
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Yongjie Zheng
University of California, Irvine
zhengy@ics.uci.edu

Richard N. Taylor
University of California, Irvine
taylor@ics.uci.edu

A Rationalization of Confusion, Challenges, and
Techniques in Model-Based Software Development

August 2011
ISR Technical Report # UCI-ISR-11-5

Institute for Software Research
ICS2 221

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

A Rationalization of Confusion, Challenges, and
Techniques in Model-Based Software Development

Yongjie Zheng and Richard N. Taylor1

Institute for Software Research, University of California, Irvine,
Irvine, California 92697

{zhengy, taylor}@ics.uci.edu

Abstract. The use of model-based software development is increasingly
popular due to recent advancements in modeling technology. Numerous
approaches exist; this paper seeks to organize and characterize them. In
particular, important terminological confusion, challenges, and recurring
techniques of model-based software development are identified and
rationalized. New perspectives are provided on some fundamental issues, such
as the distinctions between model-driven development and architecture-centric
development, code generation, and metamodeling. On the basis of this
discussion, we opine that architecture-centric development and domain-specific
model-driven development are the two most promising branches of model-
based software development. Achieving a positive future will require, however,
specific advances in software modeling, code generation, and model-code
consistency management.

Keywords: Model-Based Software Development, Model-Driven Development,
Architecture-Centric Development.

1 Background and Organization

A software model is an abstraction over some aspect of software product. It is most
frequently–though not exclusively–used in software development for the purpose of
documentation. Model transformation [1] is an automated process of taking one or
more source models as input and producing one or more target models as output,
while following a set of transformation rules. One of its instances, model-
implementation “mapping”, provides a new application context for software models,
wherein system implementations can be directly generated from abstract models.
Specifically, it consists of the activities of code generation and consistency
management between generated code and source models.

Model-based software development (MBSD) is based on software modeling and
model-implementation mapping. It is a paradigm where models are used not only
horizontally–to describe and analyze–but also vertically to synthesize, integrate, and

1 ISR Technical Report # UCI-ISR-11-5, August 2011. This work is supported in part by the

National Science Foundation under grants CCF-0917129 and CCF-0820222.

evolve software systems. The primary advantage is that software productivity and
quality are improved, given that software models abstract away certain
implementation details and are much closer to the problem domain relative to
programming languages. There are a number of specific approaches of MBSD, such
as application generation, model-driven architecture, and generative software
development. They differ in various ways, but all use software models - e.g. domain
variations, design models, or system specifications - to create or directly execute a
software system.

A classification framework is presented in this paper to enable comparison of
varying model-based development approaches along a set of criteria. In particular,
important terminological confusion, challenges, and recurring techniques of MBSD
are identified and rationalized. New perspectives are provided on some fundamental
issues, such as the distinctions between model-driven development and architecture-
centric development, code generation, and metamodeling. The goal is to differentiate
close concepts, cross-fertilize ideas across different approaches, and outline future
research in MBSD.

The paper is organized as follows. Section 2 describes existing model-based
development approaches, and presents the comparison framework. Based on the
description, Section 3 analyzes and clarifies two confusing issues: model-driven
development versus automatic programming, and model-driven development versus
architecture-centric development. Section 4 highlights three research challenges in
terms of what they are, why they are hard, and how existing methods are deficient in
addressing them. Section 5 introduces fundamentals, different usages, and important
issues of techniques that recur in MBSD. Finally, Section 6 describes related
survey/comparison work, and Section 7 concludes the paper.

2 Model-Based Software Development

This section briefly introduces existing model-based development approaches, and
organizes and characterizes them using a classification framework. This introduction
serves as a basis for the discussion in following sections.

2.1 Overview

Model-based development approaches can be roughly classified based on the primary
abstraction level of their focal software model. We consider four: specification-
driven development, model-driven development, architecture-centric development,
and generative and component-based development. Fig. 1 provides a simplified
illustration of these approaches with important artifacts and code generation processes
explicitly represented. Notice that generative and component-based development is
included because composition specification can also be seen as a model that
emphasizes composition abstractions.

