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ABSTRACT

We present a general framework for image discrimination
based on identifying small, localized differences between
images. Our novel matching scheme is based on an alter-
nate information divergence criterion, the Rényi � -entropy.
The minimum spanning tree (MST) is used to derive a direct
estimate of � -entropy over a feature set defined by basis fea-
tures extracted from images using independent componenet
analysis (ICA). The MST provides a stable unbiased esti-
mate of local entropy to identify sites of local mismatch be-
tween images. Sub-image blocks are ranked over a set of lo-
cal deformations spanning small image regions. We demon-
strate improved sensitivity to local changes for matching
and registration and provide a framework for tracking fea-
tures of interest in images.

1. INTRODUCTION

The ability to discriminate differences between images with
sensitivity to local differences is pivotal to any image match-
ing algorithm. The principal objective of this paper is to
introduce a general framework to identify local deforma-
tion in images. Such a framework could be extended to (1)
enhance registration performance by making it more sensi-
tive to local mismatch, (2) automatically track features of
interest, such as tumors in brain or microcalcifications in
breast across temporal image sequences, (3) reliably match
or register small images or image regions so as to improve
disease diagnosis by locating and identifying small patho-
logical changes in medical image volumes and (4) auto-
mate control point placement to initiate registration. Most
image registration techniques dwell on similarity measures
calculated over some feature set ���
	��
��	�� derieved from ���� ��������������� positions in the reference and target images���! �"

and
��#%$��

respectively. Previous work in these tech-
niques has been limited to simple pixel based mutual in-
formation (MI) and pixel correlation techniques. In [1], lo-
cal measures of MI outperform global MI in the context of
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adaptive grid refinement for automatic control point place-
ment. However, the sensitivity of local MI deteriorates rapidly
as the size of the image window decreases below &(')�*&+'
pixels in 2D. The main constraints on these algorithms, when
localizing differences, are (1) limited feature resolution of
single pixel intensity based features, and (2) histrogram es-
timators ,.-%�/�
�10 of joint probability density 23-%�/�
�10 are
noisy when computed with a small number of pixel features
and are thus poor estimators of 23-4�/���10 used by the algo-
rithm to derieve joint entropy 56-4�/���70 .

Reliable identification of subtle local differences within
images, is key to improving registration sensitivity and ac-
curacy. Stable unbiased estimates of local entropy are re-
quired to identify sites of local mismatch between images.
These estimates play a vital role in successfully implement-
ing local transformations. Previously [2], we addressed the
issue of global registration and demonstrated that entropic
graph methods could achieve lower mean square errors in
ultrasound image registration. Here, we attempt to improve
registration sensitivity by identifying local mismatch be-
tween images. Our joint registration model includes a rich
ICA derived feature set that provides a continuous represen-
tation of images and fast converging direct entropy methods
to calculate the joint entropy over these features.

This paper is organized as follows: section 2 introduces
the ICA basis feature set, section 3 describes � -entropy based
on the MST, section 4 discusses the image matching frame-
work, sections 5 and 6 present the results and conclusions.

2. ICA BASIS FEATURES

We adopt a basis extracted from an independent components
analysis of the image. The ICA basis are adapted so as to
best account for the image structure in terms of a collection
of statistically independent components. In ICA, an optimal
basis is found which decomposes the image or sub-image
block � 	 into a small number of approximately statistically
independent components �98�:9� :

� 	 �
;<
:
=?>�@ 	 :98A:B� (1)



The basis elements � 8�:9� are selected from an over-complete
linearly dependent basis using randomized selection over
the training set of images in a representative database. For
image � the feature vectors

� 	 are defined as the coefficients� @ 	 : � in (1) obtained by projecting the image onto the ba-
sis [3]. Given the ICA basis and a pair of to-be-registered� �6� images, coefficient vectors are extracted by non-
linearly projecting each �
��� subimage in the images onto
the basis set. FastICA [3] was used to implement ICA.

3. MST ENTROPY ESTIMATOR

The MST method is a graph-theoretic technique, which de-
termines the dominant skeletal pattern of a point set by map-
ping the shortest path of nearest neighbor connections. Given
a set

��� � ��� > ����	9��� � � � �
� � � of � , i.i.d vectors
� 	 in ��
 each

with density 2 , a spanning tree is a connected acyclic graph
which passes through all coordinates associated with

���
. In

this graph all � points are connected by ��� �
edges ��� 	 � .

