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ABSTRACT
A smartphone’s display is one of its most energy consuming
components. Modern smartphones use OLED displays that
consume more energy when displaying light colors as op-
posed to dark colors. This is problematic as many popular
mobile web applications use large light colored backgrounds.
To address this problem we developed an approach for auto-
matically rewriting web applications so that they generate
more energy efficient web pages. Our approach is based on
program analysis of the structure of the web application im-
plementation. In the evaluation of our approach we show
that it can achieve a 40% reduction in display power con-
sumption. A user study indicates that the transformed web
pages are acceptable to users with over 60% choosing to use
the transformed pages for normal usage.
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D.3.4 [Processors]: Optimization
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1. INTRODUCTION
Smartphones provide end users with a range of sensors

that can be combined with applications and data via the In-
ternet. This makes the capabilities of smartphones almost
boundless and very popular with end users. However, one of
the primary limitations of smartphones is that they depend
on battery power. Smartphones are energy constrained de-
vices and the use of these capabilities is very expensive. In
particular, the energy to drive a smartphone’s display is one
of the dominant energy consuming components in a smart-
phone [9].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 - June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

OLED screens [36] are increasingly popular in different
smartphones, such as the Samsung Galaxy, Sony Xperia,
and LG Optimus series. These screens are more energy effi-
cient than previous generation displays, but also have very
different energy consumption patterns. In particular, darker
colors, such as black, require less energy to display than
lighter colors, such as white. Unfortunately, many popu-
lar and widely used web applications use light-colored back-
grounds. This means that, for many web application, there
is a significant opportunity to improve the battery life of
smartphones by improving the color usage of a web applica-
tion’s pages.

Researchers and engineers have long recognized the need
to reduce a smartphone’s display energy. A well-known and
widely used smartphone technique is to dim the display to
conserve energy [15]. For example, when the smartphone is
idle. This technique is useful, but there is room for addi-
tional improvement by exploiting the OLED screen’s unique
energy color relationships. One simple approach that has
been suggested is to invert colors, switching light colors to
dark and vice versa [14]. The primary problem with this ap-
proach is that it distorts the color relationships of the user
interface because color difference is not an invertible rela-
tionship. Another approach is to create an alternate color
scheme for mobile web applications. Chameleon proposes
a browser extension that retrieves and applies a more en-
ergy efficient color scheme when displaying a web applica-
tion [14]. The drawback of this approach is that it requires
a customized browser, additional servers on the network to
handle the color scheme, and the color scheme itself must
be manually generated.

Given the state of the art, a technique that can automat-
ically transform a web application to make its web pages
more energy efficient is desirable. However, there are sev-
eral significant challenges to providing such a solution. The
first of these is to identify colors generated by a web applica-
tions. Most modern web applications combine dynamically
generated pages and cascading style sheets in a way that
makes it complicated to determine which colors will be used
in which parts of a web page. Second, it is important to
model the color relationships in the web page. Here, it is
necessary to know what kind of visual relationships the col-
ors have with each other, i.e., whether they are contained or
adjacent. Third, given this information, it is challenging to
find a new color scheme that maintains, as much as possible,
the color differences and aesthetics of the original web page,
while also being more energy efficient.



In this paper we propose a new technique for automat-
ically transforming the color scheme of a mobile web ap-
plication. The approach rewrites the server side code and
templates of a web application so that the resulting web
application generates pages that are more energy efficient
when displayed on a smartphone. The rewritten web ap-
plication can then be made available to OLED smartphone
users via automatic redirection or a user-clickable link. Our
approach employs program analysis to model the possible
pages that can be generated by the web application. Using
this information, it models the potential visual relationships
among the colors of the pages’ elements and defines a set
of constraints for the new color scheme. Our approach then
defines a minimization problem whose solution represents a
new color scheme in which the color differences are similar
to those in the original web application. Finally, we define
an efficient simulated annealing based algorithm to solve the
minimization problem and produce a new color scheme that
is both energy efficient and visually appealing.

We have implemented our approach in a prototype tool,
Nyx, and performed an extensive empirical evaluation on a
set of seven web applications. The results of our evaluation
show that our approach is successful at automatically rewrit-
ing web applications to generate more energy efficient web
pages that will be acceptable to end users. In particular, our
approach achieved an average 40% reduction in the display’s
power consumption. Via a user study, we found that users
rated the attractiveness and readability of the transformed
pages as lower, but still close, to the original. Importantly,
over 60% of users indicated that the transformed version
would be acceptable for general use given the energy sav-
ings, and over 97% said it would be acceptable for use if
the battery power was critically low. Overall, we consider
these results to be a strong indication that our approach can
provide efficient and visually-acceptable transformations for
mobile web applications.

The other parts of this paper are organized as follows: In
Section 2, we use a simple example to illustrate the basic
problem and provide background knowledge. Section 3 pro-
vides an overview of the main process of the approach. We
introduce how to analyze relationships in the HTML output
of web applications in Section 4 and how to identify color
relationships and transform colors in Section 5. We discuss
the rewriting of the web app in Section 6. Our empirical
evaluation for the approach is presented in Section 7. Sec-
tion 8 describes related work. Finally, the conclusion and
future work are discussed in Section 9.

2. MOTIVATING EXAMPLE
In this section we introduce a motivating example to illus-

trate the challenges our approach must address. Our simple
example is shown in Program 1 and its output is shown in
Program 2. For explanatory purposes, we inline the CSS
properties used by the code in Program 1. As mentioned
in Section 1, we have three main challenges to address to
automatically transform the colors of a web application.

