : : :
The proof of Theorem 3.1 then follows quickly from these rules. K {25, } Fre(zsy)
We begin by introducing some notation. Ltz s) be a func- K+1 {zr} 1

tion of the variable list:s, and let7” be an arbitrary subset of The appropriate junction tree is shown in Fig. 22.)

AJlI AND McELIECE: THE GENERALIZED DISTRIBUTIVE LAW 341

In any case, Lemma A.2 is a simple consequence of the dis-
tributive law: Since each variable being marginalized out in
(A.1) occurs in at most one local kernel, it is allowable to take
the other local kernels out of the sum by distributivity. As an
example, we have

Fig. 23. Deleting the edge ; breaks the junction tree into two components.
> flar, 22) falws, 33) fa(@, 24) 9 9 98 . P
T1,%3,T4

= Z Ji(z1, z2) Z fa(z2, x3) Z fa(x2, x4). O theorem proved for — 1, we assume; ; is updated in theth
@1 3 74 round, and consideg; ;(%):

— S
Now we are ready to consider the dynamics of the GDL. Con- ’

sider an edgez;; : v — v;. Removinge,; from the junction #i.i(t) = |ai] peilt=1) by (3.1)

tree’” breaks it into two component$;; and’}; (see Fig. 23). L EN:y

For future reference, we denote the vertex sétpby V;;, and i

the edge set by;;. | - :
Sincee;; is on the unique path between any vertefjpand = éel;[_ _ kEKHt . Xk by induction.

any vertex iril};, it follows from the junction tree property that v 6it=1)

any variable which occurs in a vertex in both components must

occur in bothy; andw;. Thus the message ;, which may be Any variable that occurs in two different messages ;(t — 1)

viewed as a message frofiy; to T};, is a function of exactly andu,, (¢t — 1) must also, by the junction tree property, occur

575

those variables which occur in both components. in o;, SO we may apply Lemma A.2 to rewrite the last line as
In what follows, for each index=1, ---, M we define
5750
N; = {k (Uk, Ui) S E} = o H H g

LCN;, 5 k€K, ;(t—1)
and for each pair of indice@, j) such that(v;, v;) € E, we

define Since a variable that occurs in one of the kernels in the above
) equation and also in; must, by the junction tree property, also
Nij =1k (o, vi) € B,k # 5} occur inv;, it follows from Lemma A.1 that this last expression

o . can be simplified to
In words, V; represents the (indices of) the neighbors,ofind

N; ; represents the (indices of) the neighbors:pbther than s, s,
Uj.
Now let€ = (E1, Es, ---, Ex) be aschedule for ajunction i H H A = H Ak
tree, as defined in Section Ill, i.e., a finite list of subsetgbf CENG. G QR o(t—1) KCK:, (1)
and lety; ;(t) be the value of the message ; after thetth
round ofé&. the last equality because of the definition (A.3). O

Theorem A.3:The messagg;_ ;(t) is the product of a subset ~ Corollary A.4: For allt > 0, the stater;(t) has the value
of the local kernels ir{;;, with the variables that do not occur

in 7’;; marginalized out. Specifically, we have S
S kC i (1)
pis® =1 I o (A2) -
kEK; (1) where the sef/;(¢) is defined by
whereK; ;(t) is a subset o¥;;, the vertex set of;;. The sets Ji(t) = {i} U K; .(b). (A.5)
K, ;(t) are defined inductively as follows: JEN;
K; ;(0)=0, andfort>1 Proof: By definition (3.2)
. Ki7j(t - 1), if Cij ¢ Et
K; ;j(t) = { {i}Uéer K, (t—1), if e;; € Ey. (A-3) oi(t) =y H g, i(t)
JCN;
Proof: We use induction on, the case = 0 being simply = H 1 ().

a restatement of the initialization rule ; = 1. Assuming the JEN,

342 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000

(We know thatw; = aff, since the kernel; is by definition a (In words, knowledge of; must pass sequentially t9 through
function only of the variables involved in the local dom&in) the vertices of the patf?; ;.) In view of (A.6), we have the
By Theorem A.3, this can be written as following path fromwv;(0) = v, (0) to v;(N) = vy, (N) in
< the message trellis from; (0) to v;(N):
[0 (0); =+ -, Uk (1 — 1) wky (B1), -5 vy (B2 — 1);
T ;UkL(tL)v T UkL(N)]

But by the junction tree property, any variabl_e that occurs in Conversely, suppose there is a path frop(0) to v;(V) in

two of the bracketed terms must also occurai so that by {he message trellis. Then since apart from “pauses” at a given
Lemma A.2 vertex, this path in the message trellis must be the unique path
P; ; fromwv; to v;, Rule 2 implies that knowledge of the kernel
«; sequentially passes through the vertices on the Path

HOET S|

JEN;

[1

kEK; i(t)

ag

(A.7)

