
Efficient Probabilistic Localization for Autonomous Indoor

Airships using Sonar, Air Flow, and IMU Sensors

Jörg Müller Wolfram Burgard

Department of Computer Science, University of Freiburg, Germany, {muellerj, burgard}@informatik.uni-freiburg.de

Abstract

In recent years, autonomous miniature airships have gained increased interest in the robotics community.

Whereas their advantage lies in their abilities to move safely and to hover for extended periods of time, they at

the same time are challenging as their payload is strictly limited and as their complex second-order kinematics

makes the prediction of their pose and velocity through physical simulation difficult and imprecise. In this

paper, we consider the problem of particle filter based online localization for a miniature blimp with lightweight

ultrasound and air flow sensors as well as an IMU. We present probabilistic models dedicated to the special

characteristics of the miniature and lightweight sensors applied on our blimp. Furthermore, we introduce an

efficient odometry motion model based on the measurements of air flow sensors and an IMU which is less

computationally demanding compared to the standard physical simulation-based control motion model. In

experiments with a real blimp in a complex indoor environment, our approach has proven to allow accurate and

reliable online localization of a miniature blimp and requires an order of magnitude fewer particles compared

to the localization based on the standard control motion model. Furthermore, we demonstrate the substantial

improvements in terms of localization accuracy when taking into account the temporal correlation of the air flow

measurements in our novel odometry motion model.

keywords: blimp, localization, autonomous navigation, sonar, IMU

1 Introduction

Miniature airships as autonomous mobile systems for indoor navigation have several desirable features as they

can navigate safely and with low noise in their three-dimensional environments. At the same time, their low

power consumption makes them well-suited for long-term operation tasks. These features facilitate a wide range

of applications including environmental monitoring, surveillance, disaster scenarios, communication, and adver-

tising even in the presence of people, e.g., in public spaces. To efficiently navigate in such applications, the

robots need to be able to perform several tasks such as path planning and closed loop control that additionally

require the ability to accurately estimate the position. In the context of miniature blimps, however, localization

is challenging as such platforms are restricted to lightweight and small on-board sensors like miniature sonars or

microelectromechanical systems (MEMS) based IMUs or thermal air flow sensors [29, 30, 44]. Additionally, the
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motion prediction of airships typically relies on a physical simulation of the accelerations acting on the vehicle,

e.g., thrust and drag, which is computationally expensive and induces a high amount of uncertainty, even when

adaptive motion models [28] are used.

In this paper, we consider the problem of online localization for a miniature blimp in indoor environments

through probabilistic state estimation with a particle filter. Our blimp, which is depicted in Fig. 8, has an ef-

fective payload of approximately 150 grams and is equipped with five ultrasound sensors, three thermal air flow

sensors as well as an IMU for navigation. Due to their wide opening angle the sonar sensors typically provide

highly ambiguous information. We therefore present a sensor model that is dedicated to the characteristics of

small-sized ultrasound sensors. We furthermore present a novel sensor model for the thermal air flow sensors

and develop an efficient flow odometry motion model for accurate motion prediction in the particle filter. In

contrast to the standard simulation-based control motion model, our odometry motion model requires an order

of magnitude fewer particles for localization and is less computationally demanding because it does not rely on

complex physical simulations. Therefore it enables accurate online localization. We present the results obtained

in experiments carried out with a real robotic blimp in a complex indoor environment. The results demonstrate

that our approach to online localization outperforms the standard particle filter localization based on the control

motion model applied in many state-of-the-art autonomous blimp navigation systems [13, 21, 45, 28].

This paper is organized as follows. After formulating the problem in the following Section and a brief descrip-

tion of particle filter localization in Section 3 we present the novel probabilistic sensor models in Section 4 to 6.

We then summarize the standard airship control motion model in Section 7 and introduce our odometry motion

model based on air flow sensors in Section 8. In Section 9 we demonstrate the capabilities of our approach in

experiments with a real robotic blimp. In Section 10 we then present a detailed discussion of related work.

2 Problem Formulation

In this paper we consider the problem of recursively estimating the state x of a miniature airship. As the airship

has second-order system dynamics and can move freely in three-dimensional space, we define its state as

x =
[
pT ,qT ,vT ,ωT

]T
(1)

consisting of the position p = [x, y, z]T , the orientation q = [q0, q1, q2, q3]T represented by a unit quaternion [8],

the translational velocity v = [vx, vy, vz]
T , and the angular velocity ω = [ωx, ωy, ωz]

T . Additionally, we define

the translational acceleration a = v̇ = [ax, ay, az]
T and the angular acceleration α = ω̇ = [αx, αy, αz]

T . The

position and orientation are expressed in the global frame of referenceFg (with the z-axis pointing upwards). The

velocities, accelerations, forces, and torques are expressed in the body-fixed frame of reference Fb. The origin of

the body-fixed frame Fb is the center of buoyancy of the airship with the x-axis pointing forward and the z-axis

pointing upwards. For evaluation and model learning purposes we define the ground truth state

x? =
[
p?T ,q?T ,v?T ,ω?T ,a?T ,α?T

]T
, (2)

which also includes the translational and angular acceleration of the robot.
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Throughout this paper we assume that the trajectory x1:T = x1, . . . ,xT is discretized into T time steps. The

input data for state estimation are the applied control commands u1:T and the sensor data z1:T . In particular, the

sensor data z = {zS,1, . . . , zS,`, zF,1, . . . , zF,m, zI} of our airship consists of the measurements of ` sonar sensors,

m air flow sensors, and an IMU indicated by the indices S, F, and I, respectively.