For a given real weight exponent ��� (0,1) the minimum
spanning tree is the spanning tree which minimizes the total
edge weight:

� - � � 0 ������� 
� � <  ! � !#" � (2)

where
! � ! denotes Euclidean (L2) norm of the edge. The

overall length of the MST can be used to construct a strongly
consistent estimator of entropy [4, 5].

It can be shown [5] that the length function when nor-
malized by $ � produces sequences that converge within a
constant factor to the alpha entropies with � � �&%('

. More
generally, for i.i.d. points in ) ; , by changing the value of �
in (2), one can change the convergent limit to the � -entropy
where � � -+*��,� % *(0 . The MST is called an entropic
spanning graph as its normalized log-length converges (a.s.)
within a constant to an � -entropy. Specifically, the Rényi
entropy estimator

-5/. - �0� 0 � �&% - � � �3021 34� � - ��� 0 % � . �534�7698;: "&< � (3)

is an asymptotically unbiased and almost surely consistent
estimator of the � -entropy of 2 where 6;8;: " is a constant
bias independent of 2 [5].

As contrasted with density based estimates of entropy,
the MST estimator completely by-passes the complication
of choosing and fine-tuning parameters such as histogram
bin size, density kernel width, complexity and adaptation
speed. For large dimensions the MST can be implemented
when histograms cannot, due to the “curse of dimension-
ality”. For small regions, the sparseness of the histogram
causes poor accuracy of the derived entropy estimate.

4. DEFORMATION LOCALIZATION

Iterative registration algorithms apply transformations to a
sequence of images while minimizing some objective func-
tion. We demonstrate the sensitivity of our technique by
tracking deformations that correspond to small perturbations
of the image. These perturbations are recorded by the change
in the mismatch metric.

Global deformations reflect a change in imaging geom-
etry and are modeled as global transformations on the im-
ages. However, global similarity metrics are ineffective in
capturing local deformations in medical images that occur
due to physiological or pathological changes in the spec-
imen. Typical examples are: change in brain tumor size,
appearance of microcalcifications in breast, non-linear dis-
placement of soft tissue due to disease and modality induced
inhomogeneties such as in MRI and nonlinear breast com-
pression in XRay mammograms. Most registration algo-
rithms will not be reliable when the size of the mismatch
site is insufficiently small, typically ->= �?�.0A@ &+' �7&(' [1].

We note here that the � -entropy function is a simmi-
larity function akin to the standard MI function. It scores
image regions with respect to some reference image region
over a set of transformations. Of interest is the magnitude
and location of change in the objective function (here, the
joint entropy). With a combination of ICA and � -entropy
we match sites having as few as � ��� pixels.

In fig.1, multimodal synthesized scan of T1 and T2 weighted
brain MRI each of size

'CB(D � 'CB(D
pixels [6] are seen. The

original target images shall be deformed locally (see below)
to generate a deformed target image.

4.1. Locally deforming original image using B-Splines

B-spline deformations are cubic mapping functions that have
local control and injective properties [7]. The 2D uniform
tensor B-spline function E , is defined with a &)��& control
lattice F in � 	 as:

E ->G?��H 0 �
I<
	 =7J

I<
:
=7J

K 	 ->G 0 K :+->H 0�F 	 : � (4)

where 'L@MG?��H�@ �
, F 	 : is the spatial coordinates of the

lattice and
K 	 are the standard B-Spline basis functions.

Given that the original images have
'CB(D � ' B(D pixels, we

impose a grid( N ) of
� '�� � ' control points on

��#%$��
. Since the

aim is to deform
��#%$��

locally, not globally, we select a sub-
grid ( F ) of & � & control points in the center of

��#%$��
. We then

diagonally displace, by O � � ' mm, only one of the control
points in F , to generate deformed grid F ; . � #%$�� is then re-
constructed according to F ; . The induced deformation is
measured as PQP F ; �RFSPQP . Fig.1.b and 1.c show the resultant
warped image and difference image,

� #%$�� �UT7- � #%$�� 0 . For
smaller deformations, N is a finer grid of

' '�� ' ' points,



from which F is picked. A control point in F is then dis-
placed diagonally by O � � � ' ������� � ' . When O @ �

, notice-
able deformation spans only � ��� pixels.