Specification-Driven Development Model-Driven Development

Architecture-Centric Development Generative and Component-
Based Development

Transformational

Programming
Application

Generator

Model-Driven

Architecture (MDA)
Model-Integrated

Computing (MIC)
Software

Factories

Architecture

Refinement

Framework &

Middleware
ADL Tool

support

Domain-Specific Software

Architecture (DSSA)
Functional

Composition

Multi-Dimensional

Composition

Formal

Specification

Domain

Variations

Complete CodeComplete Code

PIM

PSM

Complete Code

Iterative

Transformation

Transformation

(QVT)

Template

Abstract

Architecture

Concrete

Architecture

Software

Architecture

Architecture

Framework

A series of

refinement Domain

Components

Code Fragement

Specialized

Reference

Architecture

Complete Code

Model (DSL)

Concrete Model

Code

Progressive

Transformation

Framework (may

not exist)

Composition

(System)

Specification

Composition

Specification

Composed

System

Domain Specific

Models

Complete Code

Glue Code

Domain-Specific

Code Generator

(Template) Meta-Programmable

Code Generator

Code

Fragement

Language Built-in

Implementations,

Existing UML

Tools

Software

Architecture

+

Configuration

Method

+

Template

Composed

System

Composition

Rules

+
Core Component

Concerns ...

+

MIL Compilation,

Generative

Software

Development

(similar to DSSA)

Fig. 1. Model-based software development.

Specification-driven development uses requirements specifications to create or
directly execute applications. It appears in two forms: transformational programming
[2] and application generation [3]. Transformational programming is a methodology
of program construction by successive applications of transformation rules.
Ostensibly this process starts with a formal statement of a problem, and ends with an
executable program. Application generators are tools for creating a family of
applications, and are deeply rooted in domain engineering. An application generator
translates a highly-particularized specification that expresses variations in a domain
into a complete implementation. To change or modify a product, one simply changes
input specifications and reruns the generator.

Model-driven development (MDD) typically focuses on software design models
[4]. Initiatives include Model-Driven Architecture (MDA) [5], Model-Integrated
Computing (MIC) [6], and Software Factories [7]. MDA was defined by the Object
Management Group (OMG) in late 2001, and represents a generic model-driven
approach. Specifically, software development in MDA starts with a Platform-
Independent Model (PIM) of an application’s business functionality and behavior,
constructed using Unified Modeling Language (UML) based on OMG’s MetaObject
Facility (MOF). MDA development tools then convert the PIM to one or more
Platform-Specific-Models (PSMs) and finally to a working implementation using
some middleware platform. MIC and Software Factories are both domain-specific
MBSD. MIC was originally designed for embedded software development. It

advocates the application of different types of models written in domain-specific
languages (DSLs), and manages the interdependency between models at the meta-
level. The primary goal of Software Factories is to industrialize software development
through the integration of abstraction, granularity, and specificity. Progressive
refinement is extensively used in it to generate executables from source models.

Architecture-centric software development places an emphasis on the essential role
of software architecture throughout the software development lifecycle. Software
architecture is the set of principal design decisions about a software system [8]. It is
commonly characterized as a configuration of components and connectors with
enforced constraints, though this is a simplification of the concept. Fig. 1 illustrates
four varieties: (a) style-based architecture refinement [9], (b) framework and
middleware-based development [10], (c) architecture language support [11], and (d)
domain-specific software architectures (DSSA) [12]. Architecture refinement (a)
maps an abstract software architecture into a concrete architecture that contains more
implementation concerns. Architecture framework techniques (b) essentially raise the
abstraction level of an execution platform by providing specific programming
constructs for selected architecture concepts. Notice that both architecture refinement
(a) and framework techniques (b) are architecture style specific, and thus, could be
reused among architectures of the same style. Architecture description languages
(ADLs) (c) provide notations for capturing architectural decisions; such languages are
usually accompanied by tool support. DSSA (d) represents a combination of software
architecture and domain engineering. It consists of a reference architecture, a
component library, and a configuration method for combining components.

Models in generative and component-based approaches are composition
specifications, from which glue code is generated to combine existing components
into the final artifact. Component composition combines two or more software
components and yields new component behavior at a different level of abstraction
[13]. Functional composition and multi-dimensional composition are two
distinguished composition approaches. The former breaks up a complex software
system into smaller components with functional relationships as the primary criterion,
while the latter emphasizes separation of overlapping concerns along multiple
dimensions of decomposition. A typical example of functional composition is
generative software development [14], which focuses on automating the selection and
assembly of components. Multi-dimensional composition distinguishes the notion of
core components from concerns. An example is Multi-Dimension Separation of
Concerns (MDSC) [15].

2.2 Comparison

Table 1 offers a general comparison of the MBSD approaches introduced above along
four dimensions: Goals reveal the underlying rationale of each MBSD approach;
Software Modeling shows their focal software models; Code Generation represents
the form of generated code, which could be full code generation, code fragments, or
glue code; Consistency Management describes how changes, especially code changes
made after code generation is done, are handled.

