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Abstract—In this semitutorial paper we discuss a general
message passing algorithm, which we call the generalized dis-
tributive law (GDL). The GDL is a synthesis of the work of many
authors in the information theory, digital communications, signal
processing, statistics, and artificial intelligence communities. It
includes as special cases the Baum–Welch algorithm, the fast
Fourier transform (FFT) on any finite Abelian group, the Gal-
lager–Tanner–Wiberg decoding algorithm, Viterbi’s algorithm,
the BCJR algorithm, Pearl’s “belief propagation” algorithm, the
Shafer–Shenoy probability propagation algorithm, and the turbo
decoding algorithm. Although this algorithm is guaranteed to give
exact answers only in certain cases (the “junction tree” condition),
unfortunately not including the cases of GTW with cycles or
turbo decoding, there is much experimental evidence, and a few
theorems, suggesting that it often works approximately even when
it is not supposed to.

Index Terms—Belief propagation, distributive law, graphical
models, junction trees, turbo codes.

I. INTRODUCTION

T HE humble distributive law, in its simplest form, states that
. The left side of this equation involves

three arithmetic operations (one addition and two multiplica-
tions), whereas the right side needs only two. Thus the distribu-
tive law gives us a “fast algorithm” for computing . The
object of this paper is to demonstrate that the distributive law
can be vastly generalized, and that this generalization leads to
a large family of fast algorithms, including Viterbi’s algorithm
and the fast Fourier transform (FFT).To give a better idea of the
potential power of the distributive law and to introduce the view-
point we shall take in this paper, we offer the following example.

Example 1.1:Let and be given
real-valued functions, where, , , and are variables taking
values in a finite set with elements. Suppose we are given
the task of computing tables of the values of and ,
defined as follows:

(1.1)

(1.2)
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(We summarize (1.1) by saying that is obtained by
“marginalizing out” the variables and from the function

. Similarly, is obtained by marginalizing
out , , and from the same function.) How many arithmetic
operations (additions and multiplications) are required for this
task? If we proceed in the obvious way, we notice that for each
of the values of there are terms in the sum defining

, each term requiring one addition and one multiplica-
tion, so that the total number of arithmetic operations required
for the computation of is . Similarly, computing

requires operations, so computing both and
using the direct method requires operations.

On the other hand, because of the distributive law, the sum in
(1.1) factors

(1.3)

Using this fact, we can simplify the computation of .
First we compute tables of the functions and
defined by

(1.4)

which requires a total of additions. Then we compute
the values of using the formula (cf. (1.3))

(1.5)

which requires multiplications. Thus by exploiting the dis-
tributive law, we can reduce the total number of operations re-
quired to compute from to . Similarly, the
distributive law tells us that (1.2) can be written as

(1.6)

where is as defined in (1.4). Thus if we precompute a
table of the values of ( operations), and then use (1.6)
( further operations), we only need operations (as
compared to for the direct method) to compute the values
of .

Finally, we observe that to computeboth and
using the simplifications afforded by (1.3) and (1.6), we only
need to compute once, which means that we can compute
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the values of and with a total of only
operations, as compared to for the direct method.

The simplification in Example 1.1 was easy to accomplish,
and the gains were relatively modest. In more complicated
cases, it can be much harder to see the best way to reorganize
the calculations, but the computational savings can be dramatic.
It is the object of this paper to show that problems of the type
described in Example 1.1 have a wide range of applicability,
and to describe a general procedure, which we called thegen-
eralized distributive law(GDL), for solving them efficiently.
Roughly speaking, the GDL accomplishes its goal by passing
messages in a communications network whose underlying
graph is a tree.

Important special cases of the GDL have appeared many
times previously. In this paper, for example, we will demon-
strate that the GDL includes as special cases the fast Hadamard
transform, Viterbi’s algorithm, the BCJR algorithm, the
Gallager–Tanner–Wiberg decoding algorithm (when the under-
lying graph is cycle-free), and certain “probability propagation”
algorithms known in the artificial intelligence community.
With a little more work, we could have added the FFT on any
finite Abelian group, the Baum–Welch “forward-backward”
algorithm, and discrete-state Kalman filtering. Although this
paper contains relatively little that is essentially new (for
example, the 1990 paper of Shafer and Shenoy [33] describes
an algorithm similar to the one we present in Section III), we
believe it is worthwhile to present a simply stated algorithm
of such wide applicability, which gives a unified treatment of
a great many algorithms whose relationship to each other was
not fully understood, if sensed at all.

Here is an outline of the paper. In Section II, we will state a
general computational problem we call the MPF (“marginalize
a product function”) problem, and show by example that
a number of classical problems are instances of it. These
problems include computing the discrete Hadamard transform,
maximum-likelihood decoding of a linear code over a memo-
ryless channel, probabilistic inference in Bayesian networks,
a “probabilistic state machine” problem, and matrix chain
multiplication. In Section III, we shall give an exact algorithm
for solving the MPF problem (the GDL) which often gives
an efficient solution to the MPF problem. In Section IV we
will discuss the problem of finding junction trees (the formal
name for the GDL’s communication network), and “solve”
the example instances of the MPF problem given in Section
II, thereby deriving, among other things, the fast Hadamard
transform and Viterbi’s algorithm. In Section V we will discuss
the computational complexity of the GDL. (A proof of the
correctness of the GDL is given in the Appendix.)

In Section VI, we give a brief history of the GDL. Finally,
in Section VII, we speculate on the possible existence of an
efficient class of approximate, iterative, algorithms for solving
the MPF problem, obtained by allowing the communication net-
work to have cycles. This speculation is based partly on the fact
that two experimentally successful decoding algorithms, viz.,
the GTW algorithm for low-density parity-check codes, and the
turbo decoding algorithm, can be viewed as an application of
the GDL methodology on networks with cycles, and partly on

some recent theoretical work on GDL-like algorithms on graphs
with a single cycle.

Although this paper is semitutorial, it contains a number of
things which have not appeared previously. Beside the gener-
ality of our exposition, these include:

• A de-emphasis ofa priori graphical models, and an em-
phasis on algorithms to construct graphical models to fit
the given problem.

• A number of nonprobabilistic applications, including the
FFT.

• A careful discussion of message scheduling, and a proof
of the correctness of a large class of possible schedules.

• A precise measure of the computational complexity of the
GDL.

Finally, we note that while this paper was being written,
Kschischang, Frey, and Loeliger [41] were simultaneously
and independently working out a similar synthesis. And while
the final forms of the two papers have turned out to be quite
different, anyone interested in the results of this paper should
have a look at the alternative formulation in [41].