3 Vanilla Particle Filter Localization

For solving the localization problem we follow the probabilistic approach and apply the recursive Bayesian fil-

tering scheme [39]. The key idea of this approach is to recursively update the posterior probability density

p(xt | z1:t,u1:t) of the state xt at time t conditioned on all sensor data z1:t and control commands u1:t up to time

t. For the implementation of the Bayes filtering scheme we apply particle filtering [9] which approximates the

posterior p(xt | z1:t,u1:t) by a set of N particles. Each particle corresponds to a state hypothesis x[i] weighted

by the so-called importance weight w[i]. The recursive update of the particle filter is performed according to the

following three steps [7, 9, 14]:

1. Sampling: In the prediction step, we propagate each particle by drawing a successor state from the proposal

distribution. As it is common practice in mobile robot localization, we use the probabilistic motion model

p(x
[i]
t | x

[i]
t−1,ut) given the control command ut as the proposal distribution.

2. Importance Weighting: In the correction step, the importance weight of each particle is updated according

to the importance sampling principle. As we use the motion model as the proposal distribution, the weight

is updated by w[i]
t ∝ w

[i]
t−1 p(zt | x

[i]
t ) according to the sensor model.

3. Resampling: In the resampling step, we draw a new generation of particles (with replacement) such that

each particle is selected with a probability that is proportional to its weight.

For an efficient implementation of the particle filter, we use low-variance resampling [39] and omit the re-

sampling step until the effective number of particles [24] drops below half the number of particles.

Under the Markov assumption, the measurements of the individual sensors are conditionally independent

given the state of the system [39], so that we can express the measurement likelihood as

p(z | x) =

(∏̀
i=1

p(zS,i | x)

)  m∏
j=1

p(zF,j | x)

 p(zI | x) (3)

for our miniature blimp equipped with sonar sensors, air flow sensors, and an IMU. In the following four sections

of this paper we describe the probabilistic models for the corresponding sensors and for the motion of miniature

indoor airships. Furthermore, we introduce our novel air flow odometry motion model for computing efficient

and accurate proposal distributions in the particle filter.
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Figure 1: Left: The intensity pattern of the Devantech SRF10 miniature sonar sensor compared to the one of the

popular Polaroid 6500 sensor. The units are decibel and are normalized to the maximum intensity. Right: The

spherical coordinate system used for modeling the sensor behavior. An object is seen by the sensor in distance r,

azimuth angle φ, and zenith angle θ. In this way, the dihedral angle Ω is covered.

4 Sonar Sensor Model

The probabilistic sensor model p(z | x) plays a crucial role in the correction step of the particle filter and its

proper design is essential for accurate state estimates. For sonar sensors it defines the likelihood of the scalar

distance measurement r ∈ R given the state x of the system including the information about the environment

typically given by a map. In the following, we summarize our model introduced in [30] which physically models

the characteristics of small-size sonar sensors with large opening angles.

A measurement starts with the generation and transmission of an ultrasound signal. The signal propagates

spherically through the space and, after it got reflected by objects in the environment, the corresponding echo is

typically detected by the receiver unit of the sensor. As soon as the received and amplified signal exceeds a given

threshold, the measurement procedure is terminated and the distance r = c∆t
2 is calculated based on the time of

flight ∆t and the constant velocity c of sound in air.

For very small transmitters with a diameter in the same order of magnitude as the wavelength, the signal

is hardly focused and has lower intensity at its boundary area. In our approach, we model this behavior by

calculating a probability distribution of triggering a measurement by modeling the received signal over the elapsed

time ∆t. The emitted signal intensity (power per area) I is depicted in Fig. 1 and depends on the zenith angle θ.

Due to the symmetry of ultrasonic membranes it does not depend on the azimuth angle φ.

We determine the set of objects potentially reflecting the signal by a discrete set of ray-casting operations on

the map such that the entire visible hemisphere is covered. The incident signal power of an object, which is seen

by the sensor in distance r and zenith angle θ and which corresponds to the dihedral angle Ω, is

P (r, θ,Ω) = I(θ)D(r) Ω . (4)

In contrast to Moravec [26], we physically model the damping D(r) of ultrasound in air and the intensity change

with 1
r2 which is taken into account in Ω.