Table 1. A classification framework of model-based software development.

Specification-

driven
development

Model-driven
development

Architecture-centric
development

Generative and
component-based

development

Goals Remove coding
phase

Make model
compilable and

executable

Use software
architecture as

blueprints

Functional and
non-functional

reuse
Software
Modeling

Requirements
specifications

Software
design models Software architecture Composition

specifications
Code

Generation
Full code
generation

Full code
generation

Code fragments and
skeletons Glue code

Consistency
Management

Code changes not
allowed

Code changes
not allowed

Reverse engineering,
runtime monitoring,

and round-trip
engineering

Pending on the
preservation of

component
boundaries

Of these different approaches, specification-driven development is most ambitious in
the sense that it tries to transform programming into a specification-based activity so
that even requirement engineers can develop software products. MDD and
architecture-centric development both focus on software design. In particular, MDD
suggests a paradigm where software models take the role of traditional programs, and
are the main artifacts of development. This makes it distinguished from architecture-
centric development, which recognizes the essential role of both architecture and
implementation. Further discussion on this issue is given in Section 3. Finally,
generative and component-based development faces a challenge different from the
first three approaches, which are all about spanning abstraction gaps. People can
decompose a system at their favor, using either functional or multi-dimensional
decomposition. The real challenge is how to combine decomposed parts into the final
system. Moreover, it is often preferred that component boundaries be preserved
during the composition process, so that changes to the final system can be mapped
back to original components.

3 Confusion

MBSD, especially the approaches of MDD and architecture-centric development, are
still in the early stage of their development. A variety of questions about them persist,
due in no small part to each technique using similar terminology but in (sometimes)
substantively different ways. What makes MDD essentially different from automatic
programming in terms of model-implementation mapping? How is architecture-
centric development related to MDD? Clarifications would not only increase people’s
confidence about related model-based approaches, but also help them make a solid
choice when facing a development problem. Specific analysis and clarification of
some of these points are provided in this section.

3.1 Model-Driven Development and Automatic Programming

MDD and automatic programming [16] both rely on the machine to generate
complete code from software artifacts of a higher-level abstraction. Automatic
programming is a special case of transformational programming introduced in Section
2. The problems it is capable of coping with are highly constrained due to the
challenge of full code generation. What makes MDD different from automatic
programming? If they are essentially same, we could announce, or at least predict, the
same result for MDD.

Software development is about making decisions, where pure creativity and
automatable activities co-exist [2]. A significant difference between automatic
programming and MDD is the role of model-implementation mapping and the
creativity required in these two approaches. Automatic programming transforms a
high-level specification, usually a formalized requirement specification, into a
complete source code. Most decisions, such as the implementation of data structures
and optimization of algorithms, are predefined as transformation rules and reused in
the development of different systems. The selection and application of
transformations are performed by a machine via artificial intelligence techniques. In
other words, model-implementation mapping in automatic programming makes
software development decisions. People’s creativity plays a very limited role in this
process. This is contrary to MDD, where creativity is particularly emphasized for
system designers to consider design tradeoffs. Instead of relying on predefined
decisions, system designers make important design decisions of a system, and get
them specified in software models. What is automated in MDD is actually the
transfer of model decisions into implementations, or model-implementation
mapping.

The difference becomes obvious if we compare source models and generated code
in automatic programming and MDD. Both of them generate complete source code.
However, most decisions in generated code of MDD are actually specified by
designers in source models, and this is an important reason that MDD emphasizes
complete and precise modeling [17]. In contrast, the information difference between
source model and generated code of automatic programming is huge, considering that
its model is a formal statement of the problem, and talks very little about how to solve
the problem. Development decisions are either predefined as transformation rules or
automatically made by the machine in transformation selections.

This explains why automatic programming can only be used in development of
highly constrained applications, where either a reusable solution scheme prevails or
the system is of a limited complexity level. If it is a generic complex system
development that is constantly subject to pressures of change, the decision space
could be too huge for the machine to predefine or reason about. MDD has potentials
to succeed in this scenario, given that the machine focuses on transferring decisions in
model-implementation mapping and software designers can concentrate on creative
modeling portions.

3.2 Model-Driven Development and Architecture-Centric Development

MDD and architecture-centric development are two categories of MBSD that come
into being in recent years. Both of them are software design oriented, could possibly
use UML as their modeling languages [5, 8], and face the challenge of dynamics
modeling and correctness-preserving code generation. How are MDD and
architecture-centric development related with each other then?