S;

O'i(t)

o [I 1] o
JEN; kEIS’jﬁg(t)
- S;

Il «

LRET:(t)

by the definition (A.5) O

(1]
(2]

Theorem A.3 tells us that at timg the message from; to
v; is the appropriately marginalized product of a subset of the
local kernels, viz.{ax: k € K, ;(t)}, and Corollary A.4
tells us that at time, the state of vertex; is the appropri-
ately marginalized product of a subset of the local kernels, viz.,[®
{ag,: k € J;(t)}, which we think of as the subset of local ker-
nels which are “known” tay; at time¢. Given these results, the
remaining problem is to understand how knowledge of the local
kernels is disseminated to the vertices of the junction tree undeys)
a given schedule. A study of (A.5), which gives the relationship
between what is known at the vertexand what is known by

.) _ [6]
the incoming edges, together with the message update rules in
(A.3), provides a nice recursive description of exactly how this
information is disseminated:

[4]

* Rule (1): Initially (¢ = 0), each vertex;; knows only its
own local kerneky;.
* Rule (2): If a directed edgév;, v;) is activated at time,

(8]
9]

i.e., if (v;, v;) € Ei, then vertexv, learns all the local [10]
kernels previously known te; at timet — 1. (1]
We shall now use these rules to prove Theorem 3.1. [12]
Theorem 3.1 asserts thatknows each of thé/ local kernels
ay, - -+, apy attimet = N if and only if there is a path in the
message trellis from;(0) to v;(N), forallj =1, 2, ---, M. [13]
We will now prove the slightly more general statement that
knows; at timet = N if and only if there is a path in the [14]
message trellis from; (0) to v; (V).
To this end, let us first show that if; knowsa; att = N,
then there must be a path in the message trellis fopf@) to 15
v;(V). Because we are in a tree, there is a unique path from [,
to v;, say
[17]
P, = [Ukoa Vkys ="y Ukp_1> UkL] [18]
whereky = j andky = 4. Denote byt, the first (smallest) [19]

time index for whichui,, knowse;. Then by Rule 2 and an easy
induction argument, we have [20]

1<t <to<--- <ty <N. (A.6)

finally reachingw; at time V.
- This completes the proof of Theorem 3.1.

REFERENCES

S. M. Aji, “Graphical models and iterative decoding,” Ph.D. dissertation,
Cal. Inst. Technol., Pasadena, CA, 1999.

S. M. Aji, G. B. Horn, and R. J. McEliece, “On the convergence of it-
erative decoding on graphs with a single cycle,”Hroc. 32nd Conf.
Information Sciences and Systemsinceton, NJ, Mar. 1998.

] S. M. Aji, G. B. Horn, R. J. McEliece, and M. Xu, “Iterative min-sum

decoding of tail-biting codes,” iRroc. IEEE Information Theory Work-
shop Killarney, Ireland, June 1998, pp. 68-69.

S. M. Aji, R. J. McEliece, and M. Xu, “Viterbi's algorithm and matrix
multiplication,” in Proc. 33rd Conf. Information Sciences and Systems
Baltimore, MD, Mar. 1999.

L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error ratelEEE Trans. Inform. Theory
vol. IT-20, pp. 284-287, Mar. 1974.

L. E. Baum and T. Petrie, “Statistical inference for probabilistic
functions of finite-state Markov chains&nn. Math. Statvol. 37, pp.
1559-1563, 1966.

] R. W. Chang and J. C. Hancock, “On receiver structures for channels

having memory,IEEE Trans. Inform. Theoryol. IT-12, pp. 463-468,
Oct. 1966.

J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier seriesfMath. Comp.vol. 19, p. 297, Apr. 1965.

T. H. Cormen, C. E. Leiserson, and R. L. Rivdstiroduction to Algo-
rithms Cambridge, MA: MIT-McGraw-Hill, 1990.

R. Dechter, “Bucket elimination: A unifying framework for probabilistic
inference,"Artificial Intell., vol. 113, pp. 41-85, 1999.

G. D. Forney Jr., “The Viterbi algorithm,Proc. IEEE vol. 61, pp.
268-278, Mar. 1973.

G. D. Forney Jr., F. R. Kschischang, and B. Marcus, “Iterative decoding
of tail-biting trellises,” in IEEE Information Theory WorkshgiBan
Diego, CA, Feb. 1998, pp. 11-12.

B. J. Frey, “Bayesian networks for pattern classification, data compres-
sion, and channel coding,” Ph.D. dissertation, Univ. Toronto, Toronto,
ON, Canada, 1997.

B. J. Frey and D. J. C. MacKay, “A revolution: Belief propagation in
graphs with cycles,” ildvances in Neural Information Processing Sys-
tems M. . Jordan, M. |. Kearns, and S. A. Solla, Eds. Cambridge, MA:
MIT Press, 1998, pp. 470-485.

