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(Extended Abstract)

81 Introduction. Packet-switched, connection-oriented, virtual-circuit based networking tech-
nologies such as Asynchronous Transfer Mode (ATM) are likely to form the basis of future integrated
services networks that aim to support a wide variety of applications, including multimedia tele-
conferencing, multimedia information retrieval, file-transfer, “regular” telephone services, image
browsing, etc.

ATM networking technology is centered around the concept of switching 53-byte cells, where
the cell is the basic unit of data transfer. One of the major reasons behind this design choice
is that it is possible to build parallel switches, in which several of these small, fixed-size, cells
are simultaneously processed by different switching elements and each switching element takes the
same amount of time to complete its job. While much research has been performed on the issue
of providing deterministic quality of service (QoS) guarantees to connections in ATM networks,
none of this research, to our knowledge, exploints the parallelism capabilities of such networks.
In part, this is due to the inherent intractability of most problems in deterministic multi-resource
(as opposed to uni-resource) scheduling. The purpose of this extended abstract is to very briefly
describe our research efforts at designing fair parallel switching strategies for ATM (and similar)
networks that are based upon the few known efficient algorithms for multi-resource scheduling.

Particularly with respect to multimedia applications, the data-transfer requirements of an appli-
cation may often be modelled as a data “stream” that is generated at a fairly regular rate, subject
to occasional bursts. This model has been formalized into the concept of a flow [1, 2, 3, 4], which
considers the traffic of a particular connection to be a sequence of packets or cells generated by
the source of the connection: each packet belonging to a flow passes through the same sequence of
switches along a path, established at connection-admission time, from the source to the destination
in the network. A connection request specifies the rate at which it intends to generate data (i.e.,
it specifies its flow parameters), and the request is admitted by the network if and only if this
flow would not overload the network and cause a consequent unacceptable degradation of service
to other connections.

§2 Fairness. Consider a link between two switches that is of bandwidth B Mbps. Suppose that
n connections ¢y, ¢s, ..., ¢, share this link, and that each connection ¢; is characterized by a flow
rate of f(c;) Mbps. The ratio w(e;) = f(¢;)/B denotes the fraction of the total bandwidth on the
link that connection ¢; requires (clearly, it is necessary that >, w(e¢;) < 1).

The “fairest” bandwidth scheme is one that, over any time interval [t,,?,], is able to send

(ty —tz) - f(c;) Mb of data of connection ¢; through this switch (provided, of course, that there
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Figure 1: Notation: Time instants and time slots

is always some traffic waiting to be transmitted — i.e., that the connection is always backlogged
during the interval [t.,¢,]). However, achieving this would require that cells be infinitesimally
small; since this is not the case, the “granularity” of fairness can be no smaller than the cell-size.
More specifically, let a time slot denote the amount of time required to transmit one cell over
the link — each time slot is equal to p/B sec, where p denotes the cell size in Mb (for ATM,
p =424 x107%). Assuming that time at each switch is measured in time slots numbered beginning
with zero (Figure 1), the fairest bandwidth allocation scheme would be one that allocates at least
|t - w(c;)] slots out of any consecutive ¢ slots to each connection ¢; (provided, of course, that the
connection is backlogged over this entire duration). Our attempt here is to achieve a slightly weaker
form of fairness: suppose that there are no cells of connection ¢; queued at the switch at the start of
time slot ¢, — 1, and that a cell arrives at the beginning of time slot ¢,. In our version of fairness, a
bandwidth allocation scheme is fair if it allocates at least |(t1 —t,) - w(c¢;)| slots out of the (t1 —t,)
slots numbered t,,t, + 1,...,11 — 1 to connection ¢; (provided, once again, that the connection is
backlogged during these slots).

83 High-bandwidth connectivity. Modern networks, such as ATM-based ones, are typically
constructed using optical fibres. One straightforward method of achieving greater bandwidth be-
tween two switches in such networks is to have several fibres in parallel connect the two switches —
it costs significantly less to connect two locations with m fibres (typically, within the same cable)
than it does to connect them with one fibre that has a bandwidth m times as high; more important,
fast serial switching elements (i.e., switching elements that can handle a large number of cells per
unit time) are very difficult to construct, and currently constitute the technological bottleneck to
the implementation of higher-bandwidth networks. One method of having a high-bandwidth con-
nection between two switches S1 and 52 is then to instead have several lower-bandwidth connections

between them:
@ )

Figure 2: An m - B bandwidth connection from switch S1 to switch S2 that is implemented by m
fibres of bandwidth B each.

At the beginning of each time slot, switch S1 would select up to m waiting cells in parallel and
transmit them out on the m lines — through m different switching elements — to S2. These cells
would arrive simultaneously at 52, and have to be processed in parallel; i.e., based upon the Virtual
Channel Indicator (VCI) on each cell, the cell would be routed to the appropriate output queue in
S2.

Assuming that each fibre has bandwidth B we could now, in principle, have n connections



€1,€2, ..., ¢, share the line between switches S1 and S2, provided that Y7y f(¢;) < m- B.

One of the major requirements of such an approach to increasing bandwidth is that, since
the network offers a connection-oriented service, the relative ordering of the cells belonging to
any particular connection be preserved. Specifically, if more than one cell of connection ¢; is
transmitted over the link during any time slot, it is absolutely essential that S2 be able to order
these cells correctly before passing them on. This could be achieved, e.g., by adding a “cell-number”
to each cell; however, such an approach would (i) slow down the switching process at S1 and S2 by
increasing the amount of work that needs to be done at these switches, and (ii) be incompatible with
the ATM standard as currently defined. Even if this were to be nevertheless done, sending several
cells of the same connection during the same slot would require that these cells be compared and
reordered at the receiving switch; these inherently sequential operations would reduce the amount
of parallelism achieved in switch S2. All told, a better design decision would be to permit at most
one cell of each connection to traverse the link during any time slot'. The problem of bandwidth
allocation on the link S1-52 thus reduces to the following problem:

The parallel switching problem: Given n connections C = {cy,c¢q,...,¢,} and m parallel
switches, with connection ¢; needing to switch cells for at most a fraction w(c;) of the time slots,
choose, for each time slot, a subset of C' of size at most m of the connections that will be permitted
to transmit cells during this time slot.