II. THE MPF PROBLEM

The GDL can greatly reduce the number of additions and
multiplications required in a certain class of computational
problems. It turns out that much of the power of the GDL is
due to the fact that it applies to situations in which the notions
of addition and multiplication are themselves generalized. The
appropriate framework for this generalization is the commuta-
tive semiring.

Definition: A commutative semiringis a set , together with
two binary operations called “” and “ ”, which satisfy the fol-
lowing three axioms:

S1. The operation “ ” is associative and commutative, and
there is an additive identity element called “” such that

for all . (This axiom makes
a commutative monoid.)

S2. The operation “” is also associative and commutative,
and there is a multiplicative identity element called “”
such that for all . (Thus is also
a commutative monoid.)

S3. Thedistributive lawholds, i.e.,

for all triples from .

The difference between a semiring and a ring is that in a
semiring, additive inverses need not exist, i.e., is only
required to be a monoid, not a group. Thus every commutative
ring is automatically a commutative semiring. For example, the
set of real or complex numbers, with ordinary addition and mul-
tiplication, forms a commutative semiring. Similarly, the set of
polynomials in one or more indeterminates over any commu-
tative ring forms a commutative semiring. However, there are
many other commutative semirings, some of which are summa-
rized in Table I. (In semirings 4–8, the set is an interval of
real numbers with the possible addition of .)
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TABLE I
SOME COMMUTATIVE SEMIRINGS. HERE A

DENOTES ANARBITRARY COMMUTATIVE RING, S IS AN ARBITRARY FINITE

SET, AND � DENOTES ANARBITRARY DISTRIBUTIVE LATTICE

For example, consider the min-sum semiring in Table I
(entry 7). Here is the set of real numbers, plus the special
symbol “ .” The operation “ ” is defined as the operation of
taking the minimum, with the symbol playing the role of the
corresponding identity element, i.e., we define
for all . The operation “” is defined to beordinary
addition [sic], with the real number playing the role of
the identity, and for all . Oddly enough, this
combination forms a semiring, because the distributive law is
equivalent to

which is easily seen to be true. We shall get a glimpse of the
importance of this semiring in Examples 2.3 and 4.3, below.
(In fact, semirings 5–8 are all isomorphic to each other; for ex-
ample, 5 becomes 6 via the mapping , and 6 becomes
7 under the mapping .)

Having briefly discussed commutative semirings, we now de-
scribe the “marginalize a product function” problem, which is
a general computational problem solved by the GDL. At the
end of the section we will give several examples of the MPF
problem, which demonstrate how it can occur in a surprisingly
wide variety of settings.

Let be variables taking values in the finite
sets , with for . If

is a subset of , we denote the
product by , the variable list
by , and the cardinality of , i.e., , by . We denote
the product simply by , and the variable list

simply by .
Now let be subsets of .

Suppose that for each , there is a function
, where is a commutative semiring. The

variable lists are called thelocal domainsand the functions
are called thelocal kernels. We define theglobal kernel

as follows:

(2.1)

With this setup, the MPF problem is this: For one or more of
the indices , compute a table of the values of the

-marginalizationof the global kernel , which is the function
, defined by

(2.2)

In (2.2), denotes the complement of the setrelative to the
“universe” . For example, if , and if

, then

We will call the function defined in (2.2) theth objec-
tive function, or theobjective functionat . We note that the
computation of theth objective function in the obvious way
requires additions and multipli-
cations, for a total of arithmetic operations, where

denotes the size of the set. We shall see below (Section V)
that the algorithm we call the “generalized distributive law” can
often reduce this figure dramatically.

We conclude this section with some illustrative examples of
the MPF problem.

Example 2.1:Let , , , and be variables taking
values in the finite sets , , , and . Suppose

and are given functions of these vari-
ables, and that it is desired to compute tables of the functions

and defined by

ptThis is an instance of the MPF problem, if we define local
domains and kernels as follows:

local domain local kernel

The desired function is the objective function at local
domain , and is the objective function at local domain
. This is just a slightly altered version of Example 1.1, and

we shall see in Section IV that when the GDL is applied, the
“algorithm” of Example 1.1 results.

Example 2.2:Let , , , , , and be six vari-
ables, each assuming values in the binary set , and let

be a real-valued function of the variables,
, and . Now consider the MPF problem (the commutative

semiring being the set of real numbers with ordinary addition
and multiplication) with the following local domains and
kernels:

local domain local kernel
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Here the global kernel, i.e., the product of the local kernels, is

and the objective function at the local domain is

which is the Hadamard transformof the original function
[17]. Thus the problem of computing the Hada-

mard transform is a special case of the MPF problem. (A
straightforward generalization of this example shows that the
problem of computing the Fourier transform over any finite
Abelian group is also a special case of the MPF problem. While
the kernel for the Hadamard transform is of diagonal form, in
general, the kernel will only be lower triangular. See [1, Ch.
3] for the details.) We shall see below in Example 4.2 that the
GDL algorithm, when applied to this set of local domains and
kernels, yields thefastHadamard transform.

Example 2.3: (Wiberg [39]). Consider the binary
linear code defined by the parity-check matrix

Suppose that an unknown codeword from this
code is transmitted over a discrete memoryless channel, and that
the vector is received. The “likelihood” of a
particular codeword is then

(2.3)

where the ’s are the transition probabilities of the
channel. Themaximum-likelihood decoding problemis that
of finding the codeword that maximizes the expression in
(2.3). Now consider the MPF problem with the following
domains and kernels, using the min-sum semiring (semiring
from Table I). There is one local domain for each codeword
coordinate and one for each row of the parity-check matrix.

local domain local kernel

...
...

Here is a function that indicates whether a given parity
check is satisfied, or not. For example, at the local domain

, which corresponds to the first row of the
parity-check matrix, we have

if
if

Fig. 1. The Bayesian network in Example 2.4.

The global kernel is then

if
is a codeword

if
is not a codeword.

Thus the objective function at the local domain is

all codewords for which

It follows that the value of for which is smallest is
the value of theth component of a maximum-likelihood code-
word, i.e., a codeword for which is
largest. A straightforward extension of this example shows that
the problem of maximum-likelihood decoding of an arbitrary
linear block code is a special case of the MPF problem. We shall
see in Example 4.3 that when the GDL is applied to problems
of this type, the Gallager–Tanner–Wiberg decoding algorithm
results.

Example 2.4:Consider the directed acylic graph (DAG)in
Fig. 1.1 In a DAG, the “parents” of a vertex, denoted , are
those vertices (if any) which lie immediately “above”. Thus in
Fig. 1, , and . Let us associate a
random variable with each of the vertices, and assume that each
random variable is dependent only on its “parents,” i.e., the joint
density function factors as follows:

1This example is taken from [29], in whichB stands for burglary,E is for
earthquake,A is for alarm sound,R is for radio report, andW is for Watson’s
call.
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Fig. 2. The Bayesian network for the probabilistic state machine in Example 2.5.

or, using streamlined notation

(2.4)

A DAG, together with associated random variables whose joint
density function factors according to the structure of the DAG,
is called aBayesian network[18].

