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Abstract

We consider convex optimization problems with the
constraint that the variables form a �nite autocorre-
lation sequence, or equivalently, that the correspond-
ing power spectral density is nonnegative. This con-
straint is often approximated by sampling the power
spectral density, which results in a set of linear in-
equalities. It can also be cast as a linear matrix
inequality via the positive-real lemma. The linear
matrix inequality formulation is exact, and results in
convex optimization problems that can be solved us-
ing interior-point methods for semide�nite program-
ming. However, these methods require O(n6) 
oating
point operations per iteration, if a general-purpose
implementation is used. We introduce a much more
e�cient method with a complexity of O(n3) 
ops per
iteration.

1 Introduction

The following problem arises in MA and ARMA esti-
mation [6]. Given a vector �x 2 Rn+1, and a positive

de�nite matrix Q = QT 2 R(n+1)�(n+1), solve the
optimization problem

minimize (x� �x)TQ(x� �x)

subject to x 2 Cn+1
(1)
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where Cn+1 is the set of �nite autocorrelation se-

quences in Rn+1, i.e., x 2 Cn+1 if and only if

xi =

n�iX
k=0

ykyk+i; i = 0; : : : ; n (2)

for some vector y 2 Rn+1. The variable in prob-
lem (1) is x 2 Rn+1.
It is well known that x 2 Cn+1 if and only if

X(!) � 0; 0 � ! � � (3)

where X is the Fourier transform of x, de�ned as

X(!) = x0 + 2

nX
k=1

xk cos(k!):

This characterizes Cn+1 via an in�nite set of linear
inequalities in x; one for each value of !. Researchers
often handle constraints of the form x 2 Cn+1 by
sampling the frequency response [8, 9]. For example,
we can approximate problem (1) as

minimize (x � �x)TQ(x� �x)

subject to X(!k) � 0; k = 1; : : : ;m:

where !1, . . . , !m 2 [0; �]. This is a quadratic pro-
gramming problem in the variable x. Although it is
quite e�cient, the drawback of this method is that it
is not exact.
An alternative representation, which does not in-

volve any approximation, is based on the positive-real
lemma and linear matrix inequalities (LMIs). It can
be shown that x 2 Cn+1 if and only if there exists a
matrix P = P T 2 Rn�n such that

G(x; P ) �

�
P x̂
x̂T x0

�
�

�
0 0
0 P

�
� 0 (4)

where x̂T = [x1 x2 : : : xn], and the inequality �
denotes matrix inequality, i.e., G(x; P ) is positive
semide�nite. Applying this result to (1), we obtain

minimize (x� �x)TQ(x� �x)

subject to G(x; P ) � 0;
(5)



which is a convex optimization problem in the vari-
ables P = P T 2 Rn�n and x 2 Rn+1. The algorithm
used in [6] is based on solving this problem using
general-purpose interior-point methods for semide�-
nite programming (SDP). The drawback of this ap-
proach is that it introduces n(n+1)=2 auxiliary vari-
ables (the elements of P ). The cost of one iteration of
an interior-point method typically grows as the cube
of the number of variables. The cost of solving (5) us-
ing standard SDP software is therefore at least O(n6)

ops per iteration.
The purpose of this paper is to describe a more

e�cient interior-point method for handling the con-
straint x 2 Cn+1, with a computational complexity
of only O(n3) per iteration.
We also point out that the constraint x 2 Cn+1

occurs in many other signal processing problems,
such as spectral estimation and FIR �lter design
[1, 8, 9, 3, 7]. The techniques described in this paper
are also applicable to problems in those �elds. In this
paper we will concentrate on problem (1) as a simple
representative example, and refer to [1] for details on
other applications.
An outline of this paper is as follows. In x2 we

show that the set Cn+1 is a convex cone and derive
its dual cone. In x3 we introduce the dual optimiza-
tion problem corresponding to (1) and show how to
obtain a solution to (1) from the solution to the dual
problem. In x4 we discuss a numerical method based
on the dual problem, and show that it is much more
e�cient than the method based on the positive-real
lemma. We give some numerical results in x5, and
summarize our �ndings in x6.

2 The dual cone

The frequency-domain characterization of Cn+1 given
in (3) has several important consequences. First, it
immediately implies that Cn+1 is a cone: if x 2 Cn+1,
then obviously tx 2 Cn+1 for all t � 0. Secondly, we
note that for �xed !, (3) is a linear inequality in x.
Therefore Cn+1 is the intersection of in�nitely many
halfspaces, parameterized by !. As a consequence,
Cn+1 is a closed convex cone.
The dual cone of Cn+1 is de�ned as

Cn+1D =
�
z 2 Rn+1jzTx � 0 8x 2 Cn+1

	
: (6)

(From this point forward we will also refer to Cn+1

as the primal cone.) Using the de�nition of Cn+1

from (2) we see that z 2 Cn+1D if and only if

nX
i=0

zi

n�iX
k=0

ykyk+i =
1

2
yTF (z)y � 0

for all y 2 Rn+1 where F (z) is the Toeplitz matrix
given by

F (z) =

2
666664

2z0 z1 z2 � � � zn
z1 2z0 z1 � � � zn�1
z2 z1 2z0 � � � zn�2
...