The first challenge is to extract color information from the
implementation of a web application. The color informa-
tion includes two types of information, the colors generated
and the structural relationship they have with other colors.
For example, in Program 1, we need to know that (1) the
< body > (line 3) tag has white as its background color and
the < td > tag has red as its background color, and (2) the

1 public void print html()
2 {
3 print("<body bgcolor=\"white\" style=\"color:black;\">");
4 println("<table><tr>");
5 int a=1;
6 if(a==0){
7 println("<td>hi</td>");
8 }
9 else{

10 println("<td style=\"background-color:red; color:yellow
;\">ha</td>")

11 }
12 for(int i=0;i<2;i++){
13 println("<td style=\"background-color:green; color:blue

;\">usc</td>");
14 }
15 println("</tr></table>");
16 println("</body>");
17 }

Program 1: Sample code of web app

1 <body bgcolor="white" style="color:black;">
2 <table><tr>
3 <td style="background-color:red; color:yellow;"">

ha</td>
4 <td style="background−color:green; color:blue;">usc

</td>
5 <td style="background−color:green; color:blue;">

usc</td>
6 </tr></table>
7 </body>

Program 2: Output of Program 1

red color area is surrounded by the white color area. This
information is obtained by analyzing the code and identify-
ing the strings that define the page’s HTML structure and
colors. In general this requires us to model the output of a
web application and then build more detailed models of the
relationships among its HTML elements. We discuss how to
extract color and structural information in Section 4.

The second challenge is to model the relationship between
colors that have a structural relationship. In general, a
transformation must maintain this relationship to improve
the readability and aesthetics of a new color scheme. For
modeling this relationship, we use color distance, which is
a function that accepts two colors and returns a numeric
value to indicate the degree of difference between the two
colors [35, 34]. Colors have a larger color distance if they
are more different. This modeling is complicated by the
fact that there are generally multiple colors used in a web
page. For example, in Program 2, we have six colors: white,
black, green, yellow, red, and blue. All of these colors have
different relationships: white surrounds red and green, green
and red are next to each other, etc.. Furthermore, not all
color relationships in a web application are equally impor-
tant. For example, in Program 2, the relationship between
white and black (the background color and text color in line
1) is more important than the difference between black and
yellow (text color in line 1 and line 5). We address this
modeling problem in Section 5.1 and Section 5.2.

The third challenge is that given a model for the relation-
ships between colors, we must find the best color scheme
that saves display energy and, at the same time, maintains
the attractiveness and readability of web application. From
prior research studies we know that the energy consump-
tion of OLED screens is related to the RGB value of each



pixel [13]. Energy consumption of a pixel ranges from black,
the least energy consuming color, to white, the most energy
consuming color. Therefore, we would want to change the
background color of the < body > tag in Program 2 to black
to save energy. However, to maintain readability we also
need to change the background colors for table cells (line 3,
4, and 6) and the text color (line 1, 3, 5, and 7). Otherwise,
the content of the web may become unreadable and the ap-
pearance of the web application may be degraded. A brute
force method to find a new color scheme that satisfies these
constraints is inefficient because of the large color space as
there are 2563 colors in total to choose among. We address
this problem in Section 5.3.

3. OVERVIEW OF APPROACH
The goal of our approach is to reduce the energy con-

sumption of the HTML pages displayed by a mobile web
application. To do this, we automatically rewrite an ap-
plication so that its generated HTML pages use more en-
ergy efficient color schemes and layouts. Our approach can
be described as having three phases. An overview of these
phases is shown in Figure 1. The first phase is HTML Out-
put Analysis (Section 4). In this phase, the approach builds
a model, the HTML Output Graph (HOG), of the HTML
pages that can be generated by the application. Then us-
ing the HOG, the approach builds the HTML Adjacency
Relationship Graph (HARG), which captures the visual re-
lationships, such as adjacency or containment, between pairs
of HTML elements. The second phase, Color Transforma-
tion (Section 5), builds a Color Conflict Graph (CCG) that
describes the relationships between the colors of HTML el-
ements that have a visual relationship. Using the CCG,
the approach generates the Color Transformation Scheme
(CTS), a new energy efficient color scheme for the applica-
tion. This is done for an application by calculating a new
color scheme that maintains the color distances represented
in the CCG, but whose primary colors will consume less en-
ergy during display. The third and final phase is Output
Modification (Section 6). The result of this phase is that
the approach rewrites the application so that the generated
HTML pages use the colors contained in the CTS.

4. HTML OUTPUT ANALYSIS
In the first phase, the approach builds models of the appli-

cation that describe the structural relationships among the
HTML elements of the application’s web pages. We call this
model the HTML Adjacency Relationship Graph (HARG)
and it shows which HTML elements can be adjacent to each
other or contained by one another. To generate the HARG,
the approach first builds another model, the HTML Output
Graph (HOG), which describes the HTML pages that can
be generated by the application. We explain the two models
in more detail below.

4.1 The HTML Output Graph
The HTML Output Graph (HOG) represents the poten-

tial HTML output of a web application and is based on
an abstraction proposed by Møller and Schwarz [30]. In-
tuitively, the HOG is a projection of the web application’s
control flow graph (CFG) where all of the nodes are instruc-
tions that generate HTML output. An HOG is represented
as a tuple 〈V,E, v0, vf 〉. V is the node set where v ∈ V if

the node is in the application’s CFG and prints to the ap-
plication’s output stream. In the Java Enterprise Edition
(JEE) framework, an example of such nodes would be invo-
cations to JspWriter.println. E ⊆ V × V is the edge set
where an edge (vi, vj) ∈ E if there is a path from vi to vj in
the CFG of the web application with no other node vk ∈ V
along that path. vo ∈ V and vf ∈ V are, respectively, the
entry and exit nodes of the HOG. The approach builds an
HOG for each method of the web application by analyzing
the method’s CFG. The HOG for the entire application can
be obtained by treating each node in the HOG that repre-
sents an invocation as a transition to the entry node of the
target method’s HOG.

To identify the HTML strings produced by each output
generating node v ∈ V we also define a string analysis, S,
that maps each v to a finite state automaton (FSA). Our
approach assumes that strings defined external to the ap-
plication, such as user input, will not influence the color or
the structure of the HTML tags. For the string analysis, we
used a technique proposed by Yu and colleagues [40]. We
selected this method because it defines mechanisms for han-
dling common string related operations that appear in web
applications but are difficult to analyze in traditional string
analyses. In particular, it handles strings generated within
loops via concatenation and string replacement by defining
a widen operation that abstracts repeating portions of the
loop so that the FSA representing a string variable within a
loop can converge on a safe approximation.