A proportion PR(r) of this signal power of all objects in distance r is reflected back to the sensor and it can

be approximated by a Gaussian

p(PR(r) | x) ≈ N
(
(PR(r);α Pmax(r,x), α (1− α) Pmax(r,x)

)
. (5)
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Figure 2: An example of the maximum power Pmax that would be received if all objects in distance r reflect the

ultrasound signal towards the receiver and the corresponding measurement likelihood.

The mean and variance of this Gaussian depend on the reflection proportion α and the maximum power Pmax that

would be received if all objects in distance r reflect the ultrasound signal towards the receiver. An example of

Pmax and the corresponding likelihood is shown in Fig. 2.

The threshold circuit causes the sensor to measure the shortest distance, out of which the signal that is received

and amplified by g exceeds a given threshold PE . Consequently, the measurement probability

p′(ri | x) = p (g · PR(ri) > PE | x) ·

1−
∑
j<i

p′(rj | x)

 (6)

is the product of the probability that the amplified signal exceeds the threshold and the probability that the

measurement procedure not already has been terminated. Thereby, we discretize the measured distances into

r0, . . . , rM similar to Moravec et al. [26].

Additionally, dynamic, unmapped objects could influence the measurement which is modeled by a small prob-

ability β. Furthermore, the sensor could fail with probability γ and generate uniformly distributed measurements

which results in the measurement likelihood

p(ri | x) = (1− γ) · ((1− β) p′ (g · PR(ri) > PE | x) + β) ·

1−
∑
j<i

p(rj | x)

+ γ · puniform(ri) . (7)

In the training stage we learn the model parameters α, β, γ, and PE by maximizing the joint log likelihood

log p(z1:T | x?1:T , α, β, γ, PE) =

T∑
t=1

log p(zt | x?t , α, β, γ, PE) (8)

of the sonar measurement data z1:T given the ground truth trajectory x?1:T of the airship. The resulting likelihood

is shown in Fig. 2. Furthermore, we precalculate the set of potentially reflecting objects of the static map to avoid

executing computationally expensive ray-casting operations during localization.

5 Air Flow Sensor Model

Often, air flow sensors are applied for velocity or wind speed estimation on UAVs [12, 40]. Most of these flow

sensors have in common that their one-dimensional measurement value z ∈ R depends on the air velocity vz

along the fixed measurement axis of the sensor. In the following, we summarize our probabilistic sensor model

originally introduced in [29]. It models the measurement likelihood p(z | x) of air flow sensors with a fixed

measurement axis.
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Figure 3: The local linear regression on the air flow sensor training data generated from about 20 min of operation.

The regression on the measurement noise is represented by the 1σ interval.

We model the measurement principle by assuming Gaussian noise in the heteroscedastic measurement process

p(z | x) = N
(
z;h(vz(x)), σ(vz(x))2

)
, (9)

where h is a strictly monotonic increasing function of the velocity of the air sweeping over the sensor. The

variance σ2 typically depends on the sensor characteristics as well as the air velocity. In indoor navigation

scenarios, we assume the air to be static (no wind). Depending on the translational and rotational velocity of the

blimp the velocity of the air sweeping over the sensor along its measurement axis nz is

vz(x) = (v + ω × rz) · nz . (10)

For the implementation of the model described above, we learn h : R → R and σ : R → R from a set

of training data using local linear regression. This approach (see Fig. 3 for an application) is a non-parametric

regression method that can correctly model the heteroscedastic uncertainty and has good extrapolation properties.

Whereas local linear regression provides an accurate regression of the measurement function, its main draw-

back lies in its computationally complexity. A single function call requires O(M) where M is the typically large

number of training data points. To obtain an efficient approximation, we discretize the function and store a dense

grid containing its values and variance so that approximative function calls are in O(1) with linear interpola-

tion between the nearest neighbors. This approximation of the regression furthermore allows us to calculate the

inverse h−1 of the strictly monotonic increasing measurement function through a binary search in the function

values of the model approximation. Including linear interpolation, this results in a complexity of O(log n) where

n is the number of grid points of the discrete approximation.

6 IMU Sensor Model

Inertial sensors are a well studied topic and most commercially available IMUs are equipped with accelerome-

ters, gyroscopes, and magnetometers on three axes. Furthermore, they are usually equipped with a low-power

processor which carries out sensor calibration and data fusion using a variant of the Kalman filter. In this paper,

we assume that the IMU provides an accurate orientation estimate in a quaternion zI.
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We model the measurement likelihood of the orientation estimates by assuming that

zI = q� q̃(γ1, γ2, γ3) with γi ∼ N
(
0, σ2

I

)
, (i = 1, 2, 3) (11)

where q is the orientation contained in the state vector x and� is the quaternion product. Further, q̃(∆φ,∆θ,∆ψ)

is the quaternion representing the incremental rotation ∆φ, ∆θ, and ∆ψ around all three axes and σI is the stan-

dard deviation of the measurement errors γ1, γ2, γ3 of the IMU. In a first order Taylor approximation of q̃ this

results in the probabilistic sensor model

p(zI | x) = N
(
[0, I3×3] (q−1 � zI);0,ΣI

)
(12)

with ΣI =
σ2

I√
2
I3×3. Here, q−1 is the inverse of q [8] and I3×3 is the three-dimensional identity matrix.