Of course, we would like to be able to do this in as fair a manner as possible, where the idea of
“fairness” should be closely related to the ideas discussed above. This is a multi-resource version
of the problem of sharing a single resource in a fair manner; however, as far as we can tell, none
of the single-resource fair queueing schemes suggested in the literature (such as Weighted Fair
Queueing [5], Generalized Processor Sharing [6, 7], Fair Queueing Based on Start-times [8] or the
schemes in [1,4, 3]), nor the proportional-share schemes [9, 10, 11] generalize to this multi-resource
problem. Detailing the exact reasons why this is so is beyond the scope of this extended abstract:
we will, however, attempt to illustrate the problem by means of a simple example:

Example 1 Fair-queueing and proportional-share scheduling algorithms associate with each cell
that is awaiting service at a switch an eligible time [9], which, loosely speaking, denotes the earliest
time at which the packet is permitted to contend for the shared resource (in networks, this is the
bandwidth). Consider, for example, a connection ¢; with w(¢;) = 2/3. Assuming that connection
¢; is continually backlogged starting at time 0, its first cell becomes eligible at time 0, the second
at time 2, the third at time 3; in general, the j’th cell becomes eligible at time [3(j — 1)/2].

Consider now a situation where three connections ¢q, ¢z, and ¢g, with w(eq) = w(ez) = w(es)
= 2/3, share a parallel link composed of two fibres (i.e., with m = 2). Assume that all three
connections are continually backlogged starting at time 0. At the start of the time-slot zero, all
three connections are eligible; without loss of generality, assume that ¢; and ¢y get to send their
cells during this slot. Since the next cells on these connections become eligible at time 2, connection
c3 is the only connection that has an eligible cell to send during time slot one; during this time
slot, therefore, half the bandwidth has remained unused. Since w(ey) +w(cz) +w(cs) = 2, this is
clearly not acceptable.

!This design decision has two significant consequences: One, that no individual connection with a bandwidth
requirement greater than B can be admitted over this link, despite the fact that the total link capacity is m- B. Two,
that we are no longer using a work conserving scheduling descipline — if less than m connections have cells waiting
to use the link, then the link will not be used at full capacity despite the fact that there are cells that need to use it.



84 Proportionate Progress and Pfairness. The notion of proportionate progress, and the
associated concept of pfairness [12], deals with the following scheduling problem:

The multi-resource sharing problem: Given n users X = {zy,29,...,2,} and m identical
copies of a resource such that each resource must be allocated for each fized (indivisible) quantum
of time to a single user, and no user may use more than one copy of the resource during any time
quantum, with user x; needing to use the resource for exactly a fraction w(x;) of the time quanta,
choose, for each time quantum, a subset of X of size at most m of the users that will be permitted
to use the m resources during this time slot.

It has been shown [12] that the m resources can be allocated in a pfair manner — i.e., in such a
manner that, over the quanta numbered 0, 1,...,¢{—1, each user z; will have received the resource for
exactly |w(x;)-t] or [w(x;) -] quanta, for all ¢ € N; Algorithm PF [12] is a scheduling algorithm
that determines the subset of users that obtain the m resources during each time quantum.

It should be evident that the multi-resource sharing problem is closely related to the parallel
switching problem. However, the two problems have some major differences. The main difference
— and the reason why Algorithm PF cannot be directly used to solve the parallel switching problem
— lies in the fact that, while users are always waiting to use the resource, there may simply not
be any cells of a connection queued up at the time that Algorithm PF would want to service
that particular connection, but a cell arrives on this connection immediately after its “turn” has
gone by. This is a consequence of the fact that, while everything about an instance of the multi-
resource sharing problem — the number of users, their weights, the number of resources, etc. — is
known beforehand, the parallel switching problem is inherently on-line, in that the exact times at
which cells of a particular connection will arrive at a switch is not a priori known. Adapting multi-
resource fair scheduling algorithms such as Algorithm PF (and the related Algorithm PD [13], which
is more efficient from the run-time complexity point of view) to a dynamic, on-line environment
while continuing to obtain high utilization of the available bandwidth, is the major algorithmic
challenge in being able to design fair bandwidth allocation strategies for parallel switches.

§5 Other approaches. We conclude with a brief description of other promising approaches
towards parallel switching of flow-based traffic that, based upon our preliminary studies, seem to
merit further investigation. Of these, potentially the most rewarding is to explore the possibility of
extending the single-resource fair-queueing strategies to the parallel-switching domain. While, as
Example 1 illustrates, these are not likely to be optimal, the enormous amount of “legacy” research
— the algorithms, implementations, and analyses — that has been performed with respect to these
strategies may offset a minor loss of efficiency (bandwidth) or fairness. Another possible approach
towards using the single-resource fairness results for parallel switching involves partitioning the
connections among the various fibres at connection establishment time, and then having each
connection’s cells contend for bandwidth only on its associated fibre; once again, the downside to
such an approach is low utilization of available bandwidth.

Recall that we had claimed that the “fairest” bandwidth allocation scheme would be one that
allocates at least [t - w(¢;)| slots out of any consecutive ¢ slots to each connection ¢;. There seems
to be a close relationship between this notion of extreme fairness and the concept of pinwheel
scheduling [14]; further exploring this relationship may yield interesting results.
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