The HOG is suitable for modeling the pages produced
by dynamic web applications that directly generate HTML
using mechanisms such as JSP, Servlets, or Struts. How-
ever, many modern web applications also contain HTML
template files that are then filled in by application logic to
generate the final HTML content. This is very common
in web application frameworks that implement the Model-
View-Controller (MVC) pattern, such as Apache Velocity
and WebMacro. For these types of applications, the ap-
proach builds the HOG directly from the template files. To
do this, the approach opens all macros in the template files
and identifies the entire HTML frame. Then, the approach
defines each line in the HTML frame as a node in the HOG
and defines edges based on the order of the lines in the tem-
plate file. The process for construction of a HOG for tem-
plate based applications can vary based on the framework,
but in general, the process requires a mixture of the string
analysis based approach and the template parsing discussed
here.

4.2 The HTML Adjacency Relationship Graph
The HTML Adjacency Relationship Graph (HARG) mod-

els the visual relationship between pairs of HTML elements
in the HOG. The type of information present in the HARG
is similar to the Document Object Model (DOM), in that
it shows parent/child and sibling relationships. However,
since the HARG is built from the HOG, it also contains rela-
tionships that could be derived from loop generated HTML
elements. The HARG is defined as a tuple 〈V,E〉 where
each v ∈ V is a node in the graph that corresponds to an
HTML element that can be generated by the application.
E ⊆ V × V is the edge set where (vi, vj) ∈ E means that vi
is a parent HTML element of vj . To illustrate, the HARG
for Program 1 is shown in Figure 2.



Figure 1: the architecture of Nyx

Figure 2: Example HARG for Program 1.

To build the HARG, our approach parses the HOG to ag-
gregate the individual characters in each node’s FSA into
HTML tags. The traversal begins by traversing all of the
edges in the FSA associated with the root node of the HOG
and then following all of the outgoing edges of the root node
and repeating this process until all nodes in the HOG have
been traversed. During the traversal, the approach main-
tains a parse state that allows it to determine if it is cur-
rently parsing an HTML tag, attributes, or text. When the
parsing discovers an HTML tag, it creates a corresponding
node in the HARG if it is an opening tag or a self-closing
tag. There is an edge (vi, vj) in the HARG if and only if all
of the following four conditions hold: (1) vi is an opening
HTML tag; (2) there is a path P in the HOG from vi to vj ;
(3) the closing tag of vi is not in P; and (4) along path P,
if there is a node vk that meets conditions (1) – (3), vk is
equals to vi. Basically, these conditions enforce that vj will
be a child of vi, contained within vi’s opening and closing
tags, and that vi is the most immediate predecessor that
satisfies these condition.

Loops in the FSA will generate infinite strings. When
the parsing encounters a loop in the FSA, the approach
simulates its unraveling n times. This unraveling may be
unsafe because it is possible that the n + 1 traversal intro-
duces new strings that are not included in the previous n
unravelings. However, we have found that for the purpose
of identifying the color attributes assigned to each tag, n
has a reasonably small bound. In the analysis, we employ
the following heuristic: n is assigned the maximum of either
the integer value 6 or one more than the largest iteration
of repeating substrings in the CSS file. For example, in the
string NyxNyxNyx, Nyx is a repeating substring. We use
the value 6 since this is the maximum iteration of repeat-
ing substrings of a hexadecimal string that can be defined
as the value of color in an HTML attribute. Case in point,
a color is defined by a six digit hexadecimal number (e.g.,
#000000) and each iteration of a loop could provide one
character of this string. Since our goal is to capture poten-
tial color information, this gives the approach a reasonable
upper bound on the loop unraveling. In practice, we found
that 6 was always sufficient and there was no incompleteness
in the HARG due to unraveling the loop in this way.

More broadly, the techniques for obtaining the HOG can
lead to an over approximation of an application’s possible
HTML pages. In turn, this can lead to the identification
of spurious visual relationships that correspond to infeasi-
ble paths. This does not cause a problem for the approach,
as this merely introduces additional color relationship con-
straints that must be accounted for while generating the
Color Transformation Scheme in Section 5.3.

5. COLOR TRANSFORMATION
In the second phase, the approach calculates the new en-

ergy efficient color scheme for the application – the Color
Transformation Scheme (CTS). There are two requirements
for the CTS, it must: (1) use energy efficient colors as the
basis for the new color scheme, and (2) maintain the color re-
lationships between neighboring HTML elements. The first
requirement serves the general goal of the approach and the
second ensures that the color-transformed pages are readable
and, ideally, as visually appealing as the original pages. To
address the first requirement, the CTS should replace large,
light colored background areas with dark colors (preferably,
black), as mentioned in Section 2. To address the second
requirement the approach must transform the other colors
of the HTML elements so that their color relationship with
the new dark-colored background is similar to their color
relationship with the previous light-colored background.

Our approach produces a CTS that meets both require-
ments. To do this, our approach first builds a Color Con-
flict Graph (CCG), which describes the color relationships
between pairs of HTML elements that have a visual rela-
tionship. To begin, our approach changes the background
color of the root node of the CCG to black. Generally, the
root node of the CCG corresponds to the <body> tag, but
can differ for certain layouts. Then the approach calculates
a new recoloring of the CCG so that the color distances be-
tween adjacent nodes in the recolored graph are the same
as color distances in the original graph. This mapping of
old colors to the transformed colors is the output of the sec-
ond phase. Our approach operates on three different types
of CCG, the Background Color Conflict Graph (BCCG),
which models the relationship between the background col-
ors of neighboring HTML elements; the Text Color Conflict
Graph (TCCG), which models the relationship between text
colors and their corresponding background HTML element
colors; and the Image Color Conflict Graph (ICCG), which
models the relationship between an image and its enclosing
HTML tag. In the remainder of this section, we first give a
formal description of the CCG and its three variants, then
introduce how we derive them from the HARG, and finally
discuss the calculations that generate the CTS.