As shown in Table 1, MDD is different from architecture-centric development in
several aspects. First of all, the rationale behind MDD is to make software design
models compilable and executable, so that software developers can solely focus on
abstract models. To achieve this goal, software models must have sufficient detail to
enable full code generation. In contrast, architecture-centric development uses
software architecture as the blueprint where principal design decisions are laid out. Its
code generation process is primarily about generating architecture-prescribed code. In
most cases, the generated code is some application skeleton that needs software
developers to fill in details. From this perspective, the uses of UML in these two
approaches are actually in different modes [18]: UmlAsProgrammingLanguage in
MDD and UmlAsBlueprint in architecture-centric development.

Code
Visualization

Programming ModelingCo-
Exist

Architecture-
Centric

Development

Model-Driven
Development

Programming
Paradigms

Code only. Model only.

Information is centralized
with non-essential details
abstracted away.

Information is spread
out and closely coupled.

Full code generation.

From left to right, the amount of modeling and the
application of software models increase. Code

visualization applies programming concepts as modeling
constructs and fails to provide any real improvements in
abstraction. Co-Exist recognizes the independent role of
models, but treats them as documentation artifacts that
are per ipheral to software development. From
Architecture-Centric Development, (design) models
begin to play an active role, and are used to drive
software synthesis, evolution, and integration. Finally,
Model-Driven Development aims to make models
compilable and executable, so that they can take the
place of programs in software development.

Code is its own
documentation.

 Fig. 2. The programming-and-modeling spectrum.

Fig. 2 sketches the programming-and-modeling spectrum, and is based on
discussions in [19, 20] and our own understanding. It compares MDD and
architecture-centric development in a more general context: the amount of
programming and modeling in software development. “Programming people” think
there should be nothing but code, while “modeling people” think models rule
everything. Architecture-centric development can be regarded as a transition from one
extreme to the other, with models playing an active role in software development. Its
position in the middle represents the “right” level of modeling at this point in the
evolution of software development technology. We believe it mixes just the right
amount of modeling with programming to maximize the effectiveness of both. MDD

is represented as a short range in the figure, reflecting current practice. In addition,
code visualization and co-exist are also shown in the figure as references. They
represent different (primitive) usages of software models in traditional software
engineering.

Both MDD and architecture-centric development are currently evolving. The fact
that the two approaches have so many commonalities suggests a future merger might
be possible. For example, MDD can be seen as a subset of architecture-centric
development if we consider full code generation as a special case of architecture-
prescribed code generation. This is particularly true with software architecture defined
as a set of principal design decisions about a software system [8], which essentially
include design models that are usually created in MDD approaches. Some form of co-
investigation or unification should be able to facilitate the development of both areas.

4 Challenges

What MBSD suggests is essentially a role transition of software models from
documentation to development. This implies an enhanced requirement on software
models for completeness and precision, compared with the traditional use of models.
It also demands an efficient mechanism of model-implementation mapping, which is
not only about generating model-prescribed code, but also about managing the
consistency between model and code over the passage of time. In general, no MBSD
approach can survive in the long run if the cost of model-implementation mapping
significantly exceeds that of working on code directly. This section describes three
research challenges of MBSD from the perspectives of what they are, why they are
hard, and how existing mechanisms are deficient in addressing them.

4.1 Multi-Aspect Modeling

Software models in the development of complex software often need to describe the
system from multiple aspects, such as structure, behavior, and non-functional
properties. Important research progress has been made in this area [21, 22]. However,
most of existing modeling technologies are based on the assumption that software
models are documentation artifacts that are peripheral to code development. With
regard to structure, models such as UML class diagrams may be fine for use in
MBSD. With regard to behavior, few models created with current technologies are
amenable to software synthesis in MBSD; the situation with regard to non-functional
models is even worse. The challenge is that software models in MBSD not only have
to contain enough details to generate relatively complete code, but also need to be,
and stay, simpler than the software programs created during this process.

Existing behavioral modeling methods include those that are based on formal
notations and those that are more informal, but with a practical bias. None, however,
provides an appropriate form for MBSD. Formal behavioral modeling methods
include the use of process algebras like CSP and the pi-calculus. Providing a basis for
automatic analysis is one of their main purposes. They are seldom appropriate for

software development because of their limited expressiveness. In most cases,
developers would rather write code directly. Examples of more informal methods
include interaction diagrams, state diagrams, and activity diagrams of UML.
Traditionally, these methods are mainly for communication and system
comprehension. Their incompleteness properties have decided that they cannot be
used alone for behavioral modeling in MDD [5], which emphasizes complete
modeling. In cases where only executions of significance are concerned, such as
architecture-centric development, practical methods like sequence diagrams may be a
good choice after some form of extension [21].