Let us assume that the two random variablesand are
observed to have the values and , respectively. Theprob-
abilistic inference problem, in this case, is to compute the con-
ditional probabilities of one or more of the remaining random
variables, i.e., , , and , where the conditioning is with re-
spect to the “evidence” . Now consider the
MPF problem with the following local domains and kernels:

local domain local kernel

Then by (2.4) (using semiring from Table I, viz. the set of
nonnegative real numbers with ordinary addition and mul-
tiplication) the global kernel is just the function

, so that, for example, the objective function
at local domain is

But by Bayes’ rule

so that the conditional probability of , given the “evidence”
, is

where the constant of proportionalityis given by

Similarly, the computation of the conditional probabilities of
and can be accomplished via evaluation of the objective

functions at the local domainsand , respectively. Thus the
problem of probabilistic inference in Bayesian networks is a
special case of the MPF problem. We shall see in Section IV
that when the GDL is applied to problems of this type, the re-
sult is an algorithm equivalent to the “probability propagation”
algorithms known in the artificial intelligence community.

Example 2.5:As a more useful instance of the probabilistic
inference problem, we consider aprobabilistic state machine.2

At each time , the PSM has state, input
and output . The are probabilistically generated, inde-

pendently, with probabilities . The output depends on
the state and input and is described by the conditional prob-
ability distribution . The state also depends on

and , with conditional probability . If the a
priori distribution of the initial state is known, we can write
the joint probability of the inputs, states, and outputs from time

to as

(2.5)

This means that the PSM is a Bayesian network, as depicted in
Fig. 2.

Suppose we observe the output values, denoting these
observations by (“ ” for evidence), and wish
to infer the values of the inputs based on this evidence. This
is a probabilistic inference problem of the type discussed in
Example 2.4. We can compute the conditional probability

2Our probabilistic state machines are closely related to the “hidden Markov
models” considered in the literature [32].
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by taking the joint probability in
(2.5) with the observed values of and marginalizing out all
the ’s and all but one of the ’s. This is an instance of the
MPF problem, with the following local domains and kernels
(illustrated for ):

local domain local kernel

This model includes, as a special case, convolutional
codes, as follows. The state transition is deterministic, which
means that when
and otherwise. Assuming a memoryless
channel, the output is probabilistically dependent on ,
which is a deterministic function of the state and input, and so

. Marginalizing the product of
functions in (2.5) in the sum-product and max-product semir-
ings will then give us the maximum-likelihood inputsymbolsor
inputblock, respectively. As we shall see below (Example 4.5),
when the GDL is applied here, we get algorithms equivalent to
the BCJR and Viterbi decoding algorithms.3

Example 2.6:Let be a matrix with entries in
a commutative semiring, for . We denote the en-
tries in by , where for , is a
variable taking values in a set with elements. Suppose we
want to compute the product

Then for we have by definition

(2.6)

and an easy induction argument gives the generalization

(2.7)
(Note that (2.7) suggests that the number of arithmetic opera-
tions required to multiply thesematrices is .) Thus

3To obtain an algorithm equivalent to Viterbi’s, it is necessary to take the neg-
ative logarithm of (2.5) before performing the marginalization in the min-sum
semiring.

Fig. 3. The trellis corresponding to the multiplication of three matrices, of
sizes2 � 3, 3 � 3, and3 � 2. The(i; j)th entry in the matrix product is the
sum of the weights of all paths froma to b .

multiplying matrices can be formulated as the following MPF
problem:

local domain local kernel

...

the desired result being the objective function at local domain
.

As an alternative interpretation of (2.7), consider a trellis of
depth , with vertex set , and an edge of weight

connecting the vertices and .
If we define the weight of a path as the sum of the weights of
the component edges, then as defined in (2.7) rep-
resents the sum of the weights of all paths fromto . For
example, Fig. 3 shows the trellis corresponding to the multipli-
cation of three matrices, of sizes , , and . If the
computation is done in the min-sum semiring, the interpretation
is that is the weight of a minimum-weight path from

to .
We shall see in Section IV that if the GDL is applied to the

matrix multiplication problem, a number of different algorithms
result, corresponding to the different ways of parenthesizing the
expression . If the parenthesization is

(illustrated for ), and the computation is in the min-sum
semiring, Viterbi’s algorithm results.

III. T HE GDL: AN ALGORITHM FOR SOLVING THE MPF
PROBLEM

If the elements of stand in a certain special relationship
to each other, then an algorithm for solving the MPF problem
can be based on the notion of “message passing.” The required
relationship is that the local domains can be organized into a
junction tree[18]. What this means is that the elements of
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Fig. 4. A junction tree.

can be attached as labels to the vertices of a graph-theoretic tree
, such that for any two vertices and , the intersection of

the corresponding labels, viz. , is a subset of the label on
each vertex on the unique path fromto . Alternatively, the
subgraph of consisting of those vertices whose label includes
the element, together with the edges connecting these vertices,
is connected, for .

For example, consider the following five local domains:

local domain

These local domains can be organized into a junction tree, as
shown in Fig. 4. For example, the unique path from vertexto
vertex is , and , as required.

On the other hand, the following set of four local domains
cannot be organized into a junction tree, as can be easily veri-
fied.

local domain

However, by adjoining two “dummy domains”

local domain

to the collection, we can devise a junction tree, as shown in
Fig. 5.

(In Section IV, we give a simple algorithm for deciding
whether or not a given set of local domains can be organized
into a junction tree, for constructing one if it does exist, and for
finding appropriate dummy domains if it does not.)

In the “junction tree” algorithm, which is what we call the
generalized distributive law(GDL), if and are connected
by an edge (indicated by the notation ), the (directed)
“message” from to is a table containing the values of a
function . Initially, all such functions are de-
fined to be identically (the semiring’s multiplicative identity);

Fig. 5. A junction tree which includes the local domainsfx ; x g,fx ; x g,
fx ; x g, andfx ; x g.

and when a particular message is updated, the following
rule is used:

(3.1)
A good way to remember (3.1) is to think of the junction tree
as a communication network, in which an edge fromto
is a transmission line that “filters out” dependence on all vari-
ables but those common to and . (The filtering is done by
marginalization.) When the vertex wishes to send a message
to , it forms the product of its local kernel with all messages it
has received from its neighbors other than, and transmits the
product to over the transmission line.

Similarly, the “state” of a vertex is defined to be a table
containing the values of a function . Initially,
is defined to be the local kernel , but when is updated,
the following rule is used:

(3.2)

In words, the state of a vertex is the product of its local kernel
with each of the messages it has received from its neighbors. The
basic idea is that after sufficiently many messages have been
passed, will be the objective function at , as defined
in (2.2).