7 Physical Simulation-based Motion Model for Miniature Airships

The probabilistic motion model p(xt | xt−1,ut) is the core component of the prediction step in the Monte Carlo

state estimation process. In the following, we summarize our control motion model introduced in [29]. We first

derive a deterministic model by considering the control commands and the underlying physics of the motion of

miniature airships. In the physical model of airships, the Newton-Euler equation of motion

M
[
aT ,αT

]T
= Fexternal(x) + Ffictitious(x) (13)

couples the acceleration to the force and torque F =
[
FT , τT

]T
through the inertia matrix M . In particular, the

external forces and torques are the buoyancy and gravity Fbg, the drag of the hull FD,h and the fins FD,f, and the

propulsion of the rotors Fr. Additionally, fictitious forces Ffictitious have to be taken into account as (13) is defined

with respect to the body-fixed frame Fb.

We solve the second-order differential equation (13) for the full 12-dimensional state x =
[
pT ,qT ,vT ,ωT

]T
of the vanilla particle filter through numerical integration assuming constant acceleration during each time step.

We estimate the model parameters, which are hard to identify individually, from data recorded during the opera-

tion of the real airship.

In a second step, we extend the deterministic model by a statistical identification of the sources of uncertainty.

From the remaining errors in the acceleration estimates in the parameter identification, we can estimate the

covariance of the acceleration errors. This implicitly defines the probabilistic model needed in the prediction step

of the particle filter by error propagation through numerical integration.

8 Efficient Particle Filter Localization with an Odometry Motion Model

For ground robots, often odometry motion models are applied for localization. These models integrate the mea-

surements of wheel rotations, an approach that is typically more accurate than predicting and integrating the

motor accelerations based on the control commands [7, 22, 25]. Unfortunately, most robotic airships are not

equipped with appropriate motion sensors. They therefore have to rely on a physical motion simulation based
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on controls, which suffers from large errors [21, 30], even when adaptive motion models [28] are used. In this

section, we transfer the idea of using odometry measurements together with probabilistic motion models to flying

vehicles equipped with an IMU and three or more air flow sensors. Thereby, we explicitly consider the measure-

ment uncertainty of the odometry sensors when drawing particles from the odometry motion model in the particle

filter.

When using the odometry motion model, which is a first-order model, the state vector of the particle filter can

be reduced to the pose x =
[
pT ,qT

]
which drastically decreases the dimensionality of the filtered state from

twelve to six. In our efficient implementation with the odometry motion model, the proposal distribution of the

particle filter p(xt | xt−1, zF,1, . . . , zF,m, zI) is based on the IMU and air flow measurements and consequently

the likelihood

p(zS,1, . . . , zS,` | x) =
∏̀
i=1

p(zS,i | x) (14)

takes into account the sonar measurements and is used for weighing the particles .

In the remainder of this section we assume u to represent the odometry measurements zF,1, . . . , zF,m, zI. This

is a common practice in the context of odometry motion models for wheeled robots [39]. In our case, the odometry

measurements are those from the IMU and all air flow sensors. Consequently, in this context, z represents the

remaining measurements which are only the measurements of all sonar sensors.

8.1 IMU and Air Flow Sensor Odometry

For dead reckoning odometry of flying vehicles, the full six-dimensional velocity consisting of v and ω is re-

quired. Whereas the rotational part ω is directly provided by the IMU, the translational part v cannot be obtained

in a straightforward way for flying vehicles.

In the following, we assume the vehicle to be equipped with an IMU and m ≥ 3 air flow sensors which are

mounted at the positions r1, . . . , rm and whose measurement axes are n1, . . . ,nm. For a compact representation

we combine the measurements z1, . . . , zm of all air flow sensors and formulate the joint measurement function
z1

...

zm

 =


h((v + ω × r1) · n1) + ε1

...

h((v + ω × rm) · nm) + εm

 (15)

according to (9) and (10) with εi ∼ N
(
0, σ((v + ω × ri) · ni)2

)
. We solve (15) for v by applying the inverse
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measurement function h−1 and obtain
h−1(z1 − ε1)

...

h−1(zm − εm)

 =


(v + ω × r1) · n1

...

(v + ω × rm) · nm

 (16)

=


v · n1

...

v · nm

+


(ω × r1) · n1

...