4.2 Code Generation

Similar to structural modeling, structural code generation is well understood and not a
particular research issue [23]. MBSD brings a new challenge in this regard, however,
which requires structural code, behavioral code, or even non-functional code to be
automatically generated from source models. This is hard not only because non-
structural modeling in MBSD is not yet mature, as introduced in previous section, but
also because system dynamics are involved and many more variations need to be
considered compared with static structural code generation.

Code Generation Strategies & Perspectives

Code

Plain text

P
ro

g
ra

m

M
o
d
e
l

Template-based code

generation

?

M
e

ta
p

ro
g

ra
m

m
in

g

w
it
h

 r
e

fl
e

c
ti
o

n

M
o

d
e

l-

tra
n

s
fo

rm
a

tio
n

m
e

c
h

a
n

is
m

s

A comprehensive code

generation approach

(pending)
 Fig. 3. Different code generation strategies see code differently.

Fig. 3 shows existing code generation approaches and how they treat source code
differently. As can be seen, code can be treated as model, program, and plain text
respectively. Approaches that treat code as model require the definition of a
metamodel for the target programming language, and use model transformation
approaches [1] for code generation. It remains to be seen how well these approaches
can be practically used in complex software development, especially considering the
high complexity that is often involved in model transformation. Approaches that treat
code as program are trying to use the target programming language’s own
metaprogramming ability, e.g. reflection, for code generation. They are limited
because they can only be used to generate structural constructs like classes, methods,
and attributes.

Treating code as plain text, or template-based code generation [3] represents a
popular approach. A typical example is Java Server Pages (JSP) that are used to create
web pages, where the Java escapes are executed to produce the dynamic portions of

the HTML page. A primary advantage of the template-based approach is that
templates are independent of the target language. This simplifies the generation of any
textual artifacts, including documentation. A primary challenge that it faces, however,
is verifying the correctness of code embedded in templates that are usually not
runnable. Thus, a comprehensive code generation approach that can work as
comparably well as a program compiler is still missing. Further development in this
area may be pending on a new perspective.

4.3 Model-Code Consistency Management

After code generation is done, chances exist that either the source model has to be
modified again or the generated implementation needs additional editing by
developers. These changes significantly endanger the conformance established
between the model and code. Successful solutions to handle model changes are
already available, guaranteeing that extra work done on the generated implementation
remains when the system is regenerated. This is usually done through code markers in
the form of comments [19], and is not detailed here. In contrast, automatically
mapping changes in generated code back to source model is still a research challenge
in MBSD. Its difficulty comes from the fact that this is essentially an activity of
machine-based abstraction.

Table 2 shows existing mechanisms of model-code conformance management,
classifying them along two dimensions. Based on whether inconsistencies are to be
avoided or detected, there are approaches of correct-by-construction and correct-by-
detection. In general, prevention is always better than cure given that some
inconsistencies may be too expensive to be detected and resolved. Approaches of each
category can be further divided into one-way mapping and two-way mapping,
depending on which artifact can be manually changed. Note that correct-by-detection
approaches are usually used to map updated code to model, and assume the relative
constancy of model. This explains why there are no two-way mappings of correct-by-
detection. Finally, the italicized words in the table represent specific instances of each
conformance management approach.

Correct-by-construction approaches are extensively used in MBSD to avoid
inconsistency from the very beginning. Among them, one-way mapping approaches
try to generate complete code, so that manual modification of code is not a necessity
and chances of inconsistency can be reduced. As discussed later in this paper, we
believe this can only be done in a domain-specific manner. Two-way mapping
approaches in this category include separation of generated and non-generated code,
architecture frameworks, and the adoption of new implementation strategies. These
can only enforce structural conformance between model and code. A new trend in this
area is the use of round-trip engineering [28], where traceability links between model
and code are used to automatically propagate updates in derived code back to the
model. Initial exploration in this direction shows some promising results. However,
further investigations are still needed on some specific issues, such as the granularity
of linked objects and the evolution of trace links. In particular, a successful utilization
of round-trip engineering in complex software development is still missing.

Table 2. Model-code conformance management.