...
...

. . .
...

zn zn�1 zn�2 � � � 2z0

3
777775 : (7)

In other words, z 2 Cn+1D if and only if z satisi�es the
LMI F (z) � 0.

3 Lagrange dual problem

The Lagrangian function L associated with (1) is de-
�ned as

L(x; z) = (x� �x)TQ(x� �x)� xT z; (8)

where z 2 Rn+1 is the dual variable or Lagrange
multiplier associated with the `generalized inequality'
x 2 Cn+1 (see [2] for details). The Lagrange dual
problem is de�ned as

maximize infx L(x; z)
subject to z 2 Cn+1D ;

or more explicitly,

maximize � 1
4z

TQ�1z � �xT z

subject to z 2 Cn+1D :
(9)

It can be shown that the optimal values of the pri-
mal problem (1) and the dual problem (9) are equal,
and that both optimal values are attained, i.e., there
exists a pair of (unique) optimal solutions x� and z�.
Moreover, the optimal solutions satisfy

x� =
1

2
Q�1z� + �x: (10)

We can therefore solve the primal problem (1) by
solving the dual problem, and then calculating x�

from z� using (10).
Using the characterization of the dual cone in terms

of the Toeplitz matrix (7), we can re-write the dual
problem (9) as

maximize � 1
4z

TQ�1z � �xT z

subject to F (z) � 0;
(11)

which is a convex optimization problem with a
quadratic objective function and an LMI constraint.
In the next section we derive the computational cost
of solving (11).



4 E�cient solution of the dual

problem

Suppose we solve problem (11) using a barrier
method, such as SUMT [4, 2], which is based on min-
imizing the function

t (
1

4
zTQ�1z + �xT z)� log detF (z) (12)

for a sequence of increasing values of t. The cost of
one iteration of this method is dominated by the cost
of forming the gradient and Hessian of the barrier
function

�(z) = � log detF (z);

and the cost of solving the Newton equation for (12),
which is given by

(
t

2
Q�1 +r2�(z))v = �t(

1

2
Q�1z + �x)�r�(z):

The Newton equation can be solved in O(n3) 
ops,
since we have n+1 variables. We now show that the
gradient and Hessian of � can also be evaluated in
O(n3) 
ops.
The �rst and second derivatives of � are given by

r�(z)j = �Tr(Ej + (Ej)T )F (z)�1

= �2TrEjF (z)�1;

and

r2�(z)ij =

= TrF (z)�1(Ei + (Ei)T )F (z)�1(Ej + (Ej)T )

= 2TrEiF (z)�1EjF (z)�1

+ 2TrEiF (z)�1EjTF (z)�1

for i; j = 0; 1; : : : ; n, where E 2 R(n+1)�(n+1) is the
unit-shift matrix, de�ned as

E =

2
666664

0 0 0 � � � 0 0
1 0 0 � � � 0 0
0 1 0 � � � 0 0
...

...
. . .

. . .
...

...
0 0 0 � � � 1 0

3
777775 ;

and Ej denotes the jth power of E.
The gradient and Hessian can be e�ciently evalu-

ated as follows. We �rst factorize F (z)�1 as

F (z)�1 = RRT

where R is upper triangular. The Cholesky factor R
can be obtained using the Levinson-Durbin algorithm

at a cost of O(n2) 
ops. Let rk be the kth column of
R. The gradient and Hessian of � can be written as

r�(z)j = �2
nX

k=0

rTk E
jrk

and

r�(z)ij = 2
nX

k=0

nX
l=0

(rTk E
irl)(r

T
l E

jrk + rTk E
jrl)

for i = 0; : : : ; n and j = 0; : : : ; n. More compactly,
the gradient can be written as

r�(z) = �2

nX
k=0

c(k; k) (13)

and the Hessian as

r2�(z) = 2

nX
k=0

nX
l=0

c(k; l)(c(l; k) + c(k; l))T ; (14)

where c(k; l) 2 Rn+1 denotes the crosscorrelation be-
tween the vectors rk and rl, i.e.,

ci(k; l) = rTk E
irl =

n�jX
j=0

rk;j+i rlj :

The cost of a straightforward evaluation of the ex-
pressions (13) and (14) is O(n3) 
ops and O(n4) 
ops,
respectively. It takes O(n3) 
ops to calculate the
autocorrelation vectors c(k; k) by working out the
inner products in the de�nition, and the addition
in (13) costs O(n2) 
ops. Evaluating all crosscor-
relation vectors c(k; l) would take O(n4) 
ops, and
the sum in (14) requires another O(n4) 
ops.
A more e�cient method is based on the discrete