(ω × rm) · nm

 (17)

=
[
n1, . . . ,nm

]T
v +

[
r1 × n1, . . . , rm × nm

]T
ω (18)

= Av +Bω (19)

with the constant matrices A = [n1, . . . ,nm]
T and B = [r1 × n1, . . . , rm × nm]

T depending on the arrange-

ment of the air flow sensors on the vehicle. We invertA using the left pseudo-inverseA−1
left = (ATA)−1AT which

requires rank(A) = 3. This can be guaranteed by at least three air flow sensors having linearly independent

measurement axes. We obtain

v = A−1
left



h−1(z1 − ε1)

...

h−1(zm − εm)

−Bω
 , (20)

which is the least-squares solution for v of the over-constrained equation system (19) in case of m > 3 [41]. In

case of m = 3 it is the exact solution and the left pseudo-inverse is equal to the inverse A−1.

In the odometry motion model, we obtain the rotational velocityωI = ω+δ from the IMU. The measurement

error δ ∼ N (0,Σω,I) is modeled as zero mean Gaussian noise so that the resulting velocity estimates are

ω = ωI − δ (21)

and

v = A−1
left



h−1(z1 − ε1)

...

h−1(zm − εm)

−B(ωI − δ)

 . (22)

In the particle filter, we utilize the dead reckoning odometry motion model as the proposal distribution in the

prediction step. Thereby, we sample the measurement errors ε1, . . . , εm and δ from zero mean Gaussian distri-

butions where the covariances can be identified from recorded measurement data with ground truth information.

Subsequently, we propagate the errors through (22) and compute the position hypothesis of each particle from the

resulting velocities by numerical integration. Additionally, we exploit the orientation estimated by the on-board

sensor data fusion of the IMU by sampling the orientation hypothesis q[i] of each particle directly from the IMU

sensor model described in Section 6.
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Figure 4: The temporal correlation in the measurement errors of the air flow sensor that senses the forward

velocity of the blimp. Each measurement error is computed as the deviation between the actual measurement and

the prediction of our air flow sensor model given the ground truth velocity information.

Figure 5: The extended Dynamic Bayesian Network for localization of a mobile robot taking into account the

temporal correlation in the odometry measurement errors. It characterizes the evolution of controls u, states x,

measurements z, and measurement errors of the odometry data ε.

8.2 Odometry Data with Temporally Correlated Measurement Errors

One fundamental assumption of the Bayes filter is the Markov assumption which states that the random variables

of the measurements and the motion of the robot are conditionally independent given the state of the system [39].

However, as shown in Fig. 4, the measurement errors of an air flow sensor and therefore the corresponding random

variables are temporally correlated. This effect is caused by turbulences and the motion of the surrounding air,

which is displaced by the vehicle and partially accelerated with it. Although Bayes filters have been found to be

surprisingly robust to violations of the Markov assumption [39], we explicitly take the correlation into account in

the filtering process. To achieve this, we combine the measurement errors of all air flow sensors together in the

vector ε = [ε1, . . . , εm]T and explicitly consider their history as illustrated in Fig. 5. In particular, we estimate

the history of errors together with the state of the robot and extend the posterior of the particle filter to

p(x1:t, ε1:t | z1:t,u1:t) = η p(zt | x1:t, z1:t−1, ε1:t,u1:t) p(x1:t, ε1:t | z1:t−1,u1:t) (23)

where η is a normalizer. We factorize the second conditional probability twice and obtain

p(x1:t, ε1:t | z1:t−1,u1:t) = p(xt, εt | x1:t−1, ε1:t−1, z1:t−1,u1:t) p(x1:t−1, ε1:t−1 | z1:t−1,u1:t) (24)

= p(xt | x1:t−1, ε1:t, z1:t−1,u1:t) p(εt | x1:t−1, ε1:t−1, z1:t−1,u1:t)

p(x1:t−1, ε1:t−1 | z1:t−1,u1:t) . (25)
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Under the Markov assumption in the extended network shown in Fig. 5, (23) together with (25) can be simplified

to

p(x1:t, ε1:t | z1:t,u1:t)

= η p(zt | xt) p(xt | xt−1, εt,ut) p(εt | ε1:t−1,x1:t−1, z1:t−1,u1:t) p(x1:t−1, ε1:t−1 | z1:t−1,u1:t−1) (26)

= η p(zt | xt) p(xt | xt−1, εt,ut) p(εt | ε1:t−1) p(x1:t−1, ε1:t−1 | z1:t−1,u1:t−1) . (27)

Here, p(xt | xt−1, εt,ut) is the odometry motion model as described in Section 8.1 conditioned on the air flow

measurement error. Note that in this context u represents the air flow and IMU odometry measurement data. The

term p(εt | ε1:t−1) is the air flow measurement error transition model and (27) follows from d-separation on the

dynamic Bayes network (Fig. 5). Learning this full high-dimensional probability density function would require

a large amount of data and is prone to overfitting. Therefore, we apply the joint Gaussian approximation

e1:t ∼ N (0,Σε) with e1:t =
[
εT1 , . . . , ε

T
t

]T
and Σε = Cov(e1:t) . (28)