The question remains as to the scheduling of the message
passing and the state computation. Here we consider only two
special cases, thesingle-vertexproblem, in which the goal is to
compute the objective function at only one vertex, and the
all-verticesproblem, where the goal is to compute the objective
function at all vertices.4

For the single-vertex problem, the natural (serial) sched-
uling of the GDL begins by directing each edge toward the

4We do not consider the problem of evaluating the objective function atk ver-
tices, where1 < k < M . However, as we will see in Section V, the complexity
of theM -vertex GDL is at most four times as large as the1-vertex GDL, so it is
reasonably efficient to solve thek-vertex problem using theM -vertex solution.
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Fig. 6. The junction tree of Fig. 4 with the edges directed towardsv .

TABLE II
A SCHEDULE FOR THESINGLE-VERTEX GDL FOR THEJUNCTION TREE OF

Fig. 4,WITH TARGET VERTEX v

target vertex . Then messages are sent only in the direc-
tion toward , and each directed message is sent only once.
A vertex sends a message to a neighbor, when, for the first
time, it has received messages from each of its other neigh-
bors. The target computes its state when it has received
messages from each of its neighbors. With this scheduling,
messages begin at the leaves (vertices with degree), and
proceed toward , until has received messages from all
its neighbors, at which point computes its state and the
algorithm terminates.

For example, if we wish to solve the single-vertex problem for
the junction tree of Fig. 4, and the target vertex is, the edges
should all be directed towards, as shown in Fig. 6. Then one
possible sequence of messages and state computations runs as
shown in Table II.

It will be shown in Section V that this scheduling of the single
vertex GDL requires at most

arithmetic operations (3.3)

where is the label of , and , thedegreeof , is the
number of vertices adjacent to. This should be compared to
the complexity of the “obvious” solution, which as we noted
above is operations. For example, for the junction
tree shown in Fig. 6, the complexity of the single-vertex GDL
is by (3.3) at most arithmetic
operations, versus for the direct computation.

For the all-vertices problem, the GDL can be scheduled in
several ways. For example, in a fully parallel implementation,
at every iteration, every state is updated, and every message
is computed and transmitted, simultaneously. In this case the
messages and states will stabilize after a number of iterations

TABLE III
A “H YBRID” SCHEDULE FOR THEALL-VERTICESGDL FOR THE

JUNCTION TREE OFFig. 4

at most equal to the diameter of the tree, at which point the
states of the vertices will be equal to the desired objective func-
tions, and the algorithm terminates. Alternatively, the GDL can
be scheduled fully serially, in which case each message is sent
only once, and each state is computed only once. In this case, a
vertex sends a message to a neighbor when, for the first time, it
has received messages from all of its other neighbors, and com-
putes its state when, for the first time, it has received messages
from all its neighbors. In this serial mode, messages begin at
the leaves, and proceed inwards into the tree, until some nodes
have received messages from all their neighbors, at which point
messages propagate outwards, so that each vertex eventually re-
ceives messages from all of its neighbors.5 We will see in Sec-
tion IV that the fully serial all-vertices GDL requires at most

arithmetic operations.
There are also a variety of possible hybrid schedules, inter-

mediate between fully parallel and fully serial. For example,
Table III shows a hybrid schedule for the junction tree of Fig. 4,
in which the computation is organized into four rounds. The
computations in each round may be performed in any order, or
even simultaneously, but the rounds must be performed sequen-
tially.

That concludes our informal discussion of GDL scheduling.
We end this section with what we call the “scheduling theorem”
for the GDL.

Thus let be a junction tree with vertex set and edge set
. In the GDL, messages can be passed in both directions on

each edge, so it will be convenient to regard the edge setas
consisting of ordered pairs of vertices. Thus for example for the
tree of Fig. 4, we have

A schedulefor the GDL is defined to be a finite sequence
of subsets of . A typical schedule will be denoted by

5We might therefore call the fully serial all-vertices GDL an “inward–out-
ward” algorithm.
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Fig. 7. The message trellis for the junction tree in Fig. 4 under the schedule
of Table II viz.,E = f(3; 1)g, E = f(4; 2)g, E = f(5; 2)g, E =
f(2; 1)g.

. The idea is that is the set of mes-
sages that are updated during theth round of the algorithm. In
Tables II and III, for example, the corresponding schedules are

Table II

Table III

Given a schedule , the corresponding
message trellisis a finite directed graph with vertex set

, in which a typical element is denoted by ,
for . The only allowed edges are of the form

; and is an edge in the mes-
sage trellis if either or . The message trellises
for the junction tree of Fig. 4, under the schedules of Tables II
and III, are shown in Figs. 7 and 8, respectively. (In these fig-
ures, the shaded boxes indicate which local kernels are known
to which vertices at any time. For example, in Fig. 7, we can see
that knowledge of the local kernels , , and has reached

at time . We will elaborate on this notion of “knowl-
edge” in the Appendix.)

Theorem 3.1 (GDL Scheduling):After the completion of the
message passing described by the schedule

the state at vertex will be the th objective as defined in (3.2)
if and only if there is a path from to in the corre-
sponding message trellis, for .

A proof of Theorem 3.1 will be found in the Appendix, but
Figs. 7 and 8 illustrate the idea. For example, in Fig. 8, we see
that there is a path from each of to ,
which means (by the scheduling theorem) that after two rounds
of message passing, the state atwill be the desired objective
function. This is why, in Table III, we are able to compute
in round 3. Theorem 3.1 immediately implies the correctness of

Fig. 8. The message trellis for the junction tree in Fig. 4, under the schedule
of Table III, viz.,E = f(3; 1); (4; 2); (5; 2)g,E = f(1; 2); (2; 1)g, and
E = f(1; 3); (2; 4); (2; 5)g.

Fig. 9. (a) The local domain graph and (b) one junction tree for the local
domains and kernels in Example 2.1.

the single-vertex and all-vertices serial GDL described earlier
in this section.

IV. CONSTRUCTINGJUNCTION TREES

In Section III we showed that if we can construct a junction
tree with the local domains as vertex labels, we can devise a
message-passing algorithm to solve the MPF problem. But does
such a junction tree exist? And if not, what can be done? In this
section we will answer these questions.

It is easy to decide whether or not a junction tree exists. The
key is thelocal domain graph , which is a weighted com-
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Fig. 10. Constructing a junction tree for the local domainsf1; 2g, f2; 3g, f3; 4g, andf4; 1g by triangulating the moral graph.

plete graph with vertices , one for each local do-
main, with the weight of the edge defined by

If , we will say that is contained in . Denote
by the weight of a maximal-weight spanning tree of .6

Finally, define

Theorem 4.1: , with equality if and only if there
is a junction tree. If , then any maximal-weight
spanning tree of is a junction tree.