5.1 The Definition of Color Conflict Graph
The CCG and its three subtypes, the BCCG, TCCG, and

ICCG, show the color relationships between the HTML ele-
ments of a page generated by the application. Formally, the



CCG is represented as a weighted complete undirected graph
〈V, v0,W 〉. The set V represents the graph’s nodes, where
each node represents a color in the HTML page. v0 ∈ V is
the root-node of the graph, which is the color that will be
transformed to black. Typically, v0 is the background color
of the < body > tag, but users can specify a different root
node for unusual HTML layouts. W is a weighting function
W : V × V → I. Since the CCG is a complete graph, there
is an integer edge weight defined for every pair of tuples in
V . The weighting function is used to give priority to certain
types of visual relationships. The BCCG, TCCG, and ICCG
vary in the weights attached to certain definitions.

Figure 3: Example BCCG for Program 2.

The BCCG models the relationship among all background
colors in the web page. There are three types of relation-
ships modeled in the BCCG: (1) parent and children nodes,
(2) sibling nodes, and (3) all other nodes. The weights for
these edges are assigned as the constants a, b, c, respectively,
where a > b > c > 0. We rank the parent-child relationship
as the most important. The reason for this is that a par-
ent element’s color generally surrounds their children node
in the rendering of the HTML page, which means that the
color distance for these elements must be maintained to visu-
ally distinguish between the elements. We rank the sibling
relationship as next important because, generally, siblings
are rendered close to each other on a page and therefore
their color difference is more important to maintain than
that among the remaining elements. Finally, we attach a
weight to c because maintaining an element’s color differ-
ence relationship with the other elements on the page helps
to preserve the overall aesthetics of the original color scheme,
but is not as important as the other two relationships. An
example BCCG with edge weights for Program 1 is shown
in Figure 3. In our example, white is the background color
of the < body > tag at line 3. The < table > and < tr >
tags at line 4 inherit this color. Red and green are the back-
ground colors for the < td > tags at line 10 and 13, which
are children of the < tr > tag at line 4. Thus, the weight
between white and red, or white and green, is a, while the
weight is b between red and green.

The TCCG models the relationship between text colors
and the background color of the enclosing HTML element.
Therefore, only edges that represent a link between these
two types of colors are given a non-zero weight a with the
remaining edges being assigned a weight of 0.

The ICCG models the relationship between colors in an
image and the background color of the HTML element that
surrounds the image. Therefore only edges in the ICCG that
connect an image’s colors to the background color of its en-
closing HTML elements are given a non-zero weight of a with
the remaining edges being assigned a weight of 0. In some
cases, it is not desirable to transform every image in the web
application. For example, it may be preferable to not alter a
photo in a news article since the original appearance relates
to the integrity of the story. Developers can specify a list or

pattern of image file names that should not be transformed.
When the approach finds an image tag including one of the
excluded image tags, it does not construct an ICCG or CTS
for the image.

5.2 Building the CCG
The CCG is built using the information contained in the

HARG. The general intuition of this transformation is that
the approach identifies color definitions in the HARG and
propagates the definitions along the graph to elements that
may inherit the color. The propagated information is then
used to identify colors that have a relationship with each
other and construct the CCG.

The first step is to identify the color definitions (CDs) gen-
erated by each node in the HARG. A CD is generated when
an HTML element contains an attribute that defines either
the text/background color of the element, or the HTML el-
ement is an image tag. For example, background colors of
some elements can defined by the bgcolor attribute and the
color of text or links can be defined by the text or link

attribute. For pages that use CSS, the approach identifies
the set of CDs that an HTML element generates based on
its ID, class name, or type, which can be determined using
a standard CSS parser. An image tag generates a CD for
every color used in the image.

The second step is to propagate all of the background CDs
to the other nodes in the HARG. This is done to determine
which background colors will be adjacent to each other and
which image and text colors will appear over a particular
background color. The approach propagates the color infor-
mation using standard iterative data flow analysis [7]. The
Gen set of a node is comprised of the CDs generated at that
node. The Kill set kills all CDs that flow in to the node
if the node generates a CD. For example, for a node vi in
the HARG, the approach propagates all of its background
CDs to a child vj if vj does not generate any background
CDs. Standard equations are used for the In and Out sets.
Note that CDs originating from images and text are ignored
during the propagation.

The final step is to derive the CCG from the colors propa-
gated over the edges of the HARG. Nodes are created slightly
differently for each CCG variant. In the BCCG there are
nodes for each unique background CD generated in the HARG.
Nodes in the TCCG include those in the BCCG plus nodes
for the CDs originating from text colors and the ICCG in-
cludes the nodes in BCCG plus nodes for the CDs origi-
nating from image colors. Since the CCG is a complete
graph, there is an edge defined between each pair of its
nodes. The edges of the CCG are assigned weights based
on the different types of visual relationships discussed in
Section 5.1. In general, the weighting is done by iterating
over each node v in the HARG and identifying v’s set of
corresponding nodes in the CCG, Nc. For each edge in the
set {(n, ni)|n ∈ Nc∧ni ∈ N} where N is the CCG node set,
the appropriate weight is assigned based on the relationship
it represents and the variant of the CCG.

The construction of the CCG does not take into account
the effects of embedded JavaScript. This would result in
an incomplete model of the color relationships if JavaScript
was used at runtime to modify the colors of a web page. To
determine if this would impact our approach, we conducted
a small scale study on the use of JavaScript to modify colors
in a web page at runtime. In this study, we examined the top



50 web sites, as ranked by http://mostpopularwebsites.

net/, to determine how JavaScript affected the colors of a
website. In all 50 we found that JavaScript was not used
to modify the colors. We believe that this result generalizes
beyond the top 50 websites and indicates that accounting for
JavaScript in the construction of the CCG is not necessary.

5.3 Generating the CTS
To generate the CTS, the approach analyzes each variant

of the CCG and computes a recoloring that is more energy
efficient, but maintains, as closely as possible, the color dif-
ferences between nodes in the graphs. In this section we
explain the analysis of the BCCG in detail and then briefly
describe the analogous process for the ICCG and TCCG.