In the prediction step of the particle filter we sample from the odometry motion model p(xt | xt−1, εt,ut)

p(εt | ε1:t−1) as the proposal distribution by first sampling εt from the joint Gaussian

p(εt | ε1:t−1) = N
(
Σ21Σ−1

11 e1:t−1,Σ22 − Σ21Σ−1
11 Σ12

)
(29)

with the covariance

Σε =

Σ11 Σ12

Σ21 Σ22

 (30)

so that Σ11 = Cov(e1:t−1) and Σ22 = Cov(εt) [10]. In the second step, we sample the motion of the vehicle

from p(xt | xt−1, εt,ut) conditioned on the (temporally correlated) measurement error εt of the air flow sensors.

The method described above accounts for the temporal correlation in the air flow measurement errors in the

particle filter. However, in practice, amending each particle with the full history of the measurement errors results

in the computational complexity O(TN) of each resampling step where T is the length of the trajectory and N

is the number of particles. As can be seen in Fig. 4, in practice, the correlation of the measurement errors is

limited to a few seconds so that one can safely limit the size of the history to a constant value h depending on the

temporal correlation and the measurement frequency. This results in the approximation

p(εt | ε1:t−1) ≈ p(εt | εt−h:t−1) (31)

so that the resampling step of the particle filter is in O(N) as in its standard implementation.

9 Experiments

We evaluated our approach and compared it to existing airship localization techniques in experiments carried

out in a large indoor environment. We created a complex maze-like environment with a size of approximately

10 m× 10 m as shown in Fig. 6. The environment was mapped using a laser range finder and modeled using the
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Figure 6: Our miniature blimp operating in the maze-like indoor environment.

Figure 7: The OctoMap representation of the indoor environment in which the blimp was manually operated

during the experiments. The trajectory of the blimp has a length of 276.6 m and is depicted in yellow. The blimp

itself is shown at its final position on the trajectory.
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Figure 8: Our miniature blimp is equipped with three air flow sensors mounted on poles. Two of them are

mounted at the top of the blimp and a third sensor is mounted laterally. Additionally, an IMU is placed at the top

of the airship, four sonar sensors are mounted at the hull, and one sonar is integrated into the gondola. The blimp

is actuated by three propellers, where two of them can be pivoted together and a third one provides thrust for yaw

rotation.
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OctoMap framework [43], which provides a tree-based map structure representing the occupancy of 3D volume

elements in a hierarchical fashion. The resulting map with a resolution of 10 cm is shown in Fig. 7.

Our blimp, depicted in Fig. 8, is 2.10 m long and has a payload of about 150 grams for carrying sensors, a

computer, and controlling electronics. It is actuated by two main propellers that pivot together, providing thrust

in the forward/backward and upward/downward directions. A third propeller is mounted laterally at the front

of the blimp for yaw rotation. For autonomous operation our blimp is equipped with a Gumstix computer and

the control electronics developed by Rottmann et al. [31]. To localize itself, our blimp is equipped with five

Devantech SRF10 miniature sonar sensors, each of them weighing 3.3 grams. As their membrane has a diameter

of approximately 8.5 mm and they emit an ultrasound signal with a wavelength of 8.5 mm, their signal is hardly

focused and often provides ambiguous information. Four sonar sensors are mounted horizontally at the front,

back, left hand, and right hand side of the hull. The fifth sensor is integrated into the gondola pointing downwards

for providing height measurements. Additionally, our blimp is equipped with an IMU [35] that weighs 8.8 grams.

The IMU sensor data is fused in an extended Kalman filter on the processor integrated into the IMU and provides

accurate attitude and heading estimates. For accurate velocity measurements, the airship is equipped with three

SDP600 differential pressure sensors from Sensirion AG, Stäfa, Switzerland, operated here as thermal air flow

sensors. Each air flow sensor weighs less than 1 gram and is mounted on a pole at 20 cm distance to the hull to

reduce the influence of the surrounding air accompanying the blimp. As shown in Fig. 8, two flow sensors are

mounted at the top of the airship to measure the velocity in the x and y direction. The third sensor is mounted

laterally to measure the velocity in the z direction.

We implemented two variants of our novel approach as well as two state-of-the-art approaches to airship

localization:

1. Vanilla: The vanilla implementation of the particle filter with the standard physical simulation-based con-

trol motion model.

2. Vanilla+MP: The vanilla implementation extended by the simultaneous estimation of the air drag parame-

ters of the control motion model which are hard to obtain accurately from calibration experiments [28].

3. Flow-IMU-Odometry: Our novel localization approach with the odometry motion model using air flow and

IMU measurements without taking into account the temporal correlation of the air flow measurements.

4. Flow-IMU-Odometry+TC: Our novel localization approach with the odometry motion model using air

flow and IMU measurements taking into account the temporal correlation of the air flow measurements as

described in Section 8.2.