Fourier transform (DFT). We de�ne a complex ma-

trix W 2 CN�(n+1) with elements

Wik = e�ik(2�
p
�1=N);

for i = 0; : : : ; N � 1 and k = 0; : : : ; n where N is
the smallest power of two greater than or equal to
2(n + 1). The DFT of a vector x 2 Rn+1 is the
vector X 2 CN , de�ned as

X =Wx:

where x is assumed to be zero-padded to length N . It
is readily veri�ed that 1

NW
�W = I , so we can easily

obtain the inverse DFT of a vector X 2 CN , using

x =
1

N
W �X:



We now return to the expressions for the gradi-
ent and Hessian in (13) and (14). Let Rk = Wrk
and C(k; l) be the DFTs of rk and c(k; l). The DFT
C(k; l) is readily computed from Rk and Rl using well
known properties of the DFT [5, x8]:

C(k; l) = diag(Rk)Rl = diag(Rl)Rk

where Rl denotes the complex conjugate of Rl, and
diagRk is the diagonal matrix with Rk on its diag-
onal. In particular, we note that C(k; l) = C(l; k),
and that C(k; k) is real.
The previous expression (13) for the gradient can

be written in terms of the vectors Rk as follows:

r�(z) = �
2

N
W �

nX
k=0

C(k; k)

= �
2

N
W �

nX
k=0

diag(Rk)Rk: (15)

In other words, the gradient is the inverse DFT of a
vector with components

�2

nX
k=0

RkiRki = �2

nX
k=0

jRkij
2;

for i = 0; : : : ; N . The expression for the Hessian (14)
is more complicated. We have

r2�(z)

=
2

N2
W �

 
nX

k=0

nX
l=0

C(k; l)(C(l; k) + C(k; l))�

!
W

=
2

N2
W �

 
nX
l=0

diag(Rl)

  
nX

k=0

RkR
�
k

!
diag(Rl)

+

 
nX

k=0

RkR
T
k

!
diag(Rl)

!!
W: (16)

The formulas (15) and (16) suggest a more e�cient
way of evaluating gradient and Hessian. Calculat-
ing the gradient from the vectors Rk requires only
O(n2) 
ops, while calculating the Hessian via (16)
takes O(n3) 
ops.
In summary, the proposed algorithm for evaluat-

ing the barrier function �(z), its gradient r�(z) and
Hessian r2�(z), proceeds as follows:

1. calculate the Cholesky factorization F (z)�1 =
RRT via the Levinson-Durbin algorithm (O(n2)

ops)

2. the value of the barrier function is given by
�(z) = 2

Pn
k=0 log rkk , where rkk is the kth di-

agonal element of R

n+ 1 time (sec.)
100 0.14
200 0.78
300 4.00
400 4.65
500 5.52
600 25.36

Table 1: CPU times for the Hessian and gradient.

n+ 1 time (sec.) time/iter. (sec.)
100 5.3 0.16
200 34.7 0.89
300 252.7 4.37
400 312.1 5.10
500 324.7 6.13
600 2033.8 27.94

Table 2: CPU times for the example problem.

3. choose an integer N � 2(n + 1) (for example,
the smallest power of 2 greater than 2(n + 1)),
and calculate the DFTs Rk of the columns of R
(O(n2 logn) 
ops)

4. evaluate the gradient via the expression (15)
(O(n2) 
ops)

5. evaluate the Hessian via (16) (O(n3) 
ops).

The total cost is O(n3) 
ops. For comparison, one
iteration of a barrier method applied to the primal
problem (5) would have a complexity of at least O(n6)

ops, since we have O(n2) variables.

5 Numerical Results

Table 1 lists CPU times required for evaluation of the
gradient and Hessian of �(z) as a function of problem
size. Notice the jump in CPU time that results when
the problem size crosses a power of two. This is due to
the change in the length of the FFT that is used. The
code was written in C++. Calls were made to opti-
mized BLAS, LAPACK and FFT libraries. Speci�-
cally, the multi-threaded Intel Math Kernel Library
and Signal Processing Library were used. The code
was executed on a dual 350MHz PII system.
Table 2 lists CPU times required for solving (9)

with Q = I , and randomly generated vectors �x.
The results were averaged over �ve instances for each
problem size. The implementation is a very basic ver-
sion of the SUMT method (typically requiring over



50 Newton iterations), with the optimized C++ code
for evaluating gradients and Hessians. Note that for
n = 600 the primal SDP formulation (5) would in-
volve solving an SDP with about 180; 000 variables.

6 Conclusions

We considered e�cient interior-point methods for
convex optimization prolems involving �nite autocor-
relation sequences. Our approach is based on solving
the dual problem, which has a smaller number of vari-
ables, and includes an LMI constraint with Toeplitz
structure. By taking advantage of the Toeplitz struc-
ture, we reduce the cost to O(n3) 
ops per iteration.
This is much lower than previously used methods
based on the positive real lemma and general-purpose
semide�nite programming solvers.
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