Proof: For each , denote by the number
of sets which contain the variable . Note that

Let be any spanning tree of , and let denote the
number of edges in which contain . Clearly

Furthermore, , since the subgraph of induced
by the vertices containing has no cycles, and equality holds
if and only if is connected, i.e., a tree. It follows then that

with equality if and only if each subgraph is connected, i.e.,
if is a junction tree.

Example 4.1:Here we continue Example 2.1. The LD graph
is shown in Fig. 9(a). Here .
A maximal weight spanning tree is shown in Fig. 9(b), and its
weight is , so by Theorem 4.1, this is a junction tree, a fact

6A maximal-weight spanning tree can easily be found with Prim’s “greedy”
algorithm [27, Ch. 3], [9, Sec. 24.2]. In brief, Prim’s algorithm works by
growing the tree one edge at a time, always choosing a new edge of maximal
weight.

that can easily be checked directly. If we apply the GDL to this
junction tree, we get the “algorithm” described in our introduc-
tory Example 1.1 (if we use the schedule ,
where , , and

).

If no junction tree exists with the given vertex labels, all is
not lost. We can always find a junction tree withvertices such
that each is asubsetof the th vertex label, so that each local
kernel may be associated with theth vertex, by regarding
it as a function of the variables involved in the label. The key
to this construction is themoral graph7 which is the undirected
graph with vertex set equal to the set of variables ,
and having an edge betweenand if there is a local domain
which contains both and .

Given a cycle in a graph, achord is an edge between two
vertices on the cycle which do not appear consecutively in the
cycle. A graph istriangulated if every simple cycle (i.e., one
with no repeated vertices) of length larger than three has a chord.

In [18], it is shown that the cliques (maximal complete sub-
graphs) of a graph can be the vertex labels of a junction tree if
and only if the graph is triangulated. Thus to form a junction
tree with vertex labels such that each of the local domains is
contained in some vertex label, we form the moral graph, add
enough edges to the moral graph so that the resulting graph is
triangulated, and then form a junction tree with the cliques of
this graph as vertex labels. Each of the original local domains
will be a subset of at least one of these cliques. We can then at-
tach the original local domains as “leaves” to the clique junction
tree, thereby obtaining a junction tree for the original set of local
domains and kernels, plus extra local domains corresponding to
the cliques in the moral graph. We can then associate one of
the local kernels attached to each of the cliques to that clique,
and delete the corresponding leaf. In this way we will have con-
structed a junction tree for the original set of local kernels, with
some of the local domains enlarged to include extra variables.
However, this construction is far from unique, and the choices
that must be made (which edges to add to the moral graph, how
to assign local kernels to the enlarged local domains) make the
procedure more of an art than a science.

7The whimsical term “moral graph” originally referred to the graph obtained
from a DAG by drawing edges between—“marrying”—each of the parents of a
given vertex [23].
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Fig. 11. The LD graph for the local domains and kernels in Example 2.2. (All
edges have weight1.) There is no junction tree.

Fig. 12. The moral graph (top) and a triangulated moral graph (bottom) for the
local domains and kernels in Example 2.2.

For example, suppose the local domains and local kernels are

local domain local kernel

As we observed above, these local domains cannot be organized
into a junction tree. The moral graph for these domains is shown
in Fig. 10(a) (solid lines). This graph is not triangulated, but the
addition of the edge 2–4 (dashed line) makes it so. The cliques
in the triangulated graph are and , and these
sets can be made the labels in a junction tree (Fig. 10(b)). We can
attach the original four local domains as leaves to this junction
tree, as shown in Fig. 10(c) (note that this graph is identical
to the junction tree in Fig. 5). Finally, we can assign the local
kernel at to the local domain , and the local
kernel at to the local domain , thereby obtaining
the junction tree shown in Fig. 10(d). What we have done, in
effect, is to modify the original local domains by enlarging two

Fig. 13. Constructing a junction tree for Example 4.2.

of them, and viewing the associated local kernels as functions
on the enlarged local domains:

local domain local kernel

The difficulty is that we must enlarge the local domains enough
so that they will support a junction tree, but not so much that
the resulting algorithm will be unmanageably complex. We will
return to the issue of junction tree complexity in Section V.

The next example illustrates this procedure in a more practical
setting.

Example 4.2:Here we continue Example 2.2. The local do-
main graph is shown in Fig. 11. Since all edges have weight,
any spanning tree will have weight, but .
Thus by Theorem 4.1, the local domains cannot be organized
into a junction tree, so we need to consider the moral graph,
which is shown in Fig. 12(a). It is not triangulated (e.g., the
cycle formed by vertices , , , and has no chord), but it
can be triangulated by the addition of three additional edges, as
shown in Fig. 12(b). There are exactly three cliques in the trian-
gulated moral graph, viz., , ,
and . These three sets can be organized into a
unique junction tree, and each of the original five local domains
is a subset of exactly one of these, as shown in Fig. 13(a). If we
want a unique local domain for each of the five local kernels, we
can retain two of the original local domains, thus obtaining the
junction tree shown in Fig. 13(b). Since this is a “single-vertex”
problem, to apply the GDL, we first direct each of the edges
towards the target vertex, which in this case is .
It is now a straightforward exercise to show that the (serial,
one-vertex) GDL, when applied to this directed junction tree,
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Fig. 14. A junction tree for Example 4.3.

yields the usual “fast” Hadamard transform. More generally, by
extending the method in this example, it is possible to show that
the FFT on any finite Abelian group, as described, e.g., in [8] or
[31], can be derived from an application of the GDL.8

Example 4.3:Here we continue Example 2.3. In this case,
the local domains can be organized as a junction tree. One
such tree is shown in Fig. 14. It can be shown that the GDL,
when applied to the junction tree of Fig. 14, yields the Gal-
lager–Tanner–Wiberg algorithm [15], [34], [39] for decoding
linear codes defined by cycle-free graphs. Indeed, Fig. 14
is identical to the “Tanner graph” cited by Wiberg [39] for
decoding this particular code.

Example 4.4:Here we continue Example 2.4. The local do-
mains can be arranged into a junction tree, as shown in Fig. 15.
(In general, the junction tree has the same topology as DAG,
if the DAG is cycle-free.) The GDL algorithm, when applied
to the junction tree of Fig. 15, is equivalent to certain algo-
rithms which are known in the artificial intelligence commu-
nity for solving the probabilistic inference problem on Bayesian
networks whose associated DAG’s are cycle-free; in particular,
Pearl’s “belief propagation” algorithm [29], and the “probability
propagation” algorithm of Shafer and Shenoy [33].