As a reference, we obtain ground truth states of the blimp from a MotionAnalysis optical motion capture

(MoCap) system with nine Raptor-E cameras. It provides accurate pose estimates at 100 Hz so that the ground

truth velocities and accelerations can be obtained from a quadratic regression on the trajectory. Additionally,

the MoCap system allows to precisely measure the mounting positions and orientations of all sensors. In the

preparation of the experiment we learned the parameters of all models from the MoCap reference trajectory and
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Figure 9: The relative frequency of the maximum localization error of all localization runs of all experiments. In

32 % of the runs, the particle filter lost track of the blimp and the maximum error exceeded 4.5 m, which is not
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Figure 10: The success rate of the individual localization approaches.

together with the real sensor and control data recorded during manually controlled flight experiments. Neither

during the model training, nor during the localization experiments there were any dynamic, unmapped obstacles.

In an experiment we manually controlled the blimp for 10 min through the maze-like environment. The

collision-free trajectory had a length of 276.6 m and is depicted in Fig. 7. Despite the fact that the IMU relies on

magnetic measurements, the RMS error of the orientation estimates was 3.22 ◦ during the experiment in the indoor

environment. We evaluate and compare the localization methods on the sensor and control data recorded during

operation. As a measure of localization error we use the Euclidean distance between the ground truth position

and the position estimate of the particle filter, which is the weighted average of all particles. We evaluated the

maximum error of each individual run of our experiments and found two groups of results as shown in Fig. 9:

Good runs with a maximum error lower than 2 meters and outliers with high errors (higher than 2 meters).

Therefore, we consider a localization run as successful when the position estimate of the filter never deviates

more than 2 m from the ground truth position during the whole run. For each successful localization run we

evaluate the root mean square (RMS) of the three-dimensional position error over the whole trajectory.

Offline Comparison

In an offline experiment we evaluated all localization methods with a varying number of particles. The success

rate of the individual methods is depicted in Fig. 10. As can be seen, the flow odometry approach facilitates
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Figure 11: The average RMS localization error of the individual localization approaches. The error bars indicate

the 5 % confidence intervals over ten successful runs.

a reliable localization even when a low number of particles is used. This is due to the fact that in this method

the velocities are directly measured by the odometry sensors, namely the IMU and the air flow sensors, so that

they do not need to be estimated in the particle filter. This decreases the dimensionality of the state estimation

problem and therefore fundamentally reduces the number of particles needed to densely represent the area of high

likelihood in the posterior about the pose of the vehicle.

The average RMS position errors are depicted in Fig. 11. The vanilla implementations generate significantly

lower position errors when using a huge number of particles. This is caused by the fact that they integrate

all sensor information and, in contrast to our novel approaches, additionally take into account the information

about the control commands sent to the rotors. The simultaneous estimation of the motion model parameters

(Vanilla+MP) has proven to outperform the vanilla implementation when only very sparse sensor information is

available [28]. Here, much more sensor data is available, i.e., in addition, IMU and air flow measurements, so

that there is no significant difference in the RMS position error for 100,000 particles. A further result of this

experiment is the significantly lower localization error of the odometry motion model when taking into account

the temporal correlation of the air flow measurements. This is mainly due to the slow turbulences of the air

accompanying the blimp causing slowly varying systematic measurement errors.

Online Comparison

For autonomous operation, the localization algorithm should be able to provide accurate state estimates during

operation for motion planning and closed-loop control. Therefore, we compared our implementation of all lo-

calization methods listed above with respect to online operation. All localization methods were executed on an

Intel R© AtomTM N270 1.6 GHz with 1 GB RAM in a single thread. This processor could potentially be carried by

the blimp and is considerably faster than the Gumstix computer, especially in floating point calculations. In this

setting, we determined the maximum number of particles that just enables the particle filter running online, i.e.,

processing the data as fast as it was generated by sensors and actuators. The physical simulations of the control

motion model of the vanilla implementations are computationally demanding so that their maximum number of

particles is 107 (Vanilla) and 105 (Vanilla+MP), which is far from enabling a reliable online localization. As the

odometry motion model is computationally modest compared to the control motion model and the dimensionality
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of the state space is reduced, our novel implementations clearly outperform the vanilla implementations in terms

of efficiency and allow a reliable online localization on a low-power embedded computer with 564 (Flow-IMU-

Odometry) and 455 (Flow-IMU-Odometry+TC) particles, respectively.

10 Related Work

In the past, several authors have considered UAVs. For example, Kantor et al. [19], Hada et al. [16], and Hy-

gounenc et al. [18] developed airships with several kilograms of payload and utilized them for surveillance, data

collection, or rescue mission coordination tasks. Especially in the context of quadrotor helicopters, several re-

searchers considered online localization or SLAM with on-board sensors in GPS-denied environments [2, 15, 17,

34, 42]. Furthermore, the problem of localizing fixed-wing vehicles with on-board sensors has been successfully

addressed [3]. The relatively high payload of these systems, however, allows them to carry more powerful sen-

sors, e.g., laser range finders, and also facilitates more extensive on-board computations compared to miniature

blimps.