 Correct-by-construction
(to avoid inconsistency)

Correct-by-detection
(to detect inconsistency)

One-way
mapping

1. Full code generation: MDA [5], Domain-
specific MDD [20], DSSA [12].

2. Architecture refinement: SADL [9].

1. Reverse engineering: Reflexion
model [25].

2. Runtime monitoring &
verification: Pattern-Lint [26],
DiscoTect [27].

Two-way
mapping

1. Code generation (separation): EMF
(code markers) [19].

2. Architecture framework: C2 [10].
3. Implementation strategy: ArchJava [24].
4. Round-trip engineering: ???

None.

Correct-by-detection approaches address the conformance issue through after-the-

fact consistency checking done either through reverse engineering [29] based static
analysis or runtime monitoring verification. Reverse engineering abstracts source
models from modified implementations, and compares the original source model with
the generated one. It can be expensive for complex systems; moreover, it is hard to
guarantee that the generated model captures the same aspects that the original source
model contains, since they may represent two different abstractions of the same
implementation. Runtime monitoring approaches infer the system architecture from
execution traces or system events that are collected at runtime. They are favorable in
terms of being able to check the system behaviors against the original architecture. To
do this, the availability of executable software is usually required. Some approaches
also demand certain forms of code instrumentation. This prevents dynamic
verification from being used at development time, when programs are often not
complete enough to be executed.

5 Techniques

Several techniques recur in MBSD, including exploitation of domain specificity,
metamodeling, and iterative transformation. They represent promising attacks on the
challenges identified in Section 4. Introductions exist [2, 5, 20], but are mostly
isolated and specific to the particular model-based approach where the technique is
applied. Notably, different aspects of a technique are often emphasized in different
application contexts. For each of the techniques mentioned above, this section (1)
reveals the fundamentals that make the technique promising, (2) presents different
usages of the technique, and (3) highlights some challenge issues. Doing so supports
cross-fertilization of techniques across different model-based approaches, and
encourages wider use in the future.

5.1 Domain Specificity

Fundamentals. Exploiting domain specificity is primarily about developing artifacts
that may be reused in developing multiple applications within a given domain. In
domain-specific MBSD, reusable assets include DSLs, domain components, and
reference architecture. The use of DSLs raises the level of abstraction, and improves
the expressive power of software models. A library of reusable components supports
software implementation through component composition. Reference architectures
serve guides to the composition process. They simplify the management of supplier
relationships by describing the specific contexts in which components operate.

Different usages. Domain-specific MBSD includes application generators, MIC,
DSSA, and generative software development, all of which were shown in Fig. 1. A
significant discriminator of these four approaches is the domain asset being reused.
The application generator approach reuses code generators; MIC uses DSLs to model
embedded systems; DSSA and generative software development both recognize
reference architectures, domain components, and configuration knowledge as reusable
assets. DSSA is different from generative software development because the latter
uses a configuration generator to implement configuration knowledge and automate
the selection of components [14], whereas this is usually done manually in DSSA. In
addition, the creation of reference architecture in generative software development is
primarily to identify “uses” dependencies between component categories and
facilitates the implementation of components. In contrast, the DSSA approach uses
reference architectures as a key element in the creation of a specialized architecture.

Issues. The exploitation of domain specificity plays a significant role in MDD,
which faces the challenge of complete modeling and full code generation. What a
generic MDD (e.g. MDA) does is directly specifying system (dynamic) details in
software models. This not only makes models complicated and potentially degrades
their usability, but also imposes a high requirement on the extensibility of the
modeling language used. Domain-specific MDD [20] is much more favorable at this
point. On the one hand, a DSL is more expressive than a generic modeling language
(e.g. UML) when applied in a specific domain. One the other hand, reuse of domain-
specific code generators or components greatly reduces the amount of generated code,
and thus, the information that has to be specified in software models.

5.2 Metamodeling

Fundamentals. A metamodel is a model that is written in a metalanguage to define
some specific modeling language [5]. In essence, metamodeling is important because
it provides a means for the machine to read, write, and understand models that
previously were interpreted only by people. From this perspective, metamodeling
plays a key role in automating MBSD. With models understandable to computers,
tools can be built for model creation, code generation, and consistency management.

Different usages. Metamodeling is primarily used in MDD and architecture-
centric software development. A representative example is MDA, which is based on
OMG’s four-layer meta-level hierarchy [5]. Its primary modeling language, UML, is
defined by a metamodel written in MOF. Different from MDA, MIC as another MDD

approach uses UML as its metalanguage to define its DSLs. In particular, MIC
includes a generic modeling environment that can be customized by the metamodel of
a domain language to support modeling in a given domain. At this point, it is very
similar to ArchStudio [30], a metamodeling based tool for architecture-centric
software development. The modeling notation used by ArchStudio is xADL, an
XML-based architecture description language. Significantly, users are allowed to
extend the schemas of xADL for new features. ArchStudio reads schemas and
automatically generates a data-binding library for new tools.