Example 4.5:Here we continue Example 2.5, the proba-
bilistic state machine. In this case the local domains can be
organized into a junction tree, as illustrated in Fig. 16 for the
case . The GDL algorithm, applied to the junction tree of
Fig. 16, gives us essentially the BCJR [5] and Viterbi [37][11]
algorithms, respectively. (For Viterbi’s algorithm, we take the
negative logarithm of the objective function in (2.5), and use the
min-sum semiring, with a single target vertex, preferably the
“last” , which in Fig. 16 is . For the BCJR algorithm,
we use the objective function in (2.5) as it stands, and use the
sum–product semiring, and evaluate the objective function at
each of the vertices , for . In both cases,
the appropriate schedule is fully serial.)

8For this, see [1], where it is observed that the moral graph for the DFT over
a finite Abelian groupG is triangulated if and only ifG is a cyclic group of
prime-power order. In all other cases, it is necessary to triangulate the moral
graph, as we have done in this example.

Fig. 15. A junction tree for Example 4.4. This figure should be compared to
Fig. 1.

Example 4.6:Here we continue Example 2.6, the matrix
multiplication problem. It is easy to see that for , there is
no junction tree for the original set of local domains, because
the corresponding moral graph is a cycle of length . It is
possible to show that for the product ofmatrices, there are

possible triangulations of the moral graph, which are in one-to-
one correspondence with the different ways to parenthesize the
expression . For example, the parenthesization

corresponds to the triangulation shown in Fig. 17.
Thus the problem of finding an optimal junction tree is iden-

tical to the problem of finding an optimal parenthesization. For
example, in the case , illustrated in Fig. 18, there are two
different triangulations of the moral graph, which lead, via the
techniques described in this section, to the two junction trees
shown in the lower part of Fig. 18. With the top vertex as the
target, the GDL applied to each of these trees computes the
product . The left junction tree corresponds to paren-
thesizing the product as and requires

arithmetic operations, whereas the right junc-
tion tree corresponds to and requires

operations. Thus which tree one prefers depends on the
relative size of the matrices. For example, if , ,

, and , the left junction tree requires 15 000 oper-
ations and the right junction tree takes 150 000. (This example
is taken from [9].)

As we discussed in Example 2.6, the matrix multiplication
problem is equivalent to a trellis path problem. In particular,
if the computations are in the min-sum semiring, the problem
is that of finding the shortest paths in the trellis. If the moral
graph is triangulated as shown in Fig. 17, the resulting junction
tree yields an algorithm identical to Viterbi’s algorithm. Thus
Viterbi’s algorithm can be viewed as an algorithm for multi-
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Fig. 16. A junction tree for the probabilistic state machine (illustrated forn = 4).

Fig. 17. The triangulation of the moral graph corresponding to the
parenthesization((� � � (M M ) � � �)M )M .

Fig. 18. The moral graph for Example 4.6, triangulated in two ways, and
the corresponding junction trees. The left junction tree corresponds to the
parenthesization(M M )M , and the one on the right corresponds to
M (M M ).

plying a chain of matrices in the min-sum semiring. (This con-
nection is explored in more detail in [4].)

V. COMPLEXITY OF THE GDL

In this section we will provide complexity estimates for the
serial versions of the GDL discussed in Section III. Here by
complexity we mean thearithmetic complexity, i.e., the total
number of (semiring) additions and/or multiplications required
to compute the desired objective functions.

We begin by rewriting the message and state computation for-
mulas (3.1) and (3.2), using slightly different notation. The mes-
sage from vertex to vertex is defined as (cf. (3.1))

(5.1)
and the state of vertexis defined as (cf. (3.2))

(5.2)

We first consider the single-vertex problem, supposing that
is the target. For each , there is exactly one edge

directed from toward . We suppose that this edge is .
To compute the message as defined in (5.1) for a
particular value of requires9 additions and

multiplications, where is the degree
of the vertex . Using simplified but (we hope) self-explanatory
notation we rewrite this as follows:

additions, and

multiplications.

But there are

possibilities for , so the entire message re-
quires

additions, and

multiplications.

The total number of arithmetic operations required to send mes-
sages toward along each of the edges of the tree is thus

additions

multiplications.

When all the messages have been computed and transmitted,
the algorithm terminates with the computation of the state at

, defined by (5.2). This state computation requires
further multiplications, so that the total is

additions

multiplications.

9Here we are assuming that the addition (multiplication) ofN elements ofS
requiresN � 1 binary additions (multiplications).



338 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000

Thus the grand total number of additions and multiplications is

(5.3)

where if is an edge, its “size” is defined to be
.

Note that the formula in (5.3) gives the upper bound

(5.4)

mentioned in Section III.
The formula in (5.3) can be rewritten in a useful alternative

way, if we define the “complexity” of the edge as

(5.5)

With this definition, the formula in (5.3) becomes

(5.6)

For example, for the junction tree of Fig. 4, there are four edges
and

so that

We next briefly consider the all-vertices problem. Here a mes-
sage must be sent over each edge, in both directions, and the
state must be computed at each vertex. If this is done following
the ideas above in the obvious way, the resulting complexity is

. However, we may reduce this by noticing that
if is a set of numbers, it is possible to compute
all the products of of the ’s with at most
multiplications, rather than the obvious . We do this by
precomputing the quantities , ,

, , and ,
, , ,

using multiplications. Then if denotes the product
of all the ’s except for , we have , , ,

, , using a further multipli-
cations, for a total of . With one further multiplication
( ), we can compute .10

Returning now to the serial implementation of the all-vertex
GDL, each vertex must pass a message to each of its neigh-
bors. Vertex will have incoming messages, and (prior to
marginalization) each outgoing message will be the product of

of these messages with the local kernel at. For its
own state computation, also needs the product of all in-
coming messages with the local kernel. By the above argument,
all this can be done with at most multiplications for each
of the values of the variables in the local domain at. Thus
the number of multiplications required is at most .
The marginalizations during the message computations remain

10One of the referees has noted that the trick described in this paragraph is
itself an application of the GDL; it has the same structure as the forward–back-
ward algorithm applied to a trellis representing a repetition code of lengthd.

as in the single-vertex case, and, summed over all messages, re-
quire

additions. Thus the total number of arithmetic operations is no
more than , which shows that the complexity of
the all-vertices GDL is at worst a fixed constant times that of
the single-vertex GDL. Therefore, we feel justified indefining
the complexity of a junction tree, irrespective of which objec-
tive functions are sought, by (5.3) or (5.6). (In [23], the com-
plexity of a similar, but not identical, algorithm was shown to be
upper-bounded by . This bound is strictly
greater than the bound in (5.4).)