In the context of blimp platforms that are of similar scale to the ones targeted in this paper there also has

been carried out work on localization or even SLAM with cameras. Whereas cameras provide rich information,

their images typically cannot be processed on the embedded computers installed on miniature airships [1, 21, 36].

Accordingly, our method relies on alternative lightweight and power-saving on-board sensors, namely sonar, air

flow and IMU whose low-dimensional measurement output can be processed even with very limited computa-

tional power.

Before laser scanners became available for installation on mobile robots, ultrasound sensors were popular

for estimating the distance to objects in the environment of a robot. Originally, robots were equipped with

arrays of Polaroid ultrasound sensors that had, compared to the sensors installed on our blimp, a relatively small

opening angle. In the literature, several approaches for modeling the behavior of such ultrasound sensors can be

found [26, 27, 4]. However, most of these models have been designed for two-dimensional occupancy grid maps

only and also do not specifically model the intensity decrease of the sound cone while it propagates. Thrun [38]

proposed an approach to occupancy grid mapping that considers multiple objects in the sound cone. However, this

approach utilizes a simplified sensor model. Schroeter et al. [33] directly learn the likelihood function from data

collected with a mobile robot, which is an approach similar to the one described by Thrun et al. [39]. Compared

to these approaches, our technique seeks to physically model the sensor and explicitly takes into account the

potential reflections of objects. Physical models have also been considered by Leonard and Durrant-Whyte [23]

and Tardos et al. [37]. In contrast to our method, their approach relies on the assumption of certain types of

geometric objects such as planes and edges.

Corresponding to the odometry sensors most wheeled robot platforms are equipped with, one can use airspeed

sensors on flying vehicles for state estimation or control. For example, Fei et al. [12] and Tokutake et al. [40]

utilize thermal flow sensors on the wings of small unmanned aircrafts for the detection of flight parameters

including the airspeed. For attitude estimation, Euston et al. [11] fuse IMU and airspeed measurements of a UAV.

Furthermore, a popular application of airspeed sensors on UAVs is the combination with GPS or optical flow
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for flight stabilization [20] or wind estimation [6]. In this context, also approaches to calibrate the scaling of an

airspeed sensor have been developed [5, 32].

However, all approaches for state estimation or control of robots based on flow sensors mentioned above

apply maximum likelihood state estimation or control based on the calibrated output of one or multiple identical

sensors. In contrast, we explicitly represent a posterior about the state of the system and model the uncertainty

of the measurements and of the motion of the robot for probabilistic state estimation. Thus, our approach can

seamlessly integrate arbitrary sensors.

Besides airspeed sensing there are other techniques for the prediction of incremental movements of UAVs.

Most localization and control approaches for miniature blimps rely on physical simulation-based control motion

models which are computationally demanding and require the tedious calibration of several parameters [21, 45,

13, 18, 28]. Furthermore, the motion of UAVs can be predicted based on the acceleration and angular rate

measurement of an IMU [3]. However, the acceleration of a blimp during navigation is typically low compared

to the gravity which results in a poor signal to noise ratio of the acceleration measurements. In contrast to these

approaches, our method closely follows the odometry motion model applied on most ground robots [7, 39]. We

transfer the principle of dead-reckoning odometry to our blimp and combine the translational velocity information

of air flow sensors with the rotational velocity estimated by an IMU. In contrast to the common localization

approaches of wheeled robots, where the uncertainty of the precise wheel odometry sensors is approximated by

considering Gaussian noise on the integrated 2D movement [39], we model the measurement uncertainty of the

flow sensors and the IMU individually and propagate the uncertainty through the measurement equations.

11 Conclusions

In this paper, we presented a novel approach to probabilistic online localization for a miniature blimp equipped

with lightweight ultrasound and air flow sensors as well as an IMU. For robust state estimation in a particle filter,

we presented probabilistic models explicitly taking into account the special characteristics and uncertainties of the

miniature and lightweight sensors applied on our blimp. Furthermore, we introduced an efficient odometry motion

model using the measurements of the air flow sensors and the IMU which is less computationally demanding than

the standard physical simulation-based control motion model.

Our approach has been implemented and thoroughly tested on a real blimp in a complex indoor environment.

In all experiments, our approach has been proven to allow accurate and reliable online localization of a miniature

blimp and to outperform the particle filter localization based on the standard control motion model. As the odom-

etry motion model provides accurate measurements of the velocity of the blimp, the dimensionality of the state

space in the filter is decreased and therefore the number of particles required for a reliable localization is reduced

by one order of magnitude. Additionally, we demonstrate significant improvements in terms of localization accu-

racy by taking into account the temporal correlation of the air flow measurements in our novel odometry motion

model.
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