Issues. Meta level and software abstraction level are two different concepts in
MBSD. Meta level reflects the linguistic instance-of relationship between a model
and its metamodel. In other words, a model is written in a language that is defined by
the model’s metamodel at a higher meta level. In contrast, software abstraction level
characterizes a software model in terms of to what extent it hides unimportant
information to a software developer. For example, the abstraction provided by
software architecture allows a software architect to focus on principal design
decisions without worrying about implementation details. From this perspective, meta
level and abstraction level are orthogonal concepts.

5.3 Iterative Transformation

Fundamentals. Iterative transformation is extensively used in transformational
programming. The central idea is to break a transformation that crosses an abstraction
gap into sufficiently small steps, so that each step generates another representation
that is easier to implement than the first. What this means in the context of MBSD is
an incremental way to map source models into implementations, especially when
source models are too abstract to directly generate code from.

Different usages. Style-based architecture refinement is just a typical application
of this idea. It maps an abstract architecture into a concrete architecture through a
series of small transformations, each of which involves the application of a pre-
proved transformation pattern that is specific to an architecture style. Software
Factories, shown in Fig. 1, use a similar approach, so called progressive
transformation, to map domain-specific models into implementations. Layers of
simplifying abstractions are successively generated during this process. Another less
obvious example is MDA, where the use of PSM to facilitate the mapping of PIM to a
working implementation on a middleware platform actually reflects the same spirit of
iterative transformation.

Issues. The applications of iterative transformation presented above are all limited
to certain ranges, such as a specific architecture style, an application domain, or a
middleware platform. In addition, their source and generated models usually stay
close in terms of conceptual level. At this point, we think this represents proper uses
of iterative transformation. Not only the development portion that can be pre-planned
and specified is increased, but also the complexity level is reduced. This is different
from automatic programming discussed in Section 3, which assumes software
development can be pre-planned in a generic way and, in general, faces a significant
conceptual gap between requirements specifications and executable programs.

6 Related Work

Papers such as [4, 17, 31] specifically discuss the advantages, difficulties, and
facilities of MDD, an important branch of MBSD. This paper, in contrast, studies
MDD in a broader context, and compares it with other MBSD approaches. On the
basis of this comparison we have reached some different conclusions. For example,
[4, 31] both point out that modeling languages is an area that needs to be improved for
the advancement of MDD. We think the reason existing modeling languages cannot
suffice for MDD is partially because the goal of making software models compilable
and executable is overly ambitious. As discussed in Section 5, this may be done in a
domain-specific manner, yet we doubt this can be done in a generic MDD. In
addition, automatic code generation is described as reaching a degree of maturity in
[17]. We think this is only the case when the abstraction gap is fairly small, for
example, from low-level implementation models to code. Given that models in
MBSD could be a high-level architecture, code generation, especially non-structural
code generation, is still a research challenge.

7 Conclusion

Putting all these together, we opine that architecture-centric development and domain-
specific MDD are the two most promising branches of MBSD. This is not only
because their focal models are good at revealing system essentials and have some
desirable properties, such as design orientation, extensibility, and reusability, but also
because they are realistic with regard to model-implementation mapping with existing
facilities. Achieving a positive future will require, however, specific advances in
software modeling, code generation, and consistency management.

References

1. S. Sendall, and W. Kozaczynski, “Model Transformation: The Heart and Soul of
Model‐Driven Software Development,” IEEE Software, vol. 20, no. 5, 2003.

2. Partsch, H. and Steinbrüggen, R. 1983. Program Transformation Systems. ACM Comput.
Surv. 15, 3 (Sep. 1983), 199-236.

3. Cleaveland, C. C. and Cleaveland, J. C. 2001 Program Generators with XML and Java with
CD-ROM. Prentice Hall PTR.

4. France, R. and Rumpe, B. 2007. Model-driven Development of Complex Software: A
Research Roadmap. In 2007 Future of Software Engineering (May 23 - 25, 2007). IEEE
Computer Society, Washington, DC, 37-54.

5. Kleppe, A. G., Warmer, J., and Bast, W. 2003 MDA Explained: the Model Driven
Architecture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc.

6. Sztipanovits, J. and Karsai, G. 1997. Model-Integrated Computing. Computer 30, 4 (Apr.
1997), 110-111.

7. Greenfield, J. and Short, K. 2004. Software Factories: Assembling Applications with
Patterns, Frameworks, Models & Tools. Wiley, 1st edition.