To transform the background colors, the approach con-
verts the color of the root node of the CCG to black and
then transforms the other background colors to maintain
their color distances. To state this more formally, let S =
{C0, C1, C2, C3....Ck} be the set of colors of each node in the
CCG where C0 is the background color of the root-node (vo)
and each Ci, i > 0 is the color for the remaining k nodes. The
approach creates a new color scheme S′ in which C′

0 =black
and then finds color mappings for C′

1, C
′
2...C

′
k that minimize

the overall difference in the color differences of S and S′.
The function to be minimized is

H =

k∑
i=0

k∑
j=0

wij |Dist(Ci, Cj)−Dist(C′
i, C

′
j)|

Where wij is the weight of the edge between colors i and j
in the BCCG. Basically, this minimization function is closer
to zero the more closely each of the color difference distances
in S′ match the color difference distances in S.

Our approach maps this minimization problem to the En-
ergy Minimization Problem1 (EMP), which is a well-known
pixel recoloring problem in the computer vision field [39].
The EMP minimizes the cost of a set of pixels and their
labels. Given a set of pixels P = {P0, P1, .....Pk}, and
a set of labels L = {L0, L1......Ln}, and a cost function
Cost(P,L, f), where f is a mapping from L to P , the EMP
finds a transformation f that minimizes the cost function
Cost. In our mapping, all nodes in the CCG, the whole
color space, and the H function are the pixel set, label set,
and cost function respectively. Our problem is then to find
a mapping from the whole color space to all nodes in the
CCG that maps the root-node to black and minimizes the
H function.

This minimization problem is NP-hard, but an approxi-
mation can be solved for in a reasonable time using a Sim-
ulated Annealing Algorithm (SAA) [39]. For our approach,
a close to optimal solution for S′ satisfies our two require-
ments for the CTS and, as we show in Section 7, allows the
approach to compute the CTS in a reasonable amount of
time. An SAA is a technique for finding a good approximate
solution in a very large search space and works by proba-
bilistically exploring states until a good enough solution is
found or the computation budget is fully consumed [24].
SAAs are a well-known technique utilized in search-based
software engineering and are considered a good fit for prob-
lems where identifying an approximate solution in a large
search space is sufficient [29, 19]. Our approach’s adapted

1Here, the term “energy” refers to general cost

SAA is shown in Algorithm 1. The input of Algorithm 1 is
the original color scheme S, and the CCG. The output is the
transformed color scheme, S′, with the background color of
the root node transformed to black.

The SAA begins with an initial color scheme Current (line
1), which is generated by a greedy algorithm GreedyInit.
The purpose of GreedyInit is to identify a reasonable start-
ing point for the SAA. The basic approach of GreedyInit is
to first flip the color of the root node, which is C0 in S, to
black. The algorithm then traverses over each of the remain-
ing nodes in the CCG in order of decreasing edge weight.
For each node, GreedyInit assigns a color that minimizes
the cost function H for all nodes that have been visited.

Our search-based algorithm needs a time budget T in case
the algorithm does not converge on the optimal solution. A
counter T that represents the allocated time or computa-
tional budget is initialized with an integer at line 3. The
SAA iterates until T reaches 0 (lines 4-15). In each iter-
ation, the approach identifies a possible new color scheme
Next. This is done by calling Random Successor, which
generates a new color scheme by modifying each color in the
current scheme, except for C0, by a random amount (line
6). If the new color scheme minimizes the cost function, H,
more than the current one, then the new scheme Next re-
places the current scheme (lines 10 - 12). If the new scheme
is not an improvement, then the current scheme may still be
changed with some small probability (line 13) to prevent the
algorithm from getting stuck at a local optimum. The prob-
ability function is based on the size of the counter T and the
most recent difference of H. Finally, after the counter ex-
pires, the current best solution is returned. This represents
the S′ for the CCG.

Algorithm 1 Simulated Annealing Algorithm

Input: S, CCG
Output: S′

1: Current← GreedyInit(S,CCG)
2: BEST ← Current
3: Initilize(T )
4: while T > 0 do
5: Decrease(T )
6: Next← Random Successor(Current)
7: if H(Current) < H(BEST ) then
8: BEST ← Current
9: end if

10: if H(Next) < H(Current) then
11: Current← Next
12: else

13: Current← Next with P = e
H(Current)−H(next)

T

14: end if
15: end while
16: S′ ← BEST

The approach for computing the CTS for the TCCG and
ICCG is very similar to the process described above. A key
difference is that the background color transformations iden-
tified in S′ are substituted into the corresponding colors in
the TCCG and ICCG. These transformed colors are treated
as fixed and the remaining colors (color of the text and colors
within an image) are transformed using the above process.
Because a significant subset of the colors are fixed, the cost
function H can be optimized further. For space reasons, we
omit the description of this optimization. The CTS for the



TCCG is a transformation for all of the text elements where
each new text color maintains the color difference with the
transformed background color of its enclosing HTML ele-
ment. The CTS for the ICCG is a recoloring of each image so
that each color in the image maintains its color distance with
the transformed background color of its enclosing HTML el-
ement. Note that every color in an image is transformed
with respect to maintaining the color relationship with the
enclosing HTML element, not the other colors in the image.
In cases where the image contains color gradients or shad-
ows, this generally results in a less attractive transforma-
tion. In fact, our evaluation showed that the attractiveness
of applications with more transformed images was generally
rated lower than the original. In future work, we plan to
investigate more advanced image processing techniques that
could improve the aesthetics of recolored images.

6. OUTPUT MODIFICATION
In the third phase, the approach rewrites the web appli-

cation so that it generates web pages based on the CTS. For
our approach we have two different mechanisms for realiz-
ing the modifier. For CSS files and HTML templates, our
approach simply uses regular expressions to replace all color
strings with their corresponding colors. In practice we have
found that more sophisticated approaches, such as using CSS
parsers to identify style properties to modify is unncessary.
For colors that are defined by dynamically generated HTML,
the approach inserts instrumentation to perform the rewrite
at runtime. The instrumentation replaces the APIs that
print HTML to clients (e.g., JspWriter.println) with calls
to customized printing functions. These printing functions
scan the output as its generated and replace printed colors
with their corresponding colors in the CTS.