R. G. Gallager, “Low-density parity-check codefRE Trans. Inform.
Theory vol. IT-8, pp. 21-28, Jan. 1962.

——, Low-Density Parity-Check Codes Cambridge, MA: MIT Press,
1963.

R. C. Gonzalez and R. E. Wood3igital Image Processing Reading,
MA: Addison-Wesley, 1992.

F. V. JensenAn Introduction to Bayesian NetworksNew York:
Springer-Verlag, 1996.

F. V. Jensen and F. Jensen, “Optimal junction treesProt. 10th Conf.
Uncertainty in Artificial IntelligenceR. L. de Mantaras and D. Poole,
Eds. San Francisco, CA, 1994, pp. 360-366.

J. H. Kim and J. Pearl, “A computational model for causal and diagnostic
reasoning,” irProc. 8th Int. Joint Conf. Artificial Intelligencel 983, pp.
190-193.

AJlI AND McELIECE: THE GENERALIZED DISTRIBUTIVE LAW

[21]

(22]

(23]

[24]

(25]

[26]

[27]

(28]

[29]

(30]

F. R. Kschischang and B. J. Frey, “Iterative decoding of compound codef31]
by probability propagation in graphical model$£EE J. Select. Areas
Commun,.vol. 16, pp. 219-230, Feb. 1998.

S. L. Lauritzen and F. V. Jensen, “Local computation with valuations
from a commutative semigroupAnn. Math. A} vol. 21, no. 1, pp.
51-69, 1997.

S. L. Lauritzen and D. J. Spiegelhalter, “Local computation with proba-[34]
bilities on graphical structures and their application to expert systems,”

J. Roy. Statist. Soc.,pp. 157-224, 1988. [35]
D.J. C. MacKay and R. M. Neal, “Good codes based on very sparse ma-
trices,” in Cryptography and Coding, 5th IMA Conser. Springer Lec-

ture Notes in Computer Science No. 1025. Berlin, Germany: Springer{36]
Verlag, 1995, pp. 100-111.

——, “Near Shannon limit performance of low density parity-check
codes, Electron. Lett, vol. 33, pp. 457-458, 1996.

P. L. McAdam, L. R. Welch, and C. L. Weber, “M.A.P. bit decoding
of convolutional codes,” irProc. 1972 IEEE Int. Symp. Information
Theory Asilomar, CA, Jan. 1972, p. 91.

R. J. McEliece, R. B. Ash, and C. Asimtroduction to Discrete Mathe-
matics New York: Random House, 1989.

R. J. McEliece, D. J. C. MacKay, and J. -F. Cheng, “Turbo decoding
as an instance of Pearl’s belief propagation algorith8EE J. Select.
Areas Comm.vol. 16, pp. 140-152, Feb. 1998.

J. Pearl,Probabilistic Reasoning in Intelligent SystemsSan Mateo,
CA: Morgan Kaufmann, 1988.

A. M. Poritz, “Hidden Markov models: A guided tour,” iRroc. 1988
IEEE Conf. Acoustics, Speech, and Signal Processolg1, pp. 7-13.

(32]

(33]

(37]

(38]

(39]

[40]

[41]

343

E. C. Posner, “Combinatorial structures in planetary reconnaissance,” in
Error Correcting CodesH. B. Mann, Ed. New York: Wiley, 1968.

L. Rabiner, “A tutorial on hidden Markov models and selected applica-
tions in speech recognitionProc. IEEE vol. 77, pp. 257-285, 1989.

G. R. Shafer and P. P. Shenoy, “Probability propagatiémt. Math.

Art. Intel.,, vol. 2, pp. 327-352, 1990.

R. M. Tanner, “A recursive approach to low complexity codeEEE
Trans. Inform. Theoryol. IT-27, pp. 533-547, Sep. 1981.

G. Ungerboeck, “Nonlinear equalization of binary signals in Gaussian
noise,”|IEEE Trans. Commun. Technolol. COM-19, pp. 1128-1137,
Dec. 1971.

S. Verdl and V. Poor, “Abstract dynamic programming models under
commutativity conditions,”SIAM J. Contr. Optimiz. vol. 25, pp.
990-1006, July 1987.

A. J. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithmJEEE Trans. Inform. Theoryol.
IT-13, pp. 260-269, Apr. 1967.

Y. Weiss, “Correctness of local probability propagation in graphical
models with loops,’Neural Comput.vol. 12, pp. 1-41, 2000.

N. Wiberg, “Codes and decoding on general graphs ,” dissertation no.
440, Linkoping Studies in Science and Technology, Linkoping, Sweden,
1996.

M. Yannakakis, “Computing the minimum fill-in is NP-complete,”
SIAM J. Alg. Discr. Methodsvol. 2, pp. 77-79, 1981.

F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm|EEE Trans. Inform. Theorsubmitted for
publication.