4.2. Feature discrimination algorithm

We generate a * -dimensional feature set � � 	 �����
�

	 =?> , = �
����* by sequentially projecting sub-image block (window)�	� : ��
���
:
=?> of size = � � onto a * -dimensional basis function
set � 8��+� extracted from the MRI image. Raster scanning
through

� �! �"
we select sub-image blocks �	�

�! �"
	 ��
���
	 =?> . For

this simulation exercise, we pick only the sub-image block
�
#%$��

from T7- � #%$�� 0 corresponding to the particular pixel lo-
cation � � - ��' � � ��' �+0 . �

#%$��
> 	��2: > 	�� corresponds to the area in��#%$��

where the B-Spline deformation has been applied.
The size of the ICA basis features is � � � , i.e. * � D & .

The MST is constructed over the joint feature set � �
�! �"
	 � � #%$��: � .

When suitably normalized with
�&% � . �
� � ' � B , the length

of the MST is an estimate of 5 . - �
�� �"
	 � � #%$��: 0 . We score all

the sub-image blocks �	�
�� �"
	 � 
���
	 =?> with respect to the sub-

image block �
#%$��
> 	�� : > 	�� . Let ��� be the resultant ����� ma-

trix of scores, at deformation O . The objective function sur-
face ��� is a simmilarity map beween �	� �! �" � 
���
	 =?> and �

#%$��
.

When two sites are compared, the resulting joint probabil-
ity distribution depends on the degree of mismatch. The best
match is detected by searching for the region in the

� �! �"
that

corresponds to �
#%$��

as determined by the MST length. As
opposed to the one-to-all block matching approach adopted
here, one could also perform a block-by-block matching,
where each block �

�! �"
	 is compared with its corresponding

block �
#%$��
	 . The particular approach adopted should depend

on the application at hand. Also, for window size � � � , the
projection of each window on the � � � basis gives one 64D
coefficient per window. Then the MST length is simply the
Euclidean distance between the two 64D coefficients.

5. RESULTS

Fig.1 (d,e,f) shows � > J for = � � � � � � ,
��D � ��D

and�C' � �C'
. Similar maps can be generated for O ��O9> � O 	 ������� O�� .

The gradient � -�� 0 ��� � � �!� �#" reflects the change in 5�. ,
the objective function, when

� #%$��
experiences an incremen-

tal change in deformation, from O ��O9>%$ O 	 . This gradi-
ent, at various sub-image block size is seen in Fig.1 (g,h,i),
where O > � ' and O 	 � � ' . For demonstration purposes,
the size of the deformation applied to

��#%$��
is large. Smaller

deformations generated using a control grid spanning only&+' � &(' pixels are used to generate Fig.1 (m). It shows the
ratio of the gradient of the objective function:

& �
>'

�(�
�*),+ �(�

�
	 = > P � 	 -�� 0 P

>'

���
.-/�(�

�*) + 
���
.-/�(�
�

	 = > P � 	
-0� 0 P � (5)

over the deformation site v/s background in the presence of
additive gaussian noise.

Fig.1 (j,k,l) shows the simmilarity map �.� when con-
structed using a histogram estimate of joint entropy calcu-
lated over subimage size = � � , as:

� � �
	�1�1<
2 =7J

	�1�1<
3 =7J 23-54.� 6 0 357	8 -

23-94.��6 0
23-94 0�23-56 0 0�� (6)

At lower sub-image sizes, the estimate has bias and several
local minima even under noise free conditions. It is thus
unsuitable for detection of local deformation of

� #%$��
.

6. CONCLUSION

We have presented a feature discrimination technique that
registers the local changes in the images, even under low
SNR. Our technique has a combination of high resolution
features for image discrimination and a fast converging sta-
ble entropy estimation technique based on the MST. To-
gether they provide ability to score images over a set of lo-
cal transformations. We applied these techniques to identify
sites of local non-linear deformation.
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Reference Image, Brain MRI T1−weighted

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) �������

Warped Target Image, Brain MRI T2−weighted
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Fig. 1. B-Spline deformation on MRI images of the brain. (a) Reference image, (b) Warped target (c) True Deformation, (d)
� � 5/. as seen with a

�C' � �C'
window, (e)

� D � ��D
window and (f) �
� � window. (g) � -�� 0 � � > J � � J as seen with a�C' � �C'

, (h)
��D � ��D and (i) � � � window. (j,k,l) Shannon MI using pixel intensity and histograms. Finally, (m) Ratio of � �

calculated over deformation site v/s background image region for smaller deformation spanning � � � sub-images; = � ���
� � � .