7. EVALUATION
We performed an empirical evaluation of three aspects of

our approach, time cost, energy savings, and user acceptance
of the appearance of the transformed web pages. We imple-
mented our approach in a prototype tool, Nyx, and used it
to address four research questions:

RQ1: How much time does Nyx take to generate the CTS?

RQ2: How much energy is saved by the transformed web
pages?

RQ3: What is the runtime overhead introduced into the
modified web applications by Nyx?

RQ4: To what degree do users accept the appearance of
the transformed web pages?

7.1 Subject Applications
We use seven open source Java-based web applications to

evaluate our approach, including applications that have been
used in related work, to ensure a broad representation of
implementation styles. These applications are implemented
using different web application frameworks, include colors
defined by HTML and CSS, and employ a varying amount
of JavaScript in their user interfaces.

Details of each of these apps are shown in table Table 1.
For each subject, the column labeled “Framework” shows
the underlying web framework for which the application was
implemented. Frameworks included in our study are JSP,

a very popular web application framework for Java based
web application; Servlet, which describes applications that
directly use the Java Enterprise Edition (JEE) framework
with no intermediate framework; Struts, a very widely used
library and framework for web applications; and, Velocity
and Turbine, two popular template based frameworks for
developing web applications. The column labeled “SLOC”
shows the number of source lines of code in Java for each
web application. For applications that are written in JSP, we
converted the JSP code into Java, using the Tomcat Jasper
compiler, and counted the resulting SLOC.

Our subject applications also represent varying levels of
CSS and Javascript usage. JavaLibrary, Portal, and Book-
store define their styles in HTML directly, while ClassRoom,
Roller, Scarab, and jForum use CSS to define their style.
ClassRoom, Portal, and Bookstore do not make heavy use
of JavaScript, while JavaLibrary, Roller, Scarab, and jForum
do. Three of the applications, Roller, Scarab, and jForum,
use the Model-View-Controller (MVC) architectural style.
All applications, except Bookstore and Portal, are publi-
cally available from their project web pages. Bookstore and
Portal have been widely used in related work [17, 16] and
are available via the SQL Injection Application Testbed [3].

7.2 Implementation
We implemented our approach in a prototype tool, Nyx.

To generate the Output Graph, we leverage Soot [6] to build
the underlying call graphs, control flow graphs and the Jas-
min representation for Java classes. For representing the
FSAs of each string in the Output Graph and HTML Con-
tent Graph, we use the BRICS automaton library [4]. As
mentioned earlier, to build the required string analyses, we
implemented the concatenation, replacement and widening
operations from Yu and colleagues’ method [40] and com-
bined them with the BRICS automaton library. We also
built an automaton parser for the BRICS library to get the
tag name, CSS ID, class name, and color information of
HTML tags. We used the SAC CSS parser [2] to identify
colors from CSS files. For the Output Modification phase,
we used BCEL [1] to modify Java classes and Perl script to
modify colors in the CSS files. Our implementation handles
HTML 4 and CSS 2, but it is straightforward to extend our
tool to support HTML 5 and CSS 3.

7.3 RQ1: Time Cost
To address the first research question, we ran Nyx on all of

the subject applications and measured the execution time.
The results are shown in Table 1. We separated the runtime
into four different parts. The first is the time spent load-
ing all of the Java classes, parsing templates, and building
call graphs. This time is shown under the column labeled
“Load.” The second is the time spent building the Out-
put Graph, HTML Content Graph, and CCG. This time is
shown in the column labeled “Analyze.” The third is the
time spent in calculating the CTS, which is shown under
the column labeled “Transform.” Finally, the rewriting time
is shown in the column “Rewrite.” All results were run on a
DELL XPS 8100 desktop running Linux Mint 14 with an In-
tel Core i5@3GHz processor and 8GB memory. Each timing
result reported was the average runtime of 10 executions.

As the results show, overall it takes less than three minutes
to analyze and transform each subject application. Most of
the time cost is incurred in either the Load or Transform



Table 1: Subject Application Information

Application Information Time cost(s) Energy saving(%)
Name Framework SLOC Load Analyze Transform Rewrite Loading Energy Display Power

Bookstore JSP 24305 46.2 9.64 27.5 1.8 26.7 47.2
Portal JSP 21393 45.1 8.34 53.8 1.7 24.7 44.2
JavaLibrary JSP&Servlet 73468 45.8 21.7 29.9 2.9 26.1 35.8
ClassRoom JSP 5127 18.1 5.97 0.385 0.1 35.8 51.6
Roller JSP&Struts 154065 0.018 1.23 102 0.2 10.4 18.0
Scarab Velocity&Turbine 145435 0.016 1.84 27.1 0.2 27.1 47.8
jForum Velocity 31841 0.014 1.94 154 0.1 26.7 47.8

time periods. For the apps with a high Loading time, most
of this time was spent by Soot in building the call graphs
of the application. Roller, jForum, and Scarab have very
small Load times because we can build the Output Graph
directly by parsing the templates files instead of analyzing
Java classes. Roller, jForum, and Scarab also have a very
small analysis cost since the string analysis for templates
is much simpler than for Java classes. The length of the
Transform time was highly dependent on the structure of the
web pages generated in the application. For more complex
pages with many colors it took longer to generate a new
color scheme.

7.4 RQ2: Energy Saving
To evaluate the energy savings of our approach, we de-

ployed the original and transformed subject web applications
on a Tomcat web server. We then accessed both versions of
the web application using a Samsung Galaxy II smartphone
and measured the energy/power consumption of the phone
using the Monsoon Power Meter [5].

There are two distinct energy/power phases when a mobile
phone visits a web application. The first phase is “Loading
and Rendering”, in which the browser loads the contents of
the web page and renders them on the screen. The sec-
ond phase is “Display” in which the mobile phone has fin-
ished loading and just displays the web page contents on the
screen. A key distinction is that the potential time for Dis-
play is unbounded, it ends when the user closes the browser
or moves to another page. In contrast, the time for the
Loading is bounded. Therefore, for fairness, we measure the
energy consumed during the Loading and Rendering phase
and the power draw during the Display phase. This is more
fair than simply measuring the energy of both phases, since
it is possible to inflate energy savings by allowing the Display
phase to continue for an extended period of time. (Recall
that energy = power * time.)