In Section IV, we saw that in many cases and the
LD graph has more than one maximal-weight spanning tree. In
view of the results in this section, in such cases it is desirable
to find the maximal-weight spanning tree with as small
as possible. It is easy to modify Prim’s algorithm to do this. In
Prim’s algorithm, the basic step is to add to the growing tree
a maximal-weight edge which does not form a cycle. If there
are several choices with the same weight, choose one whose
complexity, as defined by (5.5), is as small as possible. The tree
that results is guaranteed to be a minimum-complexity junction
tree [19]. In fact, we used this technique to find minimum-com-
plexity junction trees in Examples 4.1, 4.3, 4.4, and 4.5.

We conclude this section with two examples which illustrate
the difficulty of finding the minimum-complexity junction
tree for a given marginalization problem. Consider first the
local domains , , , and . There is
a unique junction tree with these sets as vertex labels, shown
in Fig. 19(a). By (5.3), the complexity of this junction tree is

. Now suppose we artificially enlarge the local domain
to . Then the modified set of local domains, viz.,
, , , and can be organized into

the junction tree shown in Fig. 19(b), whose complexity is
, which is less than that of the original tree as

long as .
As the second example, we consider the domains ,

, , and , which can be organized
into a unique junction tree (Fig. 20(a)). If we adjoin the domain

, however, we can build a junction tree (Fig. 20(b))
whose complexity is lower than the original one, provided that

is much larger than any of the other’s. (It is known that the
problem of finding the “best” triangulation of a given graph is
NP-complete [40], where “best” refers to having the minimum
maximum clique size.)

VI. A B RIEF HISTORY OF THEGDL

Important algorithms whose essential underlying idea is the
exploitation of the distributive law to simplify a marginaliza-
tion problem have been discovered many times in the past. Most
of these algorithms fall into one of three broad categories:de-
coding algorithms, the“forward–backward algorithm,”andar-
tificial intelligence algorithms. In this section we will summa-
rize these three parallel threads
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Fig. 19. Enlarging a local domain can lower the junction tree complexity.

Fig. 20. Adding an extra local domain can lower the junction tree complexity.

• Decoding Algorithms

The earliest occurrence of a GDL-like algorithm that we are
aware of is Gallager’s 1962 algorithm for decoding low-den-
sity parity-check codes [15] [16]. Gallager was aware that his
algorithm could be proved to be correct only when the under-
lying graphical structure had no cycles, but also noted that it
gave good experimental results even when cycles were present.
Gallager’s work attracted little attention for 20 years, but in
1981 Tanner [34], realizing the importance of Gallager’s work,
made an important generalization of low-density parity-check
codes, introduced the “Tanner graph” viewpoint, and recast Gal-
lager’s algorithm in explicit message-passing form. Tanner’s
work itself went relatively unnoticed until the 1996 thesis of
Wiberg [39], which showed that the message-passing Tanner
graph decoding algorithm could be used not only to describe
Gallager’s algorithm, but also Viterbi’s and BCJR’s. Wiberg
too understood the importance of the cycle-free condition, but
nevertheless observed that the turbo decoding algorithm was an
instance of the Gallager–Tanner–Wiberg algorithm on a graph-
ical structure with cycles. Wiberg explicitly considered both the

sum-product and min-sum semirings, and speculated on the pos-
sibility of further generalizations to what he called “universal
algebras” (our semirings).

In an independent series of developments, in 1967 Viterbi
[37] invented his celebrated algorithm for maximum-likelihood
decoding (minimizing sequence error probability) of convolu-
tional codes. Seven years later (1974), Bahl, Cocke, Jelinek, and
Raviv [5] published a “forward–backward” decoding algorithm
(see next bullet) for minimizing the bit-error probability of con-
volutional codes. The close relationship between these two al-
gorithms was immediately recognized by Forney [11]. Although
these algorithms did not apparently lead anyone to discover a
class of algorithms of GDL-like generality, with hindsight we
can see that all the essential ideas were present.

• The Forward–Backward Algorithm

The forward–backward algorithm (also known as the-step
in the Baum–Welch algorithm) was invented in 1962 by Lloyd
Welch, and seems to have first appeared in the unclassified liter-
ature in two independent 1966 publications [6], [7]. It appeared
explicitly as an algorithm for tracking the states of a Markov
chain in the early 1970’s [5], [26] (see also the survey arti-
cles [30] and [32]). A similar algorithm (in min-sum form) ap-
peared in a 1971 paper on equalization [35]. The algorithm was
connected to the optimization literature in 1987 [36], where a
semiring-type generalization was given.

• Artificial Intelligence

The relevant research in the artificial intelligence (AI) com-
munity began relatively late, but it has evolved quickly. The
activity began in the 1980’s with the work of Kim and Pearl
[20] and Pearl [29]. Pearl’s “belief propagation” algorithm, as
it has come to be known, is a message-passing algorithm for
solving the probabilistic inference problem on a Bayesian net-
work whose DAG contains no (undirected) cycles. Soon after-
wards, Lauritzen and Spiegelhalter [23] obtained an equivalent
algorithm, and moreover generalized it to arbitrary DAG’s by
introducing the triangulation procedure. The notion of junction
trees (under the name “Markov tree”) was explicitly introduced
by Shafer and Shenoy [33]. A recent book by Jensen [18] is a
good introduction to most of this material. A recent unification
of many of these concepts called “bucket elimination” appears
in [10], and a recent paper by Lauritzen and Jensen [22] abstracts
the MPF problem still further, so that the marginalization is done
axiomatically, rather than by summation.

In any case, by early 1996, the relevance of these AI algo-
rithms had become apparent to researchers in the information
theory community [21] [28]. Conversely, the AI community has
become excited by the developments in the information theory
community [14] [38], which demonstrate that these algorithms
can be successful on graphs with cycles. We discuss this is in
the next section.

VII. I TERATIVE AND APPROXIMATEVERSIONS OF THEGDL

Although the GDL can be proved to be correct only when the
local domains can be organized into a junction tree, the com-
putations of the messages and states in (3.1) and (3.2) make
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sense whenever the local domains are organized as vertex la-
bels on any kind of a connected graph, whether it is a junction
tree or not. On such a junction graph, there is no notion of “ter-
mination,” since messages may travel around the cycles indefi-
nitely. Instead, one hopes that after sufficiently many messages
have been passed, the states of the selected vertices will beap-
proximately equalto the desired objective functions. This hope
is based on a large body of experimental evidence, and some
emerging theory.

• Experimental Evidence

It is now known that an application of the GDL, or one of
its close relatives, to an appropriate junction graph with cycles,
gives both the Gallager–Tanner–Wiberg algorithm for low-den-
sity parity-check codes [24], [25], [28] ,[39], the turbo decoding
algorithm [21], [28], [39]. Both of these decoding algorithms
have proved to be extraordinarily effective experimentally, de-
spite the fact that there are as yet no general theorems that ex-
plain their behavior.