8. Richard N. Taylor, Nenad Medvidovic, Eric Dashofy, Software Architecture: Foundations,
Theory, and Practice. ISBN: 978-0-470-16774-8. John Wiley & Sons, ©2009 736 pages.

9. M. Moriconi, X. Qian, and R. A. Riemenschneider, “Correct Architecture Refinement,”
IEEE Transactions on Software Engineering, vol. 21, no. 4, pp. 356‐372, 1995.

10.Medvidovic, N., Oreizy, P., and Taylor. R. N. 1997. Reuse of off-the-shelf components in
C2-style architectures. SIGSOFT Softw. Eng. Notes 22, 3 (May 1997), 190-198.

11.Medvidovic, N. and Taylor, R. N. 2000. A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Trans. Softw. Eng. 26, 1, 70-93.

12.Tracz, W. 1995. DSSA (Domain-Specific Software Architecture): pedagogical example.
SIGSOFT Softw. Eng. Notes 20, 3 (Jul. 1995), 49-62.

13.G. T. Heineman, and W. T. Councill, Component-Based Software Engineering: Putting the
Pieces Together, Reading, Massachusetts: Addison‐Wesley, 2001.

14.Czarnecki, K. and Eisenecker, U. W. 1999. Components and generative programming
(invited paper). SIGSOFT Softw. Eng. Notes 24, 6 (Nov. 1999), 2-19.

15.Tarr, P., Ossher, H., Harrison, W., and Sutton, S. M. 1999. N degrees of separation: multi-
dimensional separation of concerns. In Proceedings of the 21st international Conference on
Software Engineering (Los Angeles, California, United States, May 16 - 22, 1999).

16.Balzer, R. 1985. A 15 Year Perspective on Automatic Programming. IEEE Trans. Softw.
Eng. 11, 11 (Nov. 1985), 1257-1268.

17.Selic, B. 2003. The Pragmatics of Model-Driven Development. IEEE Softw. 20, 5 (Sep.
2003), 19-25.

18.M. Fowler, “UmlMode”, http://www.martinfowler.com/bliki/UmlMode.html.
19.David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. 2008. EMF: Eclipse

Modeling Framework (2nd ed.). Addison-Wesley Professional.
20.Kelly, S., Tolvanen, J-P., Domain-Specific Modeling: Enabling Full Code Generation,

Wiley-IEEE Society Press, 2008.
21.P. Clements, F. Bachmann, L. Bass et al., Documenting Software Architectures: Views and

Beyond: Addison Wesley, 2002.
22.Matinlassi, M., Niemelä, E, Dobrica, L. 2002. Quality-driven architecture design and quality

analysis method. A revolutionary initiation approach to a product line architecture. Espoo,
VTT Publications.

23.Herrington, J. 2003. Code Generation in Action. Manning Publications.
24.Jonathan Aldrich, Craig Chambers, and David Notkin. 2002. ArchJava: connecting software

architecture to implementation. In Proceedings of the 24th International Conference on
Software Engineering (ICSE '02). ACM, New York, NY, USA, 187-197.

25.G. C. Murphy, D. Notkin, and K. J. Sullivan. 2001. Software Reflexion Models: Bridging
the Gap between Design and Implementation. IEEE Trans. Softw. Eng. 27, 4, 364-380.

26.Mohlalefi Sefika, Aamod Sane, and Roy H. Campbell. Monitoring compliance of a software
system with its high-level design models. In Proceedings of the 18th international
conference on Software engineering. IEEE Computer Society, 387-396. 1996.

27.Hong Yan, David Garlan, Bradley Schmerl, Jonathan Aldrich, and Rick Kazman. 2004.
DiscoTect: A System for Discovering Architectures from Running Systems. In Proceedings
of the 26th International Conference on Software Engineering. IEEE Computer Society.

28.S. Sendall, and J. Küster, “Taming model round-trip engineering,” in Proceedings of
Workshop on Best Practices for Model-Driven Software Development, Canada, 2004.

29.E. J. Chikofsky, and J. H. Cross II, “Reverse Engineering and Design Recovery: A
Taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13-17, January/February, 1990.

30.ArchStudio 4: http://www.isr.uci.edu/projects/archstudio/.
31.Hailpern, B. and Tarr, P. 2006. Model-driven development: the good, the bad, and the ugly.

IBM Syst. J. 45, 3 (Jul. 2006), 451-461.