To differentiate these phases, we leveraged the energy and
power measurements provided by the Monsoon Power Me-
ter. Key to doing this was understanding what happens on
a smartphone during these different phases. In the Loading
and Rendering phase, multiple components in the smart-
phone, such as CPU, memory, WIFI, 4G network, and the
screen, are busy. The Loading Phase has a limited time
span, it starts at the point that the browser sends the re-
quest to the server and ends when the browser finishes ren-
dering the contents of the web page to the screen. In con-
trast, during the Display phase, all components except the
screen of the smartphone are in the idle state. Therefore, we
can figure out the start and end times of the Loading and
Rendering Phase by observing the power state of the mobile
phone in the power meter. The start point of the Loading
and Rendering phase is the point when the phone switches
to the high power state and the end point is when the phone

switches back to the low power state. The start point of the
Display phase is the end point of the Loading and Rendering
phase. For both phases, we took measurements of the origi-
nal and transformed web application 10 times and reported
the average percentage decrease in the columns of Table 1
labeled “Loading” and “Display.”

On average, there was a 25% decrease in energy consump-
tion during the Loading and Rendering phase and 40% less
power consumed during the Display phase for the trans-
formed web applications. Overall, these are strong results
and show that our approach can result in significant energy
savings for smartphone users.

Of interest to us was the fact that energy decreased during
the Loading and Rendering phase. This was puzzling since
the transformation did not change the size of the pages in
any meaningful way. In our investigation, we learned that in
order to speed the display of the web pages, the smartphone
begins to display parts of the screen, such as background
color, as soon as possible. Therefore, there was energy con-
sumed by the screen even during the Loading and Rendering
phase. This difference became more significant during the
Display phase, when only the screen was actively drawing
energy. Also, we investigated the lower savings incurred by
the Roller app. We found that Roller only covers about
60% of the screen. Because of this, we can only change col-
ors for 60% of the screen used by the web application, to
save energy. The other 40% is left as white, which is the
default color of the web browsers. This suggests that an
easy to achieve optimization would be to change the default
background color of mobile browsers to black.

  0

  2

  4

  6

  8

  10

Bookstore Portal JavaLibrary ClassRoom Roller Scarab jForum

E
x
ec

u
ti

o
n
 T

im
e 

(s
.)

Original

Transformed

Figure 4: Overhead

7.5 RQ3: Runtime Overhead
The Modifier introduces additional operations into the

web application; namely, rewriting the color attribute of
HTML strings. Therefore, we are interested in measuring
the runtime incurred via this operation. For the experi-



ment, the server was a Core i7@2.8GHz desktop with 8GB
of RAM running Linux kernel 3.8 and Tomcat 6. The smart-
phone was a Samsung Galaxy II running Android 4.0 and
connected to the server via wireless. To calculate the over-
head, we compared the average time of the Loading and
Rendering phase. We used the time for this phase as it
represents the time that users need to wait before they can
see the contents of the web application. We measured this
time on the server and client side over ten executions of the
experiment for RQ2.

The results of this experiment are shown in Figure 4.
The results show that, on average, the transformed versions
take 2.4% more time than the original. However, as can be
seen in the figure, sometimes the transformed application
is faster. Even for applications where we only transformed
CSS files, we saw similar differences. We investigated this
further by checking the results across different executions.
Our results indicated that average loading time for all ver-
sions was about 7 seconds and even the same version of an
application would routinely vary by up to 1.2 seconds with
a standard deviation of about 5.6%. From this data we con-
cluded that variations in the wireless signal were likely dom-
inating any variation introduced by our modification over-
head. To eliminate interference from the wireless, we also
measured execution time just on the server side. On av-
erage the server side increase was 34ms, which represented
about a 22% increase. However, the actual distribution was
bi-modal with an average of a 75% increase for apps whose
code was modified as opposed to almost 0% for those with
only template changes. This result is fairly intuitive, as any
modification to a template based web application did not re-
quire much additional runtime overhead and in cases where
runtime transformations were required, there were relatively
few of these operations.

Figure 5: Comparison in questionnaires

7.6 RQ4: User Acceptance
To address the fourth research question, we conducted

an end-user survey in which users were asked to compare
and rate the appearance of the original and transformed
web applications. The survey group was 20 M.S. and Ph.D.
students at the University of Southern California who were
enrolled in the third author’s graduate level testing and anal-
ysis class. The students were asked to complete an anony-
mous online survey on their own time and no incentives were

Table 2: Subject Application Information

Attractiveness Readability
Name Ori Trans Ori Trans Preference(%)

Bookstore 6.5 4.2 7.6 5.9 24
Portal 6.9 5.3 7.5 5.6 18

JavaLibrary 6.7 6.9 7.0 6.4 29
ClassRoom 6.8 6.4 7.2 7.1 59

Roller 7.0 6.5 6.9 5.5 24
Scarab 7.4 5.4 6.9 6.5 18
jForum 7.0 5.4 7.0 5.4 12
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Figure 6: The Acceptance rate of transformed web appli-
cation

provided to the students to complete the survey. No back-
ground on the research project was given to the students and
no connection of the work to the third author was suggested.

The survey presented users with a series of before/after
screenshots of the seven subject applications. An example
for the Bookstore application is shown in Figure 5. For each
image, the survey group was asked to rate the attractiveness
and readability of each version on a scale of 1 to 10, with 10
being the highest. The users were then asked which version
they would prefer to use. Finally, the last question asked if
the black background version could save them X% energy, at
what battery level would they choose to use it. For each app,
X was replaced by the energy savings of the Display phase.
The available responses were “Always–regardless of battery
level,” “Most of the time,” “Only when the battery level is
low,”“Only when the battery level is critical,” and “Never.”
The wording of the questions and forms are available via the
project web page [20].