• Emerging Theory: Single-Cycle Junction Graphs

Recently, a number of authors [1]–[3], [12], [38], [39] have
studied the behavior of the iterative GDL on junction graphs
which have exactly one cycle. It seems fair to say that, at least for
the sum-product and the min-sum semirings, the iterative GDL
is fairly well understood in this case, and the results imply, for
example, that iterative decoding is effective for most tail-biting
codes. Although these results shed no direct light on the problem
of the behavior of the GDL on multicycle junction graphs, like
those associated with Gallager codes or turbo codes, this is nev-
ertheless an encouraging step.

APPENDIX A
PROOF OF THESCHEDULING THEOREM

Summary:In this appendix, we will give a proof of the Sched-
uling Theorem 3.1, which will prove the correctness of the GDL.
The key to the proof is Corollary A.4, which tells us that at every
stage of the algorithm, the state at a given vertex is the appro-
priately marginalized product of a subset of the local kernels.
Informally, we say that at time, the state at vertex is the
marginalized product of the local kernels which are currently
“known” to . Given this result, the remaining problem is to un-
derstand how knowledge of the local kernels is disseminated to
the vertices of the junction tree under a given schedule. As we
shall see, this “knowledge dissemination” can be described re-
cursively as follows:

• Rule (1): Initially , each vertex knows only its
own local kernel .

• Rule (2): If a directed edge is activated at time
, i.e., if , then vertex learns all the local

kernels known to at time .

The proof of Theorem 3.1 then follows quickly from these rules.

We begin by introducing some notation. Let be a func-
tion of the variable list , and let be an arbitrary subset of

Fig. 21. A junction tree for Lemma A.1.

Fig. 22. A junction tree for Lemma A.2.

. We denote by the function of the vari-
able list obtained by “marginalizing out” the variables in

which are not in :

Lemma A.1: If , then

Proof: (Note first that Lemma A.1 is a special case of the
single-vertex GDL, with the following local domains and ker-
nels.

local domain local kernel

The appropriate junction tree is shown in Fig. 21.)
To see that the assertion is true, note that the variables not

marginalized out in the function are those indexed
by . The variables not marginalized out in
are those indexed by . But by the hypothesis ,
these two sets are equal.

Lemma A.2:Let , for be local kernels,
and consider the MPF problem of computing

(A.1)

If no variable which is marginalized out in (A.1) occurs in more
than one local kernel, i.e., if for , then

Proof: (Lemma A.2 is also a special case of the single-
vertex GDL, with the following local domains and kernels:

local domain local kernel

...
...

...

The appropriate junction tree is shown in Fig. 22.)
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In any case, Lemma A.2 is a simple consequence of the dis-
tributive law: Since each variable being marginalized out in
(A.1) occurs in at most one local kernel, it is allowable to take
the other local kernels out of the sum by distributivity. As an
example, we have

Now we are ready to consider the dynamics of the GDL. Con-
sider an edge: . Removing from the junction
tree breaks it into two components, and (see Fig. 23).
For future reference, we denote the vertex set ofby , and
the edge set by .

Since is on the unique path between any vertex inand
any vertex in , it follows from the junction tree property that
any variable which occurs in a vertex in both components must
occur in both and . Thus the message , which may be
viewed as a message from to , is a function of exactly
those variables which occur in both components.

In what follows, for each index we define

and for each pair of indices such that , we
define

In words, represents the (indices of) the neighbors of, and
represents the (indices of) the neighbors ofother than

.
Now let be a schedule for a junction

tree, as defined in Section III, i.e., a finite list of subsets of,
and let be the value of the message after the th
round of .

Theorem A.3:The message is the product of a subset
of the local kernels in , with the variables that do not occur
in marginalized out. Specifically, we have

(A.2)

where is a subset of , the vertex set of . The sets
are defined inductively as follows:

and for
if
if (A.3)

Proof: We use induction on, the case being simply
a restatement of the initialization rule . Assuming the

Fig. 23. Deleting the edgee breaks the junction tree into two components.

theorem proved for , we assume is updated in theth
round, and consider :

by (3.1)

by induction.

Any variable that occurs in two different messages
and must also, by the junction tree property, occur
in , so we may apply Lemma A.2 to rewrite the last line as

Since a variable that occurs in one of the kernels in the above
equation and also in must, by the junction tree property, also
occur in , it follows from Lemma A.1 that this last expression
can be simplified to

the last equality because of the definition (A.3).

Corollary A.4: For all , the state has the value

(A.4)

where the set is defined by

(A.5)

Proof: By definition (3.2)
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(We know that , since the kernel is by definition a
function only of the variables involved in the local domain.)
By Theorem A.3, this can be written as

But by the junction tree property, any variable that occurs in
two of the bracketed terms must also occur in, so that by
Lemma A.2

by the definition (A.5)

Theorem A.3 tells us that at time, the message from to
is the appropriately marginalized product of a subset of the

local kernels, viz., , and Corollary A.4
tells us that at time, the state of vertex is the appropri-
ately marginalized product of a subset of the local kernels, viz.,

, which we think of as the subset of local ker-
nels which are “known” to at time . Given these results, the
remaining problem is to understand how knowledge of the local
kernels is disseminated to the vertices of the junction tree under
a given schedule. A study of (A.5), which gives the relationship
between what is known at the vertexand what is known by
the incoming edges, together with the message update rules in
(A.3), provides a nice recursive description of exactly how this
information is disseminated:

• Rule (1): Initially , each vertex knows only its
own local kernel .

• Rule (2): If a directed edge is activated at time,
i.e., if , then vertex learns all the local
kernels previously known to at time .

We shall now use these rules to prove Theorem 3.1.
Theorem 3.1 asserts thatknows each of the local kernels

at time if and only if there is a path in the
message trellis from to , for all .
We will now prove the slightly more general statement that
knows at time if and only if there is a path in the
message trellis from to .

To this end, let us first show that if knows at ,
then there must be a path in the message trellis from to

. Because we are in a tree, there is a unique path from
to , say

where and . Denote by the first (smallest)
time index for which knows . Then by Rule 2 and an easy
induction argument, we have

(A.6)

(In words, knowledge of must pass sequentially tothrough
the vertices of the path .) In view of (A.6), we have the
following path from to in
the message trellis from to :

(A.7)

Conversely, suppose there is a path from to in
the message trellis. Then since apart from “pauses” at a given
vertex, this path in the message trellis must be the unique path

from to , Rule 2 implies that knowledge of the kernel
sequentially passes through the vertices on the path,

finally reaching at time .
This completes the proof of Theorem 3.1.
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