We received 17 responses to the survey. The results are
shown in Table 2 and Figure 6. In Table 2, the columns
Attractiveness and Readability report the related scores of
both the original version and transformed version. The sub-
columns Ori and Trans represent the original and trans-
formed version receptively. The column Preference reports
the percentage of users who prefer the transformed web ap-
plication over the original one. The In Figure 6, we report
when users would choose to use the transformed web appli-
cation. For space reasons, we merged the option “Always–
regardless of battery level,” and “Most of the time” into
“General Use.” The bars show the different time points.
The y-axis is the percentage of users who would switch to
the transformed version at each time point.

For attractiveness, the original app received an average
score of 6.9 and the transformed app a score of 5.7, an av-
erage decrease of about 17%. This indicates that gener-
ally the users thought the color scheme of the original apps
were more visually appealing than the transformed version,
but only by a relatively small difference. In fact, for one



app, JavaLibrary, users found the transformed version to
be more attractive. For readability, the original apps re-
ceived an average score of 7.1 and the transformed apps a
score of 6.1, an average decrease of about 14%. In gen-
eral, as we examined the per app results in more detail,
we noticed that applications whose screenshots contained
a higher amount of transformed images, Bookstore, Portal,
and jForum, received significantly lower scores. We hypoth-
esize that our rather crude transformation of image colors,
which neglects shadows and gradients, impacted this score
significantly. Transformed images, in general, were not as
clear or readable as their original versions. In future work,
we plan to explore improved image processing techniques for
transforming image colors.

For user preference, it was clear that users preferred the
original version based on visual appearance and usability
along. On average, over 73% of the users preferred the orig-
inal application. However, when asked to consider the en-
ergy savings, there was a dramatic shift in user preference.
On average 67% of the users chose to use the transformed
version for general usage if it could save them X% of en-
ergy during display. Overall, more than 97% of users chose
to switch to the transformed version before the battery be-
came critically low.

Overall, we consider the results for user acceptance to
be positive. Although users rated the attractiveness and
readability lower of the transformed apps, when made aware
of the energy savings, they overwhelmingly preferred to use
the transformed application.

8. RELATED WORK
The closest work to Nyx is Mian and colleagues’ work

Chameleon[14]. Their approach modifies the source code
of browsers to change the colors of web pages in the ren-
dering buffer. It first manually builds color transformation
schemes for each of the top twenty web sites, such as Google,
and saves them in a cloud server. When the browser sends
request to one of these web sites, it queries the cloud server
and downloads the pre-installed transformed color schemes.
Then, it renders the transformed web application with the
downloaded transformation scheme. Nyx is different from
Chameleon in two aspects. First, Nyx builds the color trans-
formation scheme automatically for web applications. Thus,
our approach is more easily applied to a broad range of web
applications. Second, our approach modifies the web appli-
cation directly on the server side. Thus it does not introduce
the client-side cost of obtaining the transformation or apply-
ing it in the browser.

Other approaches to save energy for OLED screens have
also been proposed. Kamijoh and colleagues’ work [23] is
one of the first to optimize energy for OLED screens. It
optimizes the energy consumption of OLED screen for the
IBM Wristwatch by reducing the number of pixels that are
bright. However, this work only considers two colors, the
black background color and the different foreground color.
As such, this approach is not applicable for color displays.

Choi and colleagues’ method [12] reduces the energy con-
sumption of LCD screens by reducing the screen refresh rate,
color depth, and luminance. However, this approach relies
on changing the hardware circuitry of LCD screens.

Lyer and colleagues [21] also proposed a method for chang-
ing colors on OLED screens to save energy. This method
saves energy by darkening the areas that are not focused on

by users. The drawback of this approach is that the con-
tents in the darkened area are not readable. Compared with
this approach, Nyx can better maintain the readability of
the entire page.

Energy consumption of mobile devices can also be opti-
mized in other ways. One category of approaches for saving
mobile energy is detecting the misuse of sensors [31, 28]. Our
approach EDTSO [26] saves the energy consumption of test
suites with energy directed test suites minimization. Zhong
and colleagues [42] optimized the communication energy of
mobile phones by redesigning the communication protocol.
Rodoplu and colleagues [32] proposed a deployment algo-
rithm to minimize the energy consumption of ad hoc net-
works. Chen and colleagues [10] proposed a method to save
energy consumption for Java-based mobile applications by
offloading workload to a server.

Another related group of work is energy modeling and
measuring. Mian and colleagues [13] model the energy con-
sumption of OLED screens. They discovered that the en-
ergy consumption of OLED is linear to the RGB value. Our
previous works [18, 25] model and measure the energy con-
sumption of mobile devices on a source line level. Tiwari
and colleagues [37, 38] model the CPU energy on instruc-
tion level. eProf [31] models energy with a state machine.
Some other approaches [13, 41, 27] model energy consump-
tion on a system call level. All the approaches mentioned
above do not optimize the energy consumption for mobile
applications, they only model or estimate energy consump-
tion.

Besides energy saving, transformation techniques for web
applications are also used to optimize the user experience
for mobile devices. Jones and colleagues [22] improve the
readability and attractiveness of web applications on mobile
devices by manually redesigning the layout of web applica-
tions. Bila and colleagues [8] design a system that enables
end-users to adjust the layout of web applications manually.
Chen and colleagues [11] improve the readability of web ap-
plications on mobile devices by partitioning web pages into
segments. Minimap [33] improves the readability by enlarg-
ing the contents of the web application.

9. CONCLUSION AND FUTURE WORK
This paper presents a new technique, Nyx, to make web

applications more energy efficient for OLED based mobile
devices. The basic idea of Nyx is to replace the large, light
colored background areas of web applications with dark col-
ors (preferably, black) to reduce the energy consumed by
OLED screens. During the transformation of an applica-
tion’s web page colors, Nyx also tries to maintain the aes-
thetics of the original web application. An evaluation for
Nyx on seven open source web applications shows that it
can reduce energy consumption by an average of 40% with
only a minor reduction in users’ rating of the pages’ attrac-
tiveness and readability. Our user study also shows that
97% of users will accept the transformed web application
generated by Nyx if the battery power is critically